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Overview
• More on intermediate representations 

• Efficient implementation 
• Translating an AST into linear IR 
• Static single assignment (SSA) form
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Three-address code again

• Most operations in three-address code (TAC) have the form  
i = j op k  

• one operator (op), two operands (j and k) and one result (i)  
• some operators will need fewer arguments 

• e.g. immediate loads and jumps 
• sometimes, an op with more than three addresses is needed  

• Three-address code is reasonably compact 
• most ops consist of four items: an operation and three names 
• both the operation and the names are drawn from limited sets 
• operations typically require 1 or 2 bytes 
• names are typically represented by integers or table indices 

• in either case, 4 bytes is usually enough 
• Data structure choices affect the costs of operations on IR

Intermediate
code
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TAC example

• TAC resembles a RISC-like register machine 
• Operands have to be loaded into registers 
• Operations (other than load/store) operate on register values 
• Results are delivered in registers 

• Limited constraints for naming/allocating registers compared to real 
machines

Intermediate
code

t1 ← 2 
t2 ← b 
t3 ← t1 × t2 
t4 ← a 
t5 ← t4 - t3

TAC code for a - 2 × b

MOV  R1, #2      // R1=2 
LDR  R2, =b  
LDR  R2, [R2]    // R2=b 
MULU R3, R1, R2  // R3=2*b 
LDR  R4, =a  
LDR  R4, [R4]    // R4=a 
SUB  R5, R4, R3  // R5=R4-R3=a-2*b

ARM assembler code for a - 2 × b
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Representing Linear IRs

• Simple array: most simple form 
• short array to represent each basic block 
• often, the compiler writer places the array inside CFG nodes 

• Array of pointers groups quadruples into a block 
• the pointer array can be contained in a CFG node  

• Linked list links the quadruples together to form a list 
• requires less storage in the CFG node 
• at the cost of restricting accesses to sequential traversals

Intermediate
code

t1 ← 2 
t2 ← b 
t3 ← t1 × t2 
t4 ← a 
t5 ← t4 - t3

TAC code for  
a - 2 × b

Simple array Array of pointers Linked List

Target Op Arg1 Arg2

t1 ← 2
t2 ← b
t3 × t1 t2
t4 ← a
t5 - t4 t3

t1

t2

t3

t4

t5

← 2  

← b  

× t1 t2

← a  

← t4 t3

t1

t2

t3

t4

t5

← 2  

← b  

× t1 t2

← a  

← t4 t3
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Tradeoffs of different represent.
• Use case: optimization of code 
• Example: rearranging the code in this block 

• What are the costs incurred for each  
representation? 

• Op 1 loads a constant into a register 
• on most machines this translates directly  

into an immediate load operation 
• Ops 2 and 4 load values from memory 

• on most machines this might incur a multicycle delay  
(unless the values are already in the primary cache) 

• To hide some of the delay, the instruction scheduler might move 
the loads of b and a in front of the immediate load of 2 
• What is the cost of doing this?

Intermediate
code

1 t1 ← 2 
2 t2 ← b 
3 t3 ← t1 × t2 
4 t4 ← a 
5 t5 ← t4 - t3
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Tradeoffs of different repres.
Simple array: move 2 ahead of 1

Intermediate
code

1 t1 ← 2 
2 t2 ← b 
3 t3 ← t1 × t2 
4 t4 ← a 
5 t5 ← t4 - t3

Target Op Arg1 Arg2
t1 ← 2
t2 ← b
t3 × t1 t2
t4 ← a
t5 - t4 t3

Target Op Arg1 Arg2

t2 ← b
t2 ← b
t3 × t1 t2
t4 ← a
t5 - t4 t3

t1 ← 2

save

move

Target Op Arg1 Arg2
t2 ← b
t1 ← 2
t3 × t1 t2
t4 ← a
t5 - t4 t3

copy
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Tradeoffs of different repres.
Array of pointers: move 2 ahead of 1

Intermediate
code

1 t1 ← 2 
2 t2 ← b 
3 t3 ← t1 × t2 
4 t4 ← a 
5 t5 ← t4 - t3

save only 
pointer

t1

t2

t3

t4

t5

← 2  

← b  

× t1 t2

← a  

← t4 t3

t1

t2

t3

t4

t5

← 2  

← b  

× t1 t2

← a  

← t4 t3

t1

t2

t3

t4

t5

← 2  

← b  

× t1 t2

← a  

← t4 t3

copy

move
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Tradeoffs of different repres.
Linked list: move 2 ahead of 1

Intermediate
code

1 t1 ← 2 
2 t2 ← b 
3 t3 ← t1 × t2 
4 t4 ← a 
5 t5 ← t4 - t3

save pointer to 
element to move

t1

t2

t3

t4

t5

← 2  

← b  

× t1 t2

← a  

← t4 t3

t1

t2

t3

t4

t5

← 2  

← b  

× t1 t2

← a  

← t4 t3

t1

t2

t3

t4

t5

← 2  

← b  

× t1 t2

← a  

← t4 t3

copy 
pointers 
back

move
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

save pointers to 
neighbor elements
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A closer look at TAC
• Most modern computers (still) try to look like a von Neumann 

machine (even though they are far more complex internally) 
• A von Neumann machine has three main components: 

• Control unit 
• Data path + ALU 
• Unified memory for instructions and data 

• A clock controls the execution of instructions 
• Instruction fetch (from memory, addressed py PC) 
• Operand fetch (from memory addresses encoded in instr.) 
• Execute the instruction 
• Write back the results

Intermediate
code

Control Data path 
ALU

Memory 
(program + data)

CPU

RAM
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Instruction classes
We need 
• Instructions for control unit 
• Data for data unit/ALU 

• Instructions and data are in memory 
• we can use symbolic names for these instead of 

numeric addresses: 
• Labels for instructions 
• Names for variables 

• We can categorize instructions:

Intermediate
code

Binary operations
Unary operations
Copy operations

Load/store operations

Unconditional jumps
Conditional jumps
Procedure calls

Math, logic,
data movement

Control 
flow
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TAC is a low-level IR
"Three address" since each operation deals with at most three 
addresses in memory (+ the instruction itself): 

• Binary operations:    a = b OP c      OP is ADD, MUL, SUB, … 
• Unary operations:     a = OP b     OP is NEG, MINUS, … 
• Copy:                        a = b 
• Load/store:               x = &y       address of y 

                   x = *y       value at addres y 
                   x[i] = y         address + offset

Intermediate
code
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Control flow in TAC
Control flow is equally simple: 

• Label:                       L:       named address of next instruction 
• Unconditional jump: jump L   go to L and get next instruction 
• Conditional jump:     if x goto L            go to L if x is TRUE 

                                ifFALSE x goto L   go to L if x is FALSE 
                                if x<y goto L         comparison operators 
                                if x>=y goto L       comparison operators 
                                if x!=y goto L       comparison operators 

• Call and return:        param x       x is parameter in next call 
                                call L             similar to jump 
                                return          ...to where we came from

Intermediate
code
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Translating to TAC
Translation of binary operators: 
we make use of the recursive nature of our AST 
• No matter how complex the contents of expressions 

e1 and e2 are, this can be translated from 
 

t = T[e1 OP e2] 
 

into 
 

t1 = T[e1] 
t2 = T[e2] 
t3 = t1 OP t2  

• First, (recursively) translate e1 and store its result 
• then, (recursively) translate e2 and store its result 
• finally, combine the two stored results using OP

Semantic 
analysis

IR
generation

"T" = "translation"

OP

e1 e2
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Linearizing the program
We traverse the AST in depth-first order: 
 

t1 = 1 
t2 = 3 
t3 = t1 + t2 

Semantic 
analysis

IR
generation

*

+ 5

1 3
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Linearizing the program
We traverse the AST in depth-first order: 
 

t1 = 1 
t2 = 3 
t3 = t1 + t2  

 
Then we continue further up the tree: 
• The result of the "+" operation is in t3 
t4 = t3 
t5 = 5 
t6 = t4 * t5 

• The final result can be copied: 
t  = t6 

Semantic 
analysis

IR
generation

*

+ 5

1 3
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Nested expressions
Combine the local parts which represent sub-trees:

Semantic 
analysis

IR
generation

t1 = 1 
t2 = 3 
t3 = t1 + t2 

t4 = t3 
t5 = 5 
t6 = t4 * t5 

T[1+3]

T[t3*5]

T[(1+3)*5] t = T[(1+3)*5]

t  = t6
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Statement sequences
Straightforward, since they are already sequenced:

Semantic 
analysis

IR
generation

T[ s1; s2; s3; … ]  
 
becomes 

T[s1] 
T[s2] 
T[s3] 
…

Simply translate one statement after the other and  
append their translations in order
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Assignments
Assignments require copying a value:

Semantic 
analysis

IR
generation

T[ v=e ]  
 
requires us to 
• obtain the result of e 
• put the result into v 

T[ v=e ] -> t = T[e] 
            v = t 

=

v e
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Array assignment
We need to calculate the index (address offset):

Semantic 
analysis

IR
generation

T[ v[e1]=e2 ]  
 
requires us to 
• compute the index expression e1 
• compute the expression e2 
• put the result into v[e1] 

T[ v[e1]=e2 ] -> t1 = T[e1] 
                 t2 = T[e2] 
                 v[t1] = t2 

=

v[e1] e2

v e1



Compiler Construction 13: IR and SSA 21

Conditionals
These require control flow:

Semantic 
analysis

IR
generation

T[ if(e) then s ]  
 
becomes 

    t1 = T[e] 
    ifFALSE t1 goto Lend 
    T[s] 
Lend: 
    (translation of next statement follows here)

if

e s

condition statement
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Conditionals Semantic 
analysis

IR
generation

   
If e is true, control goes through s 
If e is false, control skips past it 

    t1 = T[e] 
    ifFALSE t1 goto Lend 
    T[s] 
Lend: 

if

e s

condition statement
t1 = true

t1 = false
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Conditionals + else Semantic 
analysis

IR
generation

  Easy to derive: 

    t1 = T[e] 
    ifFALSE t1 goto Lelse 
    T[s1] 
    jump LEnd 
Lelse: 
    T[s2] 
Lend: 

if

e s2t1 = true

t1 = false

s1
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While loops Semantic 
analysis

IR
generation

The condition has to be checked at 
the beginning of each iteration: 
    T[while(e) do s] 
becomes 
Ltest: 
    t1 = T[e] 
    ifFALSE t1 goto Lend 
    T[s] 
    jump Ltest 
Lend: 

while

e s

t1 = true

t1 = false
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Different kinds of loop
For and repeat loops can be transformed into while loops:

Semantic 
analysis

IR
generation

for (i=0; i<10; i++) { 
   dosomething(); 
}

i=0; 
while (i<10) { 
   dosomething(); 
   i = i+1; 
}

do { 
   dosomething();      
} while(x);

dosomething(); 
while (x) { 
   dosomething(); 
}
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Switch Semantic 
analysis

IR
generation

switch

e v1 s1 v2 s2 v3 s3

T[switch(e) { case v1:s1; … case vn:sn } 
can become 
    t = T[e] 
    ifFALSE (t=v1) goto L1 
    T[s1] 
L1: ifFALSE (t=v2) goto L2 
    T[s2] 
L2: …  
    ifFALSE (t=vn) goto Lend 
    T[sn]  
Lend: 
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Switch using jump table Semantic 
analysis

IR
generation

switch

e v1 s1 v2 s2 v3 s3

T[switch(e){ case v1:s1; … case vn:sn] 
can also become 
    t = T[e] 
    jump table[t] 
Lv1:T[s1] 
Lv2:T[s2] 
… 
Lvn:T[sn] 
Lend:

Here, the compiler has to provide a jump table which maps the 
conditions v1, v2, … vn to their respective labels Lv1, Lv2, … Lvn

This models the C-like "fall-through" 
behavior without a break at the end 

of the case. 
Otherwise, we would have to insert 

"jump Lend" here! 
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Using labels Semantic 
analysis

IR
generation

if (e1) then s1; 
if (e2) then s2; 
becomes 
    t1 = T[e1] 
    ifFALSE t1 goto LEnd1 
    T[s1] 
LEnd1:  
    t2 = T[e2] 
    ifFALSE t2 goto LEnd2 
    T[s2] 
LEnd2:

Labels must be unique 
• This can be handled by numbering the statements that generate them:
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Nested statements
if (e1) then if (e2) then a=b requires a bit of care:

Semantic 
analysis

IR
generation

t1 = T[e1] 
ifFalse (t1) goto Lend1 
t2 = T[e2] 
ifFalse (t2) goto Lend2 
t3 = b 
a  = t3 
Lend2: 
Lend1:

Statement

inner if (#2)

outer if (#1)
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Static Single-Assignment Form
• Static single-assignment form (SSA) is a naming discipline that 

many modern compilers use to encode information about both 
the flow of control and the flow of data values in the program  
• names correspond uniquely to specific definition points in the 

code  
• each name is defined by one operation 
• hence the name static single assignment  

• SSA abstracts from processor registers 
• helps to name intermediate values during compilation 

• Each use of a name as an argument in some operation encodes 
information about where the value originated  
• each textual name refers to a specific definition point 

Intermediate
code
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Static Single-Assignment Form
• A program is in SSA form when it meets two constraints:  

(1) each definition has a distinct name; and  
(2) each use refers to a single definition  

• Transforming an IR program to SA form: 
• compiler inserts 𝜙 functions at points where different  

control-flow paths merge 
• it then renames variables to make  

the single-assignment property hold 

Intermediate
code

x ← … 
y ← … 
while (x < 100) 
   x ← x + 1 
   y ← y + x

      x0 ← … 
      y0 ← … 
      if (x0 >= 100) goto next 
loop: x1 ← 𝜙(x0,x2)  
      y1 ← 𝜙(y0,y2) 
      x2 ← x1 + 1  
      y2 ← y1 + x 
      if (x0 < 100) goto loop 
next: x3 ← 𝜙(x0,x2) 
      y3 ← 𝜙(y0,y2)
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Translation of code into SSA form

i = 1; 
j = 1; 
k = 0; 

while (k < 100) { 
   if (j < 20) { 
      j = i; 
      k = k+1; 
   } else { 
      j = k; 
      k = k+2; 
   } 
} 
return j;

i ⇠ 1 
j ⇠ 1 
k ⇠ 0

if (k < 100)

if (j < 20) return j

j ⇠ i 
k ⇠ k+1

j ⇠ k 
k ⇠ k+2

   

Source code
CFG

without SSA
B1

B2

B3 B4

B5 B6

B7Example from [2]

T F

FT

Intermediate
code
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Unique Identifiers: Naive Approach

i = 1; 
j = 1; 
k = 0; 

while (k < 100) { 
   if (j < 20) { 
      j = i; 
      k = k+1; 
   } else { 
      j = k; 
      k = k+2; 
   } 
} 
return j;

i1 ⇠ 1 
j1 ⇠ 1 
k1 ⇠ 0

if (k1 < 100)

if (j1 < 20) return j1

j5 ⇠ i1 
k5 ⇠ k1+1

j6 ⇠ k1 
k6 ⇠ k1+2

   

Source code
CFG

with unique 
static variable
assignments

B1

B2

B3 B4

B5 B6

B7

T F

FT

Intermediate
code
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Problem with the Naive Approach

i = 1; 
j = 1; 
k = 0; 

while (k < 100) { 
   if (j < 20) { 
      j = i; 
      k = k+1; 
   } else { 
      j = k; 
      k = k+2; 
   } 
} 
return j;

i1 ⇠ 1 
j1 ⇠ 1 
k1 ⇠ 0

if (k1 < 100)

if (j1 < 20) return j1

j5 ⇠ i1 
k5 ⇠ k1+1

j6 ⇠ k1 
k6 ⇠ k1+2

   

Source code
CFG

with unique 
static variable
assignments

B1

B2

B3 B4

B5 B6

B7 Which k is 
the right one?

T F

FT

Intermediate
code
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i1 ⇠ 1 
j1 ⇠ 1 
k1 ⇠ 0

k2 = 𝜙(k1, k7) 
j2 = 𝜙(j1, j7) 
if (k2 < 100)

if (j2 < 20) return j2

j5 ⇠ i1 
k5 ⇠ k2+1

j6 ⇠ k2 
k6 ⇠ k2+2

j7 ⇠ 𝜙(j5, j6) 
k7 ⇠ 𝜙(k5, k6)

CFG
using SSA

B1

B2

B3 B4

B5 B6

B7

Fixing the Variable Problem
“Which k is the right one?” 
“It depends…”
• Basic block B2 can receive 

values for k from B1 and B7 

• Similar for variable j 

• Fix: introduce a selector 
function 𝜙 (phi) that copies 
the correct value to a new 
intermediate variable 
depending on the control 
flow: 

k2 = 𝜙(k1, k7)  
j2 = 𝜙(j1, j7)

T F

FT

Intermediate
code
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i1 ⇠ 1 
j1 ⇠ 1 
k1 ⇠ 0

k2 = 𝜙(k1, k7) 
j2 = 𝜙(j1, j7) 
if (k2 < 100)

if (j2 < 20) return j2

j5 ⇠ i1 
k5 ⇠ k2+1

j6 ⇠ k2 
k6 ⇠ k2+2

j7 ⇠ 𝜙(j5, j6) 
k7 ⇠ 𝜙(k5, k6)

CFG
using SSA

B1

B2

B3 B4

B5 B6

B7

Placement of Phi Functions

The minimal number and 
placement of phi functions 
is more complex than in 
this simple example
• Generation of minimal 

SSA 
• Use of dominance 

frontiers to determine 
the basic block defining 
the current value of a 
variable 

• See [3] for details

T F

FT

Intermediate
code
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What’s next?

• The procedure abstraction 
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