DTTNU | Norwegian University of Science and Technology

Compiler Construction

Lecture 18: Data flow analysis framework

Michael Engel

Overview

- Data-flow analysis
 - partial orders
 - lattices
 - operators

CFGs revisited

- We defined control flow graphs in terms of
 - Operations
 - Basic blocks of operations (that end in jumps)
 - Program points
- As an example, we looked at live variables...
 - variables that may still be used before their next assignment

...how they can be found by traversing a control flow graph...

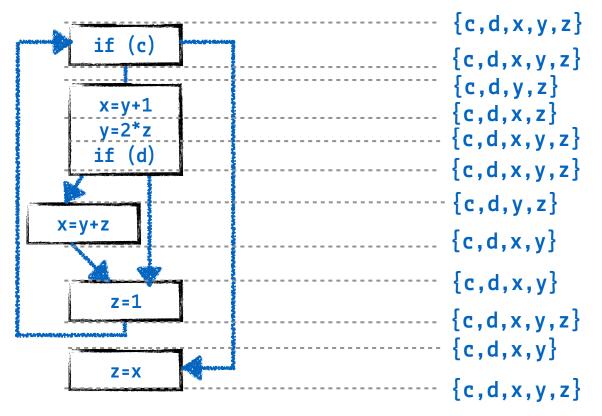
- Collect them in sets attached to program points
- Find out how instructions affect the sets attached to the neighboring program points
- Find out how to handle the sets at points where several control flows meet

...and how the CFG captures every possible execution of the program

(as well as a few impossible ones, to stay on the safe side)

Final result of analyzing liveness

• We have managed to determine the liveness of every variable for every program point



Norwegian University of

Science and Technology

General procedure

- Associate program points with sets that represent the information we are interested in
- Figure out how the sets change
 - As a function of instructions
 - As a function of meeting points between control paths
- Make a safe assumption at an initial point
- Work out the function throughout the graph
- Repeat until the sets stop changing
- But... will the sets ever stop changing?
 - Also, does the analysis get better by repeated application? (we'll talk about this later)

Convergence

• Will this scheme always work?

Some conditions have to hold:

- If the sets have a maximum and minimum possible size **and**
- if the changes we make either **only** add or remove elements
 ⇒ they will necessarily reach a point where they stop changing
 ⇒ analysis ends there
- This is obviously a useful property, otherwise the compiler might run forever...

Precision

• How good is the outcome of the analysis?

We call an analysis **precise**:

- If it reflects all control flows the program can/will take and
- none of the control flows it will not take
- A perfectly precise analysis cannot be derived by a computer
- Nevertheless, it is still useful to know if we can assess why quality is lost and how much
 - We need a bit of mathematical background for this...

Sets and orders

- Some sets have a (natural or implied) order relation, e.g.
 - The set of natural numbers: 1 < 2 < 3 < 4 < ...
 - The ordering relation here is "less than", written as '<'
 - Order defined using axioms and a rule system (Peano)
 - Letters in the alphabet: a < b < c < ... < z < a < ø < å
 - Lexicographical order by definition (from Phoenician alphabet)
- These are total orders
 - they put any pair of set elements in relation to each other
- Other sets do not have an order relation
 - e.g. complex numbers: is 1 < 1i?
- Some sets let you pick a consistent order
 - we write the ordering relation using a *special comparison operator* ⊑ to distinguish it from ≤,⊆

≮, ∮₿	8 て く Y	2 P F ș
G D	ΥK ζL	φ ¶ R ¥Š
	у м у N ‡ S	× T
Ιz Ιz	≢ S 0 ′	

Partial order relations

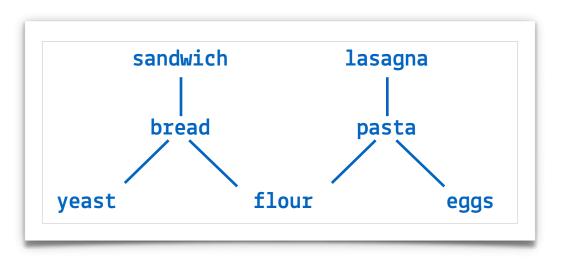
- A *partial order* (P, ⊑) contains
 - a set of 'things' (elements) P
 - a partial order relation
- Properties of the partial order relation
 - reflectivity: x x
 - antisymmetry: if $x \sqsubseteq y$ and $y \sqsubseteq x \Rightarrow x = y$
 - transitivity: if $x \sqsubseteq y$ and $y \sqsubseteq z \Rightarrow x \sqsubseteq z$
- For a *total order* it must hold that for every x, y: either x⊑y or y⊑x
- In partial orders, not every pair needs to be comparable

An example

- We can partially order food ingredients as a (stupid?) example
- Let x y denote that x is an ingredient of y
 - flour ⊑ bread
 - flour 🗆 pasta
 - eggs 🛛 🗆 pasta
 - yeast 🗆 bread
 - pasta 🗆 lasagna
 - bread 🗆 sandwich

Visualizing relations: Hasse diagrams

• We can graphically represent the example order (making use of transitivity) like this:

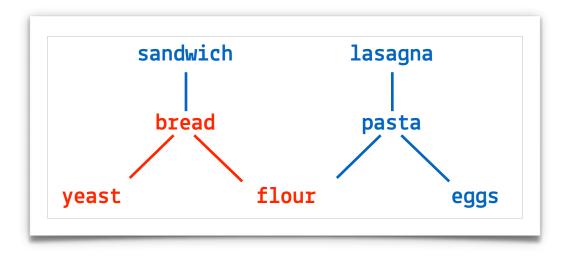


- Here, it is implied that yeast goes into making a sandwich via the bread connection
- There are pairs here which are not comparable using our ingredient relation

Least Upper Bound (LUB)

• The least upper bound of an element pair is the first thing they have in common when **going up** the order

```
LUB(yeast, flour) = bread
```



Greatest Lower Bound (GLB)

• The greatest lower bound of an element pair is the first thing they have in common when **going down** the order

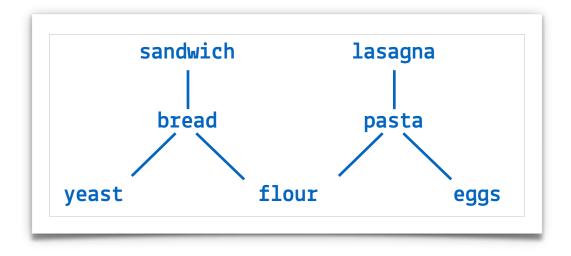
```
sandwich lasagna
bread pasta
yeast flour eggs
```

GLB(bread, pasta) = flour

Maximum and minimum

• Partial orders do not necessarily have a unique top or bottom

- GLB(yeast, eggs) does not exist
- LUB(sandwich, pasta) neither



Lattices

- A partial order is a *lattice* if *any finite* (non-empty) subset has a LUB and a GLB
- *Example:* the natural numbers ordered by '<' form a lattice
 - for any finite subset:
 - LUB is the biggest number in the set
 - GLB is the smallest number in the set
- The natural numbers have a unique bottom element (1)
 - it's the number zero
- They do not have a unique top element (⊤)
 - since there are countably infinite many natural numbers
- You can pick infinite subsets

Norwegian University of

Science and Technology

• e.g. even numbers, primes, numbers > 42, ...

Complete lattices

- A lattice is called *complete* if *any* (non-empty) subset has a LUB and a GLB
- These have top ("biggest") and bottom ("smallest") elements
 - For a complete lattice (L, ⊑)
 - T = LUB(L)
 - \perp = GLB(L)
- Every finite lattice (lattice with a finite number of elements) is complete

Meet and join relations

- Just to have some symbols that are independent of how we choose the order, define two operators
- "Meet"
 - $x \sqcap y = GLB(x, y)$
- "Join"

• $x \sqcup y = LUB(x, y)$

Norwegian University of

Science and Technology

- These can be naturally extended to sets of more elements:
 - $x \sqcap y \sqcap z = GLB(GLB(x,y),z)$

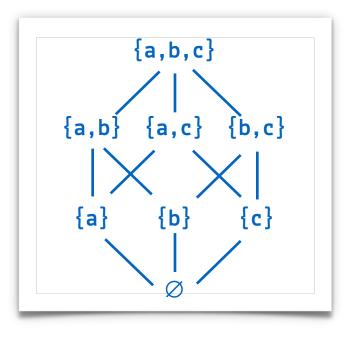
Power sets

- Consider the set {a,b,c}
- Its **Cartesian product** with itself is the set of all pairs:
 - {{a,b},{a,c},{b,c}}
- Its **power set** is:
 - {ø, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

The power set gives a partial order by the subset relation ⊆

The power set lattice

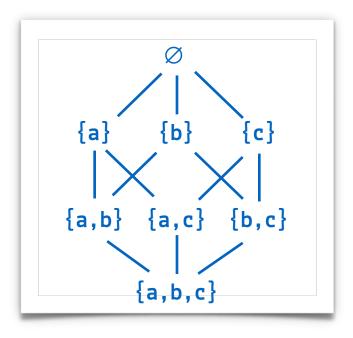
- Ordering relation: ⊆
- Meet operator: n
- Join operator: U
- Top: {a,b,c}
- Bottom: Ø



We can turn it upside down

Just switch the operators around:

- Ordering relation: ⊇
- Meet operator: U
- Join operator: n
- Top: Ø
- Bottom:{a,b,c}



So, how can we use this theory?

Analysis of live variables

- If we take {a,b,c} to be the three variables in a short program, every possible choice of live variables corresponds to a point in the power set lattice
- If we can express the effect of statements as a transfer function from one place to another in the lattice, we can argue that the set attached to a program point only moves in one direction wrt. the order when it is applied repeatedly
- That means it will either end up at the top, or stop somewhere before it

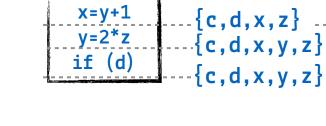
Transfer functions

- This is just a formalization of the idea that the instruction between two program points is a function from one place in the lattice to another
- For an instruction I:
 - Forward analysis: out[I] = F(in[I])
 - Backward analysis: in[I] = F(out[I])
- Accordingly, for basic blocks, the function of a block B is simply the nesting of the functions of B's component instructions I₁...I_n:
 - Forward:

 $out[B] = F_1(F_2(...(F_{n-1}(F_n(in[B])...)))$

• Backward:

 $in[B] = F_1(F_2(...(F_{n-1}(F_n(out[B])...)))$



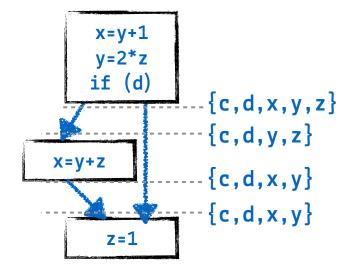
{c,d,y,z} --

Where paths meet again

• For the points where multiple control flows intersect:

- Forward: in[B] = \sqcap {out[B'] | B' is a predecessor of B}
- Backward: out[B] = \sqcup {in[B'] | B' is a successor of B}
- If we really wanted to, we could use
 instead and reverse the orders
 - With n, transfers in the lattice move toward its bottom
 - With

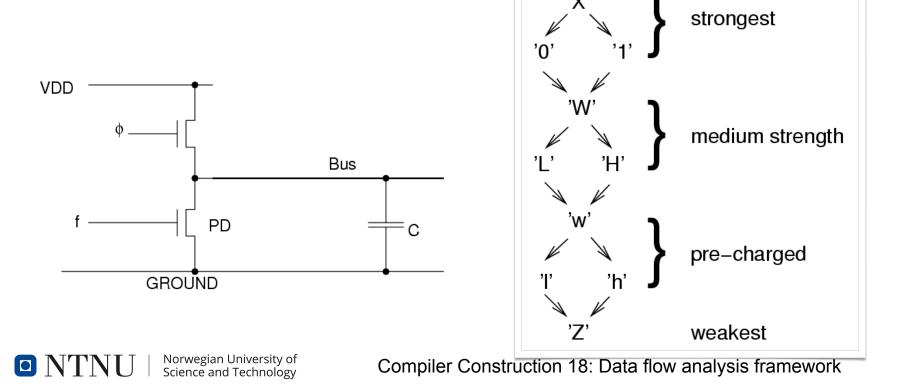
 transfers in the lattice move toward its top



Another application of Hasse diagrams

...no food involved, example from hardware modelling (from [2])

- The VHDL hardware description language allows for the definition of user-defined value sets, e.g. to describe **signal strength**
 - model components such as pull-ups, effects like high impedance



What's next?

More on data-flow analyses

References

[1] Peano, Giuseppe (1889).

Arithmetices principia, nova methodo exposita [The principles of arithmetic, presented by a new method], pp. 83–97

[2] Peter Marwedel (2018), Embedded System Design: Embedded Systems, Foundations of Cyber-Physical Systems, and the Internet of Things, Springer 2018, ISBN 9783319560458

