
Compiler Construction
Lecture 20: Reaching definitions

Michael Engel

Compiler Construction 20: Reaching definitions 2

Overview
• Data-flow analyses

• Forward analyses: Reaching definitions
• Uninitialized variables analysis
• Copy propagation

Compiler Construction 20: Reaching definitions 3

Reaching definitions analysis
• A definition of a variable x is a statement

which assigns a value to x
• A unique label (representing the def) is

associated with each assignment
• different occurrences of the same

assignment become different definitions
• A definition d reaches a point p if there is a

path from the point immediately following d
to p such that d is not “killed” along that path

• A definition of a variable is killed between
two points when there is another definition of
that variable along the path
• r1 = r2 + r3 kills previous definitions of r1

d1: y = 3
d2: x = y

d1 : y := 3
d2 : y := 4
d3 : x := y

d1 is a reaching
definition for d2

d1 is no longer
a reaching

definition for d3
because d2

kills its reach

Compiler Construction 20: Reaching definitions 4

Reaching definitions vs. liveness
• Reaching definitions is different from uses of variables or

computation of expressions
• labels are not associated with them and hence lexically same

computations are not treated as different entities for analysis
• Liveness

• analyzes variables (e.g., virtual registers)
• doesn’t care about specific users

• Reaching defs
• analyzes operations, each def is different

• Forward dataflow analysis as propagation occurs from
defs downwards
• liveness was backward analysis

Compiler Construction 20: Reaching definitions 5

Data flow equations
• A definition di ∈ Defs of a variable x ∈ Var reaches a

program point u if di occurs on some path from Start to u and
is not followed by any other definition of x on this path

• The data flow equations to define the required analysis are:
 BI if n is Start block

 ∪ Outp otherwise

 Outn = (Inn−Killn) ∪ Genn
 where Inn, Outn, Genn, Killn, and BI are sets of definitions
• Note the use of ∪ to capture the “any path” nature of data flow

• This is similar to liveness analysis except that now the
data flow is forward rather than backward

p∈pred(n)

Inn =

Compiler Construction 20: Reaching definitions 6

Assumptions for reaching def. analys.
• For every local variable x, it is assumed that a fictitious

definition x = undef reaches Entry(Start)
• This is required for the optimization of copy propagation

(→ discussed later)
• If definition x = undef reaches a use of x, it suggests a

potential use before definition
• Whether this happens at run time depends on the actual

results of conditions along the path taken to reach the
program point.

• Genn contains downwards exposed definitions in n whereas
Killn contains all definitions of all variables modified in n
• Thus Genn ⊆ Killn for reaching definitions analysis

Compiler Construction 20: Reaching definitions 7

Example
• Labels of assignments

consist of variable names and
an instance number
• used to represent the

definitions in the programs
• Definitions a0, b0, c0, and d0

represent the special
definitions a=undef,
b=undef, c=undef, and
d=undef respectively

• Since the confluence
operation is ∪, the initial value
at each program point is ∅

777

b1: b=4
a1: a=b+c
d1: d=a*b

b2: b=a-c

c1: c=b+c

d2: d=a+b

f(b+c)

g(a+b)

h(a-c)
f(b+c)

c2: c=a*b
f(a-b)

B1

B2

B3

B4

B5

B6

B7

B8

Compiler Construction 20: Reaching definitions 8

Reaching definitions analysis results
Blo
ck

Local
information Global information

Genn Killn
Iteration #1 Changed values

in iteration #2
Inn Outn Inn Outn

B1 {a1,b1,
d1}

{a0,a1,
b0, b1,b2,
d0,d1,d2}

{a0,b0,
c0,d0}

{a1,b1,
c0,d1}

B2 {b2} {b0,b1,b2} {a1,b1,
c0,d1}

{a1,b2,
c0,d1}

B3 {c1} {c0,c1,c2} {a1,b1,
c0,d1}

{a1,b1,
c1,d1}

{a1,b1,
c0,c1,c2,

d1,d2}

{a1,b1,c1,
d1,d2}

B4 {c2} {c0,c1,c2} {a1,b1,
c1,d1}

{a1,b1,
c2,d2}

{a1,b1,
c1,d1,d2}

{a1,b1,c2,
d1,d2}

B5 {d2} {d0,d1,d2} {a1,b1,
c1,d1}

{a1,b1,
c1,d2}

{a1,b1,
c1,d1,d2}

B6 ø ø {a1,b1,
c1,d1}

{a1,b1,
c1,d2}

B7 ø ø
{a1,b1,
c1,c2,
d1,c2}

{a1,b1,
c1,c2,
d1,c2}

B8 ø ø

{a1,b1,
b2,c0,
c1,c2,
d1,d2}

{a1,b1,
b2,c0,
c1,c2,
d1,d2}

b1: b=4
a1: a=b+c
d1: d=a*b

b2: b=a-c

c1: c=b+c

d2: d=a+b

f(b+c)

g(a+b)

h(a-c)
f(b+c)

c2: c=a*b
f(a-b)

B1

B2

B3

B4

B5

B6

B7

B8

Compiler Construction 20: Reaching definitions 9

Reaching definitions analysis results
Blo
ck

Local
information Global information

Genn Killn
Iteration #1 Changed values

in iteration #2
Inn Outn Inn Outn

B1 {a1,b1,
d1}

{a0,a1,
b0, b1,b2,
d0,d1,d2}

{a0,b0,
c0,d0}

{a1,b1,
c0,d1}

B2 {b2} {b0,b1,b2} {a1,b1,
c0,d1}

{a1,b2,
c0,d1}

B3 {c1} {c0,c1,c2} {a1,b1,
c0,d1}

{a1,b1,
c1,d1}

{a1,b1,
c0,c1,c2,

d1,d2}

{a1,b1,c1,
d1,d2}

B4 {c2} {c0,c1,c2} {a1,b1,
c1,d1}

{a1,b1,
c2,d2}

{a1,b1,
c1,d1,d2}

{a1,b1,c2,
d1,d2}

B5 {d2} {d0,d1,d2} {a1,b1,
c1,d1}

{a1,b1,
c1,d2}

{a1,b1,
c1,d1,d2}

B6 ø ø {a1,b1,
c1,d1}

{a1,b1,
c1,d2}

B7 ø ø
{a1,b1,
c1,c2,
d1,c2}

{a1,b1,
c1,c2,
d1,c2}

B8 ø ø

{a1,b1,
b2,c0,
c1,c2,
d1,d2}

{a1,b1,
b2,c0,
c1,c2,
d1,d2}

b1: b=4
a1: a=b+c
d1: d=a*b

b2: b=a-c

c1: c=b+c

d2: d=a+b

f(b+c)

g(a+b)

h(a-c)
f(b+c)

c2: c=a*b
f(a-b)

B1

B2

B3

B4

B5

B6

B7

B8

definitions reaching
Exit(n6) & Exit(n7) in
iteration 1 have to be
propagated to Entry(n5)
& Entry(n3), requiring
an additional iteration

Compiler Construction 20: Reaching definitions 10

def-use & use-def chains
• Reaching definitions analysis

is used for constructing use-
def and def-use chains which
connect definitions to their
uses
• These chains facilitate

several optimizing
transformations

c0: c=undef
b1: b=4
a1: a=b+c
d1: d=a*b

b2: b=b-c

c1: c=b+c

d2: d=a+b

f(b+c)

g(a+b)

h(b-c)
f(b+c)

c2: c=a*b
f(a-b)

B1

B2

B3

B4

B5

B6

B7

B8

Example:
def-use chain for variable a
• Chains always start at a

label

Definition c0
represents
c=undef

Compiler Construction 20: Reaching definitions 11

def-use & use-def chains
c0: c=undef
b1: b=4
a1: a=b+c
d1: d=a*b

b2: b=b-c

c1: c=b+c

d2: d=a+b

f(b+c)

g(a+b)

h(b-c)
f(b+c)

c2: c=a*b
f(a-b)

B1

B2

B3

B4

B5

B6

B7

B8

Example:
def-use chain for variable c
• Definition c0 reaches

some uses of c
• This suggests a potential

use before any assigning
meaningful value

• This, in turn, makes
variable b potentially
undefined

Compiler Construction 20: Reaching definitions 12

Finding undefined var's
c0: c=undef
b1: b=4
a1: a=b+c
d1: d=a*b

b2: b=b-c

c1: c=b+c

d2: d=a+b

f(b+c)

g(a+b)

h(b-c)
f(b+c)

c2: c=a*b
f(a-b)

B1

B2

B3

B4

B5

B6

B7

B8

• Definition c0 reaches some
uses of c

• This, in turn, makes variable b
potentially undefined

• Transitive effects of
undefined variables are
captured by possibly
uninitialized variables
analysis

• Possibly uninitialized variables
analysis is non-separable –
whether a variable is possibly
undefined may depend on
whether other variables are
possibly undefined.

Compiler Construction 20: Reaching definitions 13

Possibly uninitialized variables analysis
c0: c=undef
b1: b=4
a1: a=b+c
d1: d=a*b

b2: b=b-c

c1: c=b+c

d2: d=a+b

f(b+c)

g(a+b)

h(b-c)
f(b+c)

c2: c=a*b
f(a-b)

B1

B2

B3

B4

B5

B6

B7

• For definition xi of variable x,
reaching definitions analysis
discovers a set of definition
reaching paths:

• a sequence of blocks
(b1,b2,...,bk) which is a prefix of
some potential execution path
starting at b1 such that:
• b1 contains the definition xi
• bk is either End or contains a

definition of x
• no other block in the path

contains a definition of x
• Example: some definition reaching

paths for variable c are:
(B4,B7,B3), (B3,B5,B6,B7,B3) and

 (B3,B5,B6,B5,B6,B7,B8)

B8

Compiler Construction 20: Reaching definitions 14

Reaching def. for copy propagation
• Another application of reaching definitions analysis is in

performing copy propagation

• A definition of the form x=y is called a copy because it
merely copies the value of y to x

• When such a definition reaches a use of x, and no other
definition of x reaches that use then the use of x can be
replaced by y

Compiler Construction 20: Reaching definitions 15

Copy propagation c0: c=undef
b1: b=4
a1: a=b+c
d1: d=a*b

b2: b=b-c

c1: c=b+c

d2: d=a+b

f(b+c)

g(a+b)

h(b-c)
f(b+c)

c2: c=a*b
f(a-b)

B1

B2

B3

B4

B5

B6

B7

B8

Example:
• Copy b=4 in block B1 is

the only definition which
reaches the uses of b in
blocks B3, B4, B5, B6 and
B7

• Thus all these uses can
be replaced by the
constant 4

Compiler Construction 20: Reaching definitions 16

Copy propagation
• In the above example, the right hand

side (RHS) value is constant
• With variables on the RHS, e.g. x=y, replacing the uses of

x by y requires an additional check to ensure that the value of
y has not been modified along the path from copy to use

A variant of our reaching definitions analysis can accomplish this:
• We restrict the defs to copies, a def x=y is contained in:

• Genn if it is downwards exposed in n, i.e. not being followed
by a definition of x or y, and in

• Killb if n contains a definition of x or y
• We can now perform reaching definitions analysis
• If one def reaches a use, we can perform copy propagation

c0: c=undef
b1: b=4
a1: a=b+c
d1: d=a*b

Compiler Construction 20: Reaching definitions 17

Use of copy propagation

• This copy propagation optimization does not improve the
program on its own

• But it has the potential of creating dead code:
• When copy propagation is performed using x = y, it is
possible that all uses of x are replaced by y thus making
x dead after the assignment

• Thus this assignment can be safely deleted

References

[1] Allen, Frances E. and Cocke, John. A catalogue of optimizing transformations.
 RC 3548, IBM T. J. Watson Research Center, Yorktown Heights, N.Y., September 1971

