
Compiler Construction
Lecture 18: Data flow analysis framework

Michael Engel

Compiler Construction 18: Data flow analysis framework 2

Overview
• Data-flow analysis

• partial orders
• lattices
• operators

Compiler Construction 18: Data flow analysis framework 3

CFGs revisited

• We defined control flow graphs in terms of
• Operations
• Basic blocks of operations (that end in jumps)
• Program points

• As an example, we looked at live variables...
• variables that may still be used before their next assignment

...how they can be found by traversing a control flow graph…
• Collect them in sets attached to program points
• Find out how instructions affect the sets attached to the

neighboring program points
• Find out how to handle the sets at points where several control

flows meet
…and how the CFG captures every possible execution of the program

(as well as a few impossible ones, to stay on the safe side)

Compiler Construction 18: Data flow analysis framework 4

Final result of analyzing liveness

• We have managed to determine the liveness of every variable
for every program point

if (c)

z=x

z=1

x=y+z

x=y+1
y=2*z
if (d)

{c,d,x,y,z}

{c,d,x,y}

{c,d,x,y,z}
{c,d,x,y,z}

{c,d,x,y,z}
{c,d,x,y}

{c,d,x,y}
{c,d,y,z}
{c,d,x,y,z}
{c,d,x,y,z}
{c,d,x,z}
{c,d,y,z}

444

Compiler Construction 18: Data flow analysis framework 5

General procedure

• Associate program points with sets that represent the information
we are interested in

• Figure out how the sets change
• As a function of instructions
• As a function of meeting points between control paths

• Make a safe assumption at an initial point
• Work out the function throughout the graph
• Repeat until the sets stop changing

• But… will the sets ever stop changing?
• Also, does the analysis get better by repeated application?

(we’ll talk about this later)

Compiler Construction 18: Data flow analysis framework 6

Convergence

• Will this scheme always work?

Some conditions have to hold:
• If the sets have a maximum and minimum possible size and
• if the changes we make either only add or remove elements
⇒ they will necessarily reach a point where they stop changing
⇒ analysis ends there

• This is obviously a useful property, otherwise the compiler might
run forever…

Compiler Construction 18: Data flow analysis framework 7

Precision

• How good is the outcome of the analysis?

We call an analysis precise:
• If it reflects all control flows the program can/will take and
• none of the control flows it will not take

• A perfectly precise analysis cannot be derived by a computer

• Nevertheless, it is still useful to know if we can assess why quality
is lost and how much

• We need a bit of mathematical background for this…

Compiler Construction 18: Data flow analysis framework 8

Sets and orders

• Some sets have a (natural or implied) order relation, e.g.
• The set of natural numbers: 1 < 2 < 3 < 4 < …
• The ordering relation here is "less than", written as '<'

• Order defined using axioms and a rule system (Peano)
• Letters in the alphabet: a < b < c < … < z < æ < ø < å

• Lexicographical order by definition (from Phoenician alphabet)
• These are total orders

• they put any pair of set elements in relation to each other
• Other sets do not have an order relation

• e.g. complex numbers: is 1 < 1i?
• Some sets let you pick a consistent order

• we write the ordering relation using a special
comparison operator ⊑ to distinguish it from ≦,⊆

Compiler Construction 18: Data flow analysis framework 9

Partial order relations

• A partial order (P,⊑) contains
• a set of 'things' (elements) P
• a partial order relation ⊑

• Properties of the partial order relation
• reflectivity: x⊑x
• antisymmetry: if x⊑y and y⊑x ⇒ x=y

• transitivity: if x⊑y and y⊑z ⇒ x⊑z

• For a total order it must hold that for every x,y: either x⊑y or y⊑x
• In partial orders, not every pair needs to be comparable

Compiler Construction 18: Data flow analysis framework 10

An example

• We can partially order food ingredients as a (stupid?) example

• Let x⊑y denote that x is an ingredient of y

• flour ⊑ bread
• flour ⊑ pasta
• eggs ⊑ pasta
• yeast ⊑ bread
• pasta ⊑ lasagna
• bread ⊑ sandwich

Compiler Construction 18: Data flow analysis framework 11

Visualizing relations: Hasse diagrams

• We can graphically represent the example order (making use of
transitivity) like this:

• Here, it is implied that yeast goes into making a sandwich via the
bread connection

• There are pairs here which are not comparable using our
ingredient relation

sandwich

bread

lasagna

pasta

flour eggsyeast

Compiler Construction 18: Data flow analysis framework 12

Least Upper Bound (LUB)

• The least upper bound of an element pair is the first thing they
have in common when going up the order

LUB(yeast, flour) = bread

sandwich

bread

lasagna

pasta

flour eggsyeast

Compiler Construction 18: Data flow analysis framework 13

Greatest Lower Bound (GLB)

• The greatest lower bound of an element pair is the first thing they
have in common when going down the order

GLB(bread, pasta) = flour

sandwich

bread

lasagna

pasta

flour eggsyeast

Compiler Construction 18: Data flow analysis framework 14

Maximum and minimum

• Partial orders do not necessarily have a unique top or bottom

• GLB(yeast, eggs) does not exist
• LUB(sandwich, pasta) neither

sandwich

bread

lasagna

pasta

flour eggsyeast

Compiler Construction 18: Data flow analysis framework 15

Lattices

• A partial order is a lattice if any finite (non-empty) subset has a
LUB and a GLB

• Example: the natural numbers ordered by '<' form a lattice
• for any finite subset:

• LUB is the biggest number in the set
• GLB is the smallest number in the set

• The natural numbers have a unique bottom element (⊥)
• it’s the number zero

• They do not have a unique top element (⊤)
• since there are countably infinite many natural numbers

• You can pick infinite subsets
• e.g. even numbers, primes, numbers > 42, …

Compiler Construction 18: Data flow analysis framework 16

Complete lattices

• A lattice is called complete if any (non-empty) subset has a LUB
and a GLB

• These have top ("biggest") and bottom ("smallest") elements
• For a complete lattice (L,⊑)

• ⊤ = LUB(L)
• ⊥ = GLB(L)

• Every finite lattice (lattice with a finite number of elements) is
complete

Compiler Construction 18: Data flow analysis framework 17

Meet and join relations

• Just to have some symbols that are independent of how we
choose the order, define two operators

• "Meet"
• x ⊓ y = GLB(x,y)

• "Join"
• x ⊔ y = LUB(x,y)

• These can be naturally extended to sets of more elements:
• x ⊓ y ⊓ z = GLB(GLB(x,y),z)

Compiler Construction 18: Data flow analysis framework 18

Power sets

• Consider the set {a,b,c}

• Its Cartesian product with itself is the set of all pairs:
• {{a,b},{a,c},{b,c}}

• Its power set is:
• {ø,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}

• The power set gives a partial order by the subset relation ⊆

Compiler Construction 18: Data flow analysis framework 19

The power set lattice

• Ordering relation: ⊆
• Meet operator: ∩
• Join operator: ∪
• Top: {a,b,c}
• Bottom: ∅

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

∅

Compiler Construction 18: Data flow analysis framework 20

We can turn it upside down

Just switch the operators around:
• Ordering relation: ⊇
• Meet operator: ∪
• Join operator: ∩
• Top: ∅
• Bottom:{a,b,c}

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

∅

Compiler Construction 18: Data flow analysis framework 21

So, how can we use this theory?

Analysis of live variables

• If we take {a,b,c} to be the three variables in a short program,
every possible choice of live variables corresponds to a point in
the power set lattice

• If we can express the effect of statements as a transfer function
from one place to another in the lattice, we can argue that the set
attached to a program point only moves in one direction wrt. the
order when it is applied repeatedly

• That means it will either end up at the top, or stop somewhere
before it

Compiler Construction 18: Data flow analysis framework 22

Transfer functions

• This is just a formalization of the idea that the instruction between
two program points is a function from one place in the lattice to
another

• For an instruction I:
• Forward analysis: out[I] = F(in[I])
• Backward analysis: in[I] = F(out[I])

• Accordingly, for basic blocks, the function of a block B is simply the
nesting of the functions of B’s component instructions I1…In:

• Forward:
out[B] = F1(F2(…(Fn-1(Fn(in[B])…)))

• Backward:
in[B] = F1(F2(…(Fn-1(Fn(out[B])…)))

x=y+1
y=2*z
if (d) {c,d,x,y,z}

{c,d,x,y,z}
{c,d,x,z}
{c,d,y,z}

Compiler Construction 18: Data flow analysis framework

Where paths meet again

• For the points where multiple control flows intersect:

• Forward: in[B] = ⊓ {out[B’] | B’ is a predecessor of B}
• Backward: out[B] = ⊔ {in[B’] | B’ is a successor of B}

• If we really wanted to, we could use
 ⊔ instead and reverse the orders

• With ⊓, transfers in the lattice
move toward its bottom

• With ⊔, transfers in the lattice
move toward its top

z=1

x=y+z

x=y+1
y=2*z
if (d)

{c,d,x,y}
{c,d,x,y}

{c,d,y,z}
{c,d,x,y,z}

Compiler Construction 18: Data flow analysis framework

Another application of Hasse diagrams

…no food involved, example from hardware modelling (from [2])
• The VHDL hardware description language allows for the definition

of user-defined value sets, e.g. to describe signal strength
• model components such as pull-ups, effects like high impedance

Compiler Construction 18: Data flow analysis framework 25

What’s next?

• More on data-flow analyses

References
[1] Peano, Giuseppe (1889).
 Arithmetices principia, nova methodo exposita
 [The principles of arithmetic, presented by a new method], pp. 83–97
[2] Peter Marwedel (2018), Embedded System Design: Embedded Systems, Foundations of
 Cyber-Physical Systems, and the Internet of Things, Springer 2018,
 ISBN 9783319560458

