
Compiler Construction
Lecture 14: The procedure abstraction

Michael Engel

Compiler Construction 14: The procedure abstraction 2

Overview
• Procedures and encapsulation

• Structured programming
• The procedure abstraction
• Activation records

Compiler Construction 14: The procedure abstraction 3

Giving programs a structure

• So far, we have considered sequences of instructions
• Early programs were often unstructured

• Only global variables
• Repetition of code
• Common source of many programming errors

• Idea: Introduce structure and hierarchy into
programs [1]

• split program into procedures
• scopes for

names of
variables,
functions, etc.

int main(void) {
 int x = 0;
 char *a, *b;
 while (*a++) x++;
 while (*b++) x++;
}

int strlen(char *s) {
 int len = 0;
 while (*s++) len++;
 return len;
}

int main(void) {
 int x;
 char *a="Hello", *b="World";
 x = strlen(a)+strlen(b);
}

Compiler Construction 14: The procedure abstraction 4

The anatomy of a procedure
Example: C functions

• Some languages distinguish between functions and procedures
• Functions return a value, procedures don’t

int mult(int m, int n)
{
 int result;

 if (n == 1)
 result = m;
 else
 result = m + mult(m, n-1);
 return(result);
}

int main(void) {
 int x=2, y=3, result = 42;
 result = result + mult(x, y);
}

parametersreturn type

function name

local variable

recursive invocation

function invocation:
"call site"

function body

function header

function return

Compiler Construction 14: The procedure abstraction 5

Concepts of procedures

Procedures are a programming abstraction that makes the development of
large software systems practical and possible by:

• Information hiding
• The structure and content of data objects used inside a procedure is hidden from

the rest of the program
• Distinct and separable name spaces

• Data objects used inside a procedure do not interfere with identically named
objects of other procedures or on global scope

• Uniform interfaces
• Procedures provide a pattern to model the access to data

• There is usually almost no hardware support for implementing procedures
• The compiler has to provide efficient implementations

Compiler Construction 14: The procedure abstraction 6

Information hiding

• Information hiding
• The structure and content of data objects used inside a procedure is

hidden from the rest of the program

• In our example:
• Type and name of local

variable result is not known
outside of function mult

• main or other functions
cannot access the value of
result inside of mult

int mult(int m, int n)
{
 int result;

 if (n == 1)
 result = m;
 else
 result = m + mult(m, n-1);
 return(result);
}

int main(void) {
 int x=2, y=3, result = 42;
 result = result + mult(x, y);
}

Compiler Construction 14: The procedure abstraction 7

Name spaces

• Distinct and separable name spaces
• Data objects used inside a procedure do not interfere with identically named

objects of other procedures or on global scope

• In our example:
• There are variables named
result declared both in
function mult and main

• Code inside of function mult
cannot "see" main’s variable
result → result in main
retains its value across the
call to mult

• The compiler has to implement
this "lexical scoping"

int mult(int m, int n)
{
 int result;

 if (n == 1)
 result = m;
 else
 result = m + mult(m, n-1);
 return(result);
}

int main(void) {
 int x=2, y=3, result = 42;
 result = result + mult(x, y);
}

Compiler Construction 14: The procedure abstraction 8

Name spaces

• Recursion and name spaces
• Programming languages that allow recursion (such as C) have to ensure

that every separate invocation of a function has its own copy of local
variables

• In our example:
• Function mult calls itself

recursively
• All recursive invocations

have to have their own
copy of result

• Again, the compiler has to
ensure this

int mult(int m, int n)
{
 int result;

 if (n == 1)
 result = m;
 else
 result = m + mult(m, n-1);
 return(result);
}

int main(void) {
 int x=2, y=3, result = 42;
 result = result + mult(x, y);
}

Compiler Construction 14: The procedure abstraction 9

Procedures and control flow

Procedures have well-defined control-flow
• Invoked at a call site with some set of actual parameters
• Control returns to call site immediately after invocation

• A function can have multiple call sites
⇒ we need to remember where to return to!

• Most languages allow recursion

…
s = p(10, t, u);
…

int p(int a, int b, int c)
{
 int d;
 d = q(c, b);
 …
}

int q(int x, int y)
{
 if (…)
 x = q(x-1,y);
 return x + y;
}

Compiler Construction 14: The procedure abstraction 10

Procedures and control flow

Implementing procedures with this behavior
• Requires code to save and restore a “return address”
• Must map actual parameters to formal parameters (c→x, b→y)
• Must create storage for local variables (and maybe parameters)
• p needs space for variable d (and maybe also a, b, & c)
• Where does this space go in recursive invocations?

…
s = p(10, t, u);
…

int p(int a, int b, int c)
{
 int d;
 d = q(c, b);
 …
}

int q(int x, int y)
{
 if (…)
 x = q(x-1,y);
 return x + y;
}

actual parameters for
this invocation of q: c, b

formal parameters
of q: x, y

Compiler Construction 14: The procedure abstraction 11

Procedures as control abstraction

Implementing procedures with this behavior
• Must preserve p’s state while q executes
• recursion causes the real problem here
• Strategy: Create unique location for each procedure activation
• Common to use a stack of memory blocks to hold local

storage and return addresses

…
s = p(10, t, u);
…

int p(int a, int b, int c)
{
 int d;
 d = q(c, b);
 …
}

int q(int x, int y)
{
 if (…)
 x = q(x-1,y);
 return x + y;
}

Compiler Construction 14: The procedure abstraction 12

Compilers and procedures

Which tasks does a compiler perform to implement procedures?
• Task at compile time

• Determine memory locations for each variable
• Map each variable to its lexically correct scope
• Ensure the mapping of actual to formal parameters
• Generate code for function

What happens when we call a procedure?
• …at runtime (code for this has been generated at compile time)

• Create space for storage of procedure-related data
• Store the return address
• Copy parameters into appropriate memory locations
• Change control flow to procedure

Compiler Construction 14: The procedure abstraction 13

Activation records

Where to store parameters, return address, local variables?
Activation record

parameters

register
save area

return value

return address

addressability

caller’s ARP

local
variables

Activation record
pointer ARP

Space for parameters to the
current routine

Saved register contents

If function, space for return
value

Address to resume caller

Help with non-local access

To restore caller’s AR on a
return

Space for local values &
variables (including spills)

One AR for each invocation of a procedure

Compiler Construction 14: The procedure abstraction 14

Activation record details

How does the compiler find the variables?
• They are at known offsets from the AR pointer ARP
• This offset can be used in a special “load indexed" operation
• Level on stack specifies an ARP, offset is the constant

Variable-length data
• If AR can be extended, put it above local variables
• Leave a pointer at a known offset from ARP
• Otherwise, put variable-length data on the heap

Initializing local variables
• Compiler must generate explicit code to store the values
• Among the procedure’s first actions

Compiler Construction 14: The procedure abstraction 15

Activation record example

int p(int a, int b, int c)
{
 int d;
 d = q(c, b);
 …
}

int q(int x, int y)
{
 if (…)
 x = q(x-1,y);
 return x + y;
}

parameters
a, b, c

register
save area

return value

return address

addressability

caller’s ARP
ARP

local: d

Activation record of
function p

Execution has arrived at function p
• Local AR for p contains

• Parameters a, b, c
• Return address + saved registers
• Space for return value
• ARP of function that called p

Compiler Construction 14: The procedure abstraction 16

Activation record example

int p(int a, int b, int c)
{
 int d;
 d = q(c, b);
 …
}

int q(int x, int y)
{
 if (…)
 x = q(x-1,y);
 return x + y;
}

parameters
a, b, c

register
save area

return value

return address

addressability

caller’s ARP

ARP

local: d
parameters

x, y

register
save area

return value

return address

addressability

caller’s ARP

local: –

Activation record of
function q

(previous ARP)

Execution has proceeded to q
• Local AR for q (below the one for p)

• Parameters x, y
• Return address + saved registers
• Space for return value
• ARP of p

Activation record of
function p

copy

Compiler Construction 14: The procedure abstraction 17

Activation record example

int p(int a, int b, int c)
{
 int d;
 d = q(c, b);
 …
}

int q(int x, int y)
{
 if (…)
 x = q(x-1,y);
 return x + y;
}

parameters
a, b, c

register
save area

return value

return address

addressability

caller’s ARP
ARP

local: d
parameters

x, y

register
save area

return value

return address

addressability

caller’s ARP

local: –

Activation record of
function q

Execution has returned from q
• Return address used to return from q
• Return value (x+y) copied into d

from q 's AR
• AR of q is invalidated, previous ARP restored

• q’s AR stays in memory

Activation record of
function p

copy

copy

Compiler Construction 14: The procedure abstraction 18

ARs and recursion?

int p(int a, int b, int c)
{
 int d;
 d = q(c, b);
 …
}

int q(int x, int y)
{
 if (…)
 x = q(x-1,y);
 return x + y;
}

What happens when q recursively calls itself?
• The same as with every other function call
• Additional activation record for q is created on

the stack
• and so on for each new level of recursion

• Too many recursion levels → stack overflow

AR of p

AR of q
(level 1)

AR of q
(level 2)

AR of q
(level 3)

:
:

:
:

Compiler Construction 14: The procedure abstraction 19

What’s next?

• Intro to x86-64 assembly language
• Procedures in real life on x86-64

References

[1] Dijkstra, Edsger W. (March 1968). "Letters to the editor: Go to statement considered
harmful". Communications of the ACM. 11 (3): 147–148. doi:10.1145/362929.362947

