
Compiler Construction
Lecture 19 part 2: Live variable analysis

Michael Engel

Compiler Construction 19–2: Live variables analysis 2

Overview
• Data-flow analyses

• Backward analyses: Live variable analysis

Compiler Construction 19–2: Live variables analysis 3

Live variable analysis
What is Live Variable Analysis?
• For each variable x we determine:

Where is the last program point p at which a specific
value of x is used?

• In other words:
For x and a program point p determine if the value of x at
p can still be used along some path starting at p
• If so, x is live at p
• If not, x is dead at p

• Live variable analysis must take control flow into account
⇒ we need to solve a data flow problem

Compiler Construction 19–2: Live variables analysis 4

Live variable analysis: example
At point p0 variable x is live:
• There is a path to p1 where the

value at p0 is used
• Beyond px towards p2 the value

of x is no longer needed and is dead
For each variable and for each
program point, we have to observe:
• Where is the last program point

beyond which the value is not used?
• Trace back from uses to definitions and observe

the first definition (backwards) that reaches that use
• That definition kills all uses backwards of it

… = x

x = … … = x

p0

p2 p1

px

Compiler Construction 19–2: Live variables analysis 5

Gen and kill, in and out sets
• A variable is live at a point p if its

value is used along at least one path
• A use of x prior to any definition in a

basic block means x must be alive
• A definition of x in a block B prior to any

subsequent use means previous uses must be dead
• Accordingly, we obtain:

• Gen: set of variables used in B
• the upward exposed reads of variables in block B

• Kill: set of variables defined in B

 Outb = ∪ Ins Inb = Useb ∪ (Outb - Defb)

 s∈succ(b)

Out set
In setIn

 s
et

Compiler Construction 19–2: Live variables analysis 6

Implementing live variables analysis
• Initialize Inb to the empty set
• Compute Gen/Use and Kill/Def for each basic block

• Tracing backwards from the end of the block to the
beginning of the block

• Initialize last instruction’s Outi to the empty set
• Apply Ini = Usei ∪ (Outi - defi)

• Iteratively apply relations to basic block until convergence
• Outb = ∪ Ins

 s∈succ(b)

• Inb = Useb ∪ (Outb - defb)

• With Outb, use relations at instruction level to determine the
live variables after each instruction

Compiler Construction 19–2: Live variables analysis 7

Compute use and def for a basic block

777

In = Use ∪ (Out - def)

Ini = Usei ∪ (Outi - defi)

Out = {}

t = a + 1

b = t

if (a=b) goto L2

Use = {a}
Def = {t}

Use = {t}
Def = {b}

Use = {a,b}
Def = {}

Compiler Construction 19–2: Live variables analysis 8

Compute use and def for a basic block

888

t = a + 1

b = t

if (a=b) goto L2
In = {a,b} ∪ ({} - {}) = {a,b}

Use = {a}
Def = {t}

Use = {t}
Def = {b}

Use = {a,b}
Def = {}

Out = {}

Ini = Usei ∪ (Outi - defi)

Compiler Construction 19–2: Live variables analysis 9

Compute use and def for a basic block

999

t = a + 1

b = t

if (a=b) goto L2
Out = {a,b}

Use = {a}
Def = {t}

Use = {t}
Def = {b}

Use = {a,b}
Def = {}

Out = {}

In = Use ∪ (Out - def)

Ini = Usei ∪ (Outi - defi)

Compiler Construction 19–2: Live variables analysis 10

Compute use and def for a basic block

101010

t = a + 1

b = t

if (a=b) goto L2
Out = {a,b}

Use = {a}
Def = {t}

Use = {t}
Def = {b}

Use = {a,b}
Def = {}

Out = {}

In = {t} ∪ ({a,b} - {b}) = {a,t}

Ini = Usei ∪ (Outi - defi)

Compiler Construction 19–2: Live variables analysis 11

Compute use and def for a basic block

111111

t = a + 1

b = t

if (a=b) goto L2
Out = {a,b}

Use = {a}
Def = {t}

Use = {t}
Def = {b}

Use = {a,b}
Def = {}

Out = {}

Out = {a,t}

In = Use ∪ (Out - def)

Ini = Usei ∪ (Outi - defi)

Compiler Construction 19–2: Live variables analysis 12

Compute use and def for a basic block

121212

t = a + 1

b = t

if (a=b) goto L2
Out = {a,b}

Use = {a}
Def = {t}

Use = {t}
Def = {b}

Use = {a,b}
Def = {}

Out = {}

Out = {a,t}

In = {a} ∪ ({a,t} - {t}) = {a}

Ini = Usei ∪ (Outi - defi)

Compiler Construction 19–2: Live variables analysis 13

Compute use and def for a basic block

131313

t = a + 1

b = t

if (a=b) goto L2
Out = {a,b}

Use = {a}
Def = {t}

Use = {t}
Def = {b}

Use = {a,b}
Def = {}

Out = {}

Out = {a,t}

In = {a} ∪ ({a,t} - {t}) = {a}

Useb = {a}InUsei = Usei ∪ (OutUsei - defUsei)

Compiler Construction 19–2: Live variables analysis 14

Compute use and def for a basic block

141414

t = a + 1

b = t

if (a=b) goto L2

Use = {a}
Def = {t}

Use = {t}
Def = {b}

Use = {a,b}
Def = {}

OutDef = {}

InDefi = Defi ∪ (OutDefi)

Compiler Construction 19–2: Live variables analysis 15

Compute use and def for a basic block

151515

t = a + 1

b = t

if (a=b) goto L2

Use = {a}
Def = {t}

Use = {t}
Def = {b}

Use = {a,b}
Def = {}

OutDef = {}

InDefi = Defi ∪ (OutDefi)

InDef = Def ∪(OutDef) = {}

Compiler Construction 19–2: Live variables analysis 16

Compute use and def for a basic block

161616

t = a + 1

b = t

if (a=b) goto L2

Use = {a}
Def = {t}

Use = {t}
Def = {b}

Use = {a,b}
Def = {}

OutDef = {}

InDefi = Defi ∪ (OutDefi)

OutDef = {}

InDef = Def ∪(OutDef) = {b}

Compiler Construction 19–2: Live variables analysis 17

Compute use and def for a basic block

171717

t = a + 1

b = t

if (a=b) goto L2

Use = {a}
Def = {t}

Use = {t}
Def = {b}

Use = {a,b}
Def = {}

OutDef = {}

InDefi = Defi ∪ (OutDefi)

OutDef = {}

OutDef = {b}

InDef = Def ∪(OutDef)

 = {t}∪{b}

Compiler Construction 19–2: Live variables analysis 18

Compute use and def for a basic block

181818

t = a + 1

b = t

if (a=b) goto L2

Use = {a}
Def = {t}

Use = {t}
Def = {b}

Use = {a,b}
Def = {}

OutDef = {}

InDefi = Defi ∪ (OutDefi)

OutDef = {}

OutDef = {b}

InDef = {t, b}

Defb = {t,b}

Compiler Construction 19–2: Live variables analysis 19

Liveness semantics

Assuming that variable x is live at the exit of basic block n,
there are four possibilities with four distinct semantics:

Case Local information Effect on liveness

1 x� ∉ Genn x� ∉ Killn Liveness of x is unaffected in block n

2 x� ∈ Genn x� ∉ Killn Liveness of x is generated in block n

3 x� ∉ Genn x� ∈ Killn Liveness of x is killed in block n

4 x� ∈ Genn x� ∈ Killn
Liveness of x is unaffected in block n

in spite of x being modified in n

• Variable x is live at Entry(n) in cases 1, 2, and 4 but
the reason for its liveness is different in each case

• Case 4 captures the fact that the liveness
of x is killed in n but is regenerated within n

a = b + c
c = 42

Compiler Construction 19–2: Live variables analysis 20

Example

• Variable c is contained in
both Gen3 and Kill3

202020

b1: b=4
a1: a=b+c
d1: d=a*b

b2: b=a-c

c1: c=b+c

d2: d=a+b

f(b+c)

g(a+b)

h(a-c)
f(b+c)

c2: c=a*b
f(a-b)

Var = {a,b,c,d}
Defs = {a1,b1,b2,c1,c2,d1,d2}
Expr = {a∗b,a+b,a−b,a−c,b+c}

B1

B2

B3

B4

B5

B6

B7

B8

Compiler Construction 19–2: Live variables analysis 21

Example: trace of liveness analysis

212121

b1: b=4
a1: a=b+c
d1: d=a*b

b2: b=a-c

c1: c=b+c

d2: d=a+b

f(b+c)

g(a+b)

h(a-c)
f(b+c)

c2: c=a*b
f(a-b)

B1

B2

B3

B4

B5

B6

B7

B8

Block Local
information Global information

Genn Killn
Iteration #1 Iteration #2
Outn Inn Outn Inn

B8 {a,b,c} ø ø {a,b,c} ø {a,b,c}

B7 {a,b} ø {a,b,c} {a,b,c} {a,b,c} {a,b,c}

B6 {b,c} ø {a,b,c} {a,b,c} {a,b,c} {a,b,c}

B5 {a,b} {d} {a,b,c} {a,b,c} {a,b,c} {a,b,c}

B4 {a,b} {c} {a,b,c} {a,b} {a,b,c} {a,b}

B3 {b,c} {c} {a,b,c} {a,b,c} {a,b,c} {a,b,c}

B2 {a,c} {b} {a,b,c} {a,c} {a,b,c} {a,c}

B1 {c} {a,b,d} {a,b,c} {c} {a,b,c} {c}

Compiler Construction 19–2: Live variables analysis 22

Example: trace of liveness analysis

222222

Block Local
information Global information

Genn Killn
Iteration #1 Iteration #2
Outn Inn Outn Inn

B8 {a,b,c} ø ø {a,b,c} ø {a,b,c}

B7 {a,b} ø {a,b,c} {a,b,c} {a,b,c} {a,b,c}

B6 {b,c} ø {a,b,c} {a,b,c} {a,b,c} {a,b,c}

B5 {a,b} {d} {a,b,c} {a,b,c} {a,b,c} {a,b,c}

B4 {a,b} {c} {a,b,c} {a,b} {a,b,c} {a,b}

B3 {b,c} {c} {a,b,c} {a,b,c} {a,b,c} {a,b,c}

B2 {a,c} {b} {a,b,c} {a,c} {a,b,c} {a,c}

B1 {c} {a,b,d} {a,b,c} {c} {a,b,c} {c}

The data flow values computed
in iteration #2 are identical to the
values computed in iteration #1
⇒ convergence

The result would be different if
we had used the universal set
(here: {a,b,c,d}) as initialization.
Then, d would have been live at
Exit(B7) whereas d is not used
anywhere in the program

Compiler Construction 19–2: Live variables analysis 23

Liveness paths

• For a given variable x, liveness analysis discovers a set of
liveness paths

• Each liveness path is a sequence of blocks (B1, B2,..., Bk)
which is a prefix of some potential execution path starting
at B1 such that:

• Bk contains an upwards exposed use of x, and
• x is either Start or contains an assignment to x, and
• no other block on the path contains an assignment to x

Compiler Construction 19–2: Live variables analysis 24

Liveness paths

• Some liveness paths for
variable c in our example
program are:

(B4,B7,B8),
(B3,B5,B6,B7,B8),
(B3,B5,B6,B5,B6,B7,B8),
and (B1,B2,B8)

b1: b=4
a1: a=b+c
d1: d=a*b

b2: b=a-c

c1: c=b+c

d2: d=a+b

f(b+c)

g(a+b)

h(a-c)
f(b+c)

c2: c=a*b
f(a-b)

B1

B2

B3

B4

B5

B6

B7

B8

Compiler Construction 19–2: Live variables analysis 25

Applications of liveness analysis

• Finding uninitialized variables:
• Languages like C typically do not define
the behavior of programs with
uninitialized variables

• This definition reaches...
this use…
but the def might not get executed!

• Common source of security problems [2]

…
if (…)
 x = 1
…
a = x

Compiler Construction 19–2: Live variables analysis 26

Applications of liveness

• Dead code elimination:
• If x is not live at a exit of an assignment
of x, then this assignment can be safely
deleted

• Discover useless store operations
• At an operation that stores v to memory,
if v is not live then the store is useless

• In the example, the assignments
global=1 and global=3 assign to dead
variables

• i is not live at the end of f, so the
assignment can be eliminated

int global;
void f ()
{
 int i;
 // dead store:
 i = 1;
 // dead store:
 global = 1;
 global = 2;
 return;
 // unreachable:
 global = 3;
}

int global;
void f ()
{
 global = 2;
 return;
}

Compiler Construction 19–2: Live variables analysis 27

Applications of liveness analysis

• Register allocation:
• If a variable x is live at a program point, the current value
of x is likely to be used along some execution path and
hence x is a potential candidate for being allocated a
register

• On the other hand, if x is not live, the register allocated to
x can be allocated to some other variable without the
need of storing the value of x in memory

• More details on register allocation later

Compiler Construction 19–2: Live variables analysis 28

Dead variables analysis

• A variable is dead (i.e., not live) if it is dead along all paths
• We can perform dead variables analysis instead of live
variables analysis

• The interpretation of Inn and Outn changes
• If a variable is contained in Inn or Outn, it is dead instead of
being live

References

[1] J. C. Beatty (1975).
 An algorithm for tracing live variables based on a straightened program graph,
 International Journal of Computer Mathematics, 5:1-4, 97-108,
 DOI: 10.1080/00207167508803104
[2] http://cwe.mitre.org/data/definitions/457.html

http://cwe.mitre.org/data/definitions/457.html

