
Compiler Construction
Lecture 22: Code generation

Michael Engel

Compiler Construction 22: Code generation 2

Overview
• Instruction selection
• Register allocation (next lecture)

Compiler Construction 22: Code generation 3

Where are we now?
• We have a fairly low-level view of the program, but

• It features a memory model of infinite temporary
variables

• It isn’t specific in terms of operations provided by the
architecture

• These will be our last two topics
• Selecting machine-specific operations
• Mapping variables to memory locations

Compiler Construction 22: Code generation 4

Low-level IR vs. machine level
• The instructions of a low-level IR are not the same as the

ones of the target machine

Language 1

Language 2

Language 3

High-Level
IR

Low-Level
IR

x86_64

Aarch64

RISC-V

Compiler Construction 22: Code generation 5

Straight forward solution
• Map every low-level IR to a fixed sequence of assembly

instructions

• Disadvantages:
• Lots of redundant operations
• More memory traffic than necessary

x = y + z

mov y, r1
mov z, r2
add r1, r2
mov r1, x

Compiler Construction 22: Code generation 6

Multiple possible alternatives
• Translate a[i+1] = b[j] using these operations

add r2,r1 ← r1 = r1+r2
mul c, r1 ← r1 = r1*c
load r2, r1 ← r1 = *r2
store r2, r1 ← *r1 = r2
movem r2, r1 ← *r1 = *r2
movex r3, r2, r1 ← *r1 = *(r2+r3)

Compiler Construction 22: Code generation 7

General code generation steps
• Let us assume that everything is represented by 8-byte

elements, and
• Register ra holds &a
• Register rb holds &b
• Register ri holds i
• Register rj holds j

a[i+1] = b[j] needs to

• Find address of b[j]
• Load b[j]
• Find address of a[i+1]
• Store into a[i+1]

Compiler Construction 22: Code generation 8

One translation
• Address of b[j]

• mulc 8, rj
• add rj,rb

• Load b[j]
• load rb,r1

• Address of a[i+1]
• add 1,ri
• mulc 8, ri
• add ri, ra

• Store into a[i+1]
• store r1, ra

t1 = j * 8
t2 = b + t1
t3 = *t2
t4 = i + 1
t5 = t4 * 8
t6 = a + t5
*t6 = t3

TAC

Compiler Construction 22: Code generation 9

Another possible translation
• Address of b[j]

• mulc 8, rj
• add rj,rb

• Address of a[i+1]
• add 1,ri
• mulc 8, ri
• add ri, ra

• Store into a[i+1]
• movem rb, ra

t1 = j * 8
t2 = b + t1
t3 = *t2
t4 = i + 1
t5 = t4 * 8
t6 = a + t5
*t6 = t3

TAC

Compiler Construction 22: Code generation 10

One more translation
• Address of b[j]

• mulc 8, rj
• Address of a[i+1]

• add 1,ri
• mulc 8, r1
• add ri, ra

• Store into a[i+1]
• movex rj, rb, ra

t1 = j * 8
t2 = b + t1
t3 = *t2
t4 = i + 1
t5 = t4 * 8
t6 = a + t5
*t6 = t3

TAC

Compiler Construction 22: Code generation 11

Why should we care?
• Not all instructions are created equal
• Some complete in a clock cycle
• Others decompose into a sequence of steps, and take

many cycles

• If we have a choice of translations, we’d like the one with
the smallest sum of costs

Compiler Construction 22: Code generation 12

Partial instructions aren’t necessarily adjacent

• Address of b[j]
• mulc 8, rj

• Address of a[i+1]
• add 1,ri
• mulc 8, r1
• add ri, ra

• Store into a[i+1]
• movex rj, rb, ra

t1 = j * 8
t2 = b + t1
t3 = *t2
t4 = i + 1
t5 = t4 * 8
t6 = a + t5
*t6 = t3

Compiler Construction 22: Code generation 13

Tree representation
• The 4 overall steps can be written as a tree

store

load+

a *

+ 8

i 1

+

b *

j 8

Compiler Construction 22: Code generation 14

Instructions can be tiles
• tile = subtree of a particular pattern

store

load+

a *

+ 8

i 1

+

b *

j 8

movem r2, r1

Compiler Construction 22: Code generation 15

Instructions can be tiles
• tile = subtree of a particular pattern

store

load+

a *

+ 8

i 1

+

b *

j 8

movex r3, r2, r1

Compiler Construction 22: Code generation 16

Tiling
• An instruction selection covers the tree with disjoint tiles

store

load+

a *

+ 8

i 1

+

b *

j 8

movem rb,ra

add rj,rb
mulc 8,rj

mulc 8,ri

add 1,ri

add ri,ra

Compiler Construction 22: Code generation 17

Tiling
• An instruction selection covers the tree with disjoint tiles

store

load+

a *

+ 8

i 1

+

b *

j 8

movem rb,ra

add rj,rb
mulc 8,rj

mulc 8,ri

add 1,ri

add ri,ra

mulc 8, rj
add rj, rb
add 1, ri
mulc 8, ri
add ri, ra
movem rb, ra

Compiler Construction 22: Code generation 18

Comparing the tilings
• Alternate tilings give different costs

store

load+

a *

+ 8

i 1

+

b *

j 8

store

load+

a *

+ 8

i 1

+

b *

j 8

Using store rb,ra Using movex rj,rb,ra

Compiler Construction 22: Code generation 19

Better than trees
• If we let common sub-expressions be represented by the

same node, the trees become directed acyclic graphs
(DAGs)

• Separate labels and annotations

• Label nodes with variables, constants or operators

• Annotate nodes with variables that hold their value

• Construct DAG from low-level IR

Compiler Construction 22: Code generation 20

Basic approach
• For each instruction in a basic block

• if it’s “x = y op z”
• find or create a node annotated y
• find or create a node annotated z
• find or create a node labeled op with operands y and z
• remove annotation x from everywhere
• add annotation x to the op node

• if it’s “x = y”
• find or create a node annotated y
• add annotation x to it

Compiler Construction 22: Code generation 21

Step 1

t = y + 1
w = y + 1
y = z * t
t = t + 1
z = t * y
w = z +

y 1
y

t

Compiler Construction 22: Code generation 22

Step 2

t = y + 1
w = y + 1
y = z * t
t = t + 1
z = t * y
w = z +

y 1
y

t,w

Compiler Construction 22: Code generation 23

Step 3

t = y + 1
w = y + 1
y = z * t
t = t + 1
z = t * y
w = z +

y 1
y

t,w

*

z
z

y

Compiler Construction 22: Code generation 24

Step 4

t = y + 1
w = y + 1
y = z * t
t = t + 1
z = t * y
w = z +

y 1
y

w

*

z
z

y
+

t

Compiler Construction 22: Code generation 25

Step 5

t = y + 1
w = y + 1
y = z * t
t = t + 1
z = t * y
w = z +

y 1
y

w

*

z
z

y
+

t

*
z

Compiler Construction 22: Code generation 26

Step 6

t = y + 1
w = y + 1
y = z * t
t = t + 1
z = t * y
w = z +

y 1
y

w

*

z
z

y
+

t

*
z,w

