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Overview
• Instruction selection 
• Register allocation (next lecture)
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Where are we now?
• We have a fairly low-level view of the program, but  

• It features a memory model of infinite temporary 
variables  

• It isn’t specific in terms of operations provided by the 
architecture  

• These will be our last two topics  
• Selecting machine-specific operations  
• Mapping variables to memory locations 
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Low-level IR vs. machine level
• The instructions of a low-level IR are not the same as the 

ones of the target machine

Language 1

Language 2

Language 3

High-Level 
IR

Low-Level 
IR

x86_64

Aarch64

RISC-V
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Straight forward solution
• Map every low-level IR to a fixed sequence of assembly 

instructions  
 
 
 
 
 
 
 

• Disadvantages:  
• Lots of redundant operations  
• More memory traffic than necessary  

x = y + z

mov y, r1 
mov z, r2 
add r1, r2 
mov r1, x
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Multiple possible alternatives
• Translate a[i+1] = b[j] using these operations  

add r2,r1        ← r1 = r1+r2 
mul c, r1        ← r1 = r1*c 
load r2, r1      ← r1 = *r2 
store r2, r1     ← *r1 = r2  
movem r2, r1     ← *r1 = *r2 
movex r3, r2, r1 ← *r1 = *(r2+r3)  



Compiler Construction 22: Code generation 7

General code generation steps
• Let us assume that everything is represented by 8-byte 

elements, and  
• Register ra holds &a  
• Register rb holds &b  
• Register ri holds i  
• Register rj holds j  

 
a[i+1] = b[j] needs to  

• Find address of b[j]  
• Load b[j]  
• Find address of a[i+1]  
• Store into a[i+1] 
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One translation
• Address of b[j] 

• mulc 8, rj 
• add rj,rb 

• Load b[j] 
• load rb,r1  

• Address of a[i+1]  
• add 1,ri 
• mulc 8, ri 
• add ri, ra 

• Store into a[i+1] 
• store r1, ra 

t1 = j * 8 
t2 = b + t1 
t3 = *t2 
t4 = i + 1 
t5 = t4 * 8 
t6 = a + t5 
*t6 = t3

TAC
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Another possible translation
• Address of b[j] 

• mulc 8, rj 
• add rj,rb 

• Address of a[i+1]  
• add 1,ri 
• mulc 8, ri 
• add ri, ra 

• Store into a[i+1] 
• movem rb, ra 

t1 = j * 8 
t2 = b + t1 
t3 = *t2 
t4 = i + 1 
t5 = t4 * 8 
t6 = a + t5 
*t6 = t3

TAC
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One more translation
• Address of b[j] 

• mulc 8, rj 
• Address of a[i+1]  

• add 1,ri 
• mulc 8, r1 
• add ri, ra 

• Store into a[i+1] 
• movex rj, rb, ra 

t1 = j * 8 
t2 = b + t1 
t3 = *t2 
t4 = i + 1 
t5 = t4 * 8 
t6 = a + t5 
*t6 = t3

TAC
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Why should we care?
• Not all instructions are created equal  
• Some complete in a clock cycle  
• Others decompose into a sequence of steps, and take 

many cycles 

• If we have a choice of translations, we’d like the one with 
the smallest sum of costs 
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Partial instructions aren’t necessarily adjacent 

• Address of b[j] 
• mulc 8, rj 

• Address of a[i+1]  
• add 1,ri 
• mulc 8, r1 
• add ri, ra 

• Store into a[i+1] 
• movex rj, rb, ra 

t1 = j * 8 
t2 = b + t1 
t3 = *t2 
t4 = i + 1 
t5 = t4 * 8 
t6 = a + t5 
*t6 = t3
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Tree representation
• The 4 overall steps can be written as a tree 

store

load+

a *

+ 8

i 1

+

b *

j 8
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Instructions can be tiles
• tile = subtree of a particular pattern

store

load+

a *

+ 8

i 1

+

b *

j 8

movem r2, r1
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Instructions can be tiles
• tile = subtree of a particular pattern

store

load+

a *

+ 8

i 1

+

b *

j 8

movex r3, r2, r1
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Tiling
• An instruction selection covers the tree with disjoint tiles 

store

load+

a *

+ 8

i 1

+

b *

j 8

movem rb,ra

add rj,rb
mulc 8,rj

mulc 8,ri

add 1,ri

add ri,ra
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Tiling
• An instruction selection covers the tree with disjoint tiles 

store

load+

a *

+ 8

i 1

+

b *

j 8

movem rb,ra

add rj,rb
mulc 8,rj

mulc 8,ri

add 1,ri

add ri,ra

mulc  8, rj 
add   rj, rb 
add   1, ri 
mulc  8, ri 
add   ri, ra 
movem rb, ra
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Comparing the tilings
• Alternate tilings give different costs 

store

load+

a *

+ 8

i 1

+

b *

j 8

store

load+

a *

+ 8

i 1

+

b *

j 8

Using store rb,ra Using movex rj,rb,ra
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Better than trees
• If we let common sub-expressions be represented by the 

same node, the trees become directed acyclic graphs 
(DAGs)  

• Separate labels and annotations  

• Label nodes with variables, constants or operators  

• Annotate nodes with variables that hold their value  

• Construct DAG from low-level IR 
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Basic approach
• For each instruction in a basic block  

• if it’s “x = y op z” 
• find or create a node annotated y 
• find or create a node annotated z 
• find or create a node labeled op with operands y and z  
• remove annotation x from everywhere 
• add annotation x to the op node  

• if it’s “x = y” 
• find or create a node annotated y  
• add annotation x to it 



Compiler Construction 22: Code generation 21

Step 1

t = y + 1 
w = y + 1 
y = z * t 
t = t + 1 
z = t * y 
w = z +

y 1
y

t
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Step 2

t = y + 1 
w = y + 1 
y = z * t 
t = t + 1 
z = t * y 
w = z +

y 1
y

t,w
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Step 3

t = y + 1 
w = y + 1 
y = z * t 
t = t + 1 
z = t * y 
w = z +

y 1
y

t,w

*

z
z

y
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Step 4

t = y + 1 
w = y + 1 
y = z * t 
t = t + 1 
z = t * y 
w = z +

y 1
y

w

*

z
z

y
+

t
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Step 5

t = y + 1 
w = y + 1 
y = z * t 
t = t + 1 
z = t * y 
w = z +

y 1
y

w

*

z
z

y
+

t

*
z
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Step 6

t = y + 1 
w = y + 1 
y = z * t 
t = t + 1 
z = t * y 
w = z +

y 1
y

w

*

z
z

y
+

t

*
z,w


