
Compiler Construction
Lecture 12: Intermediate representations

and three-address code

Michael Engel

Compiler Construction 12: IRs and TAC 2

Overview
• Intro to Intermediate representations
• Classification of IRs
• Graphical IRs: from parse tree to AST
• Linear IRs

• Example: LLVM IR
• Implementation

• Three-address code
• Stack machines

• Hybrid approaches

Compiler Construction 12: IRs and TAC 3

What is missing?

Lexical
analysis

Semantic
analysis

Code
generation

Code
optimization

Source code

machine-level program

Syntax
analysis

syntax tree

Semantic analysis: attributed syntax tree

• Name analysis (check def. & scope of symbols)

• Type analysis (check correct type of expressions)

• Creation of symbol tables (map identifiers to their
types and positions in the source code)

Intermediate
code

Compiler Construction 12: IRs and TAC 4

Code generation
• A syntax tree is a representation of the syntactic structure of a

given program
• we want to execute the program, i.e. control and data flow

• Different levels of abstraction required
• representation for all of the knowledge the compiler derives

about the program being compiled
• Most passes in the compiler consume IR

• the scanner is an exception
• Most passes in the compiler produce IR

• passes in the code generator can be exceptions
• Many optimizations work for different processors

• optimizations on IR level can be reused
• IR serves as primary & definitive representation of the code [1]

Intermediate
code

Compiler Construction 12: IRs and TAC 5

A compiler using an IR
Source code

IR generation
• Transform syntax tree into

intermediate representation

IR optimization
• Perform generic (non target-specific) optimizations on IR level
• Compilers support many different optimizations, executed in sequence on the IR

Intermediate
code

Lexical
analysis

Syntax
analysis

Semantic
analysis

IR
generation

IR
optimization

machine-level program

Code
generation

syntax tree IR

IR

Compiler Construction 12: IRs and TAC 6

Types of IR
• Graphical IRs encode the compiler’s knowledge in a graph

• algorithms are expressed in terms of graphical objects:
nodes, edges, lists, or trees

• Our parse trees are a graphical IR
• Linear IRs resemble pseudo-code for an abstract machine

• algorithms iterate over simple, linear operation
sequences

• Hybrid IRs combine elements of graphical and linear IRs
• attempt to capture their strengths and avoid their

weaknesses
• low-level linear IR used to represent blocks of straight-

line code and a graph to represent the flow of control

Intermediate
code

Compiler Construction 12: IRs and TAC 7

Graphical IRs: syntax tree → AST
• So far, we have just talked about syntax trees

• To be precise, the syntax tree is simply the parse tree
generated by the parser

• The abstract syntax tree (AST) is an optimized form
• Uses less memory, faster to process

Intermediate
code

Term

ident(a)

ident(b)

number(2)

+

Expr

Start

Expr

 1 Start → Expr
 2 Expr → Expr + Term
 3 | Expr - Term
 4 | Term
 5 Term → Term × Factor
 6 | Term ÷ Factor
 7 | Factor
 8 Factor→ "(" Expr ")"
 9 | number
10 | ident

Parse tree for
a×2+a×2×b

Factor×Term

Factor×Term

Factor

Term

Factor×Term

number(2)

ident(a)

Factor

Compiler Construction 12: IRs and TAC 8

Graphical IRs: syntax tree → AST
• The abstract syntax tree (AST) …

• retains the essential structure of the parse tree
• but eliminates the extraneous (nonterminal symbol) nodes

• Precedence and meaning of the expression remain

Intermediate
code

Term

ident(a)

ident(b)

number(2)

+

Expr

Start

Expr

Parse tree for
a×2+a×2×b

Factor×Term

Factor×Term

Factor

Term

Factor×Term

number(2)

ident(a)

Factor

+

× ×

AST for
a×2+a×2×b

a 2 b×

a 2

Compiler Construction 12: IRs and TAC 9

From source to machine code level

• ASTs are a near-source-level representation
• Because of its rough correspondence to a parse tree, the

parser can built an AST directly
• Trees provide a natural representation for the grammatical

structure of the source code discovered by parsing
• their rigid structure makes them less useful for representing

other properties of programs
• Idea: model these aspects of program behavior differently

• Different types of IR used in one compiler for different tasks
• Compilers often use more general graphs as IRs

• Control-flow graphs
• Dependence graphs

Intermediate
code

Compiler Construction 12: IRs and TAC 10

Directed acyclic graphs (DAGs)

• DAGs can represent code duplications in the tree
• DAG = contraction of the AST that avoids duplications
• DAG nodes can have multiple parents, identical subtrees are reused
• sharing makes a DAG more compact than its corresponding AST

• Example: a×2+a×2×b
• Here, the expression "a×2" occurs twice
• DAG can share a single copy of the

subtree for this expression
• The DAG encodes an explicit hint for

evaluating the expression:
• If the value of a cannot change between

the two uses of a, then the compiler
should generate code to evaluate a×2
once and use the result twice

Intermediate
code

+

×

DAG for
a×2+a×2×b

b×

a 2

+

× ×

AST for
a×2+a×2×b

a 2 b×

a 2

Compiler Construction 12: IRs and TAC 11

The level of abstraction
• Still, the AST here is close to the source code

• Compilers need additional details, e.g. for tree-
based optimization and code generation

• Source-level tree lacks much of the detail needed
to translate statements into assembly code

Intermediate
code

←

-

Source-level
AST for

w ← a-2×b

w

b

×a

2
←

-+

×num
4

+

val
rarp

◆

◆

◆ num
2

Low-level
AST for

w ← a-2×b

-16rarp

+

label
@G

num
12

Low-level ASTs add this information:

• val node: value already in a register
• num node: known constant
• lab node: assembly-level label

• typically a relocatable symbol
• ◆: operator that dereferences a value

• treats value as a memory address
and returns the contents of memory
at that address (in C: "*" operator)

Compiler Construction 12: IRs and TAC 12

Control-flow graphs

• Simplest unit of control flow in a program is a basic block (BB)
• maximal length sequence of straightline (branch-free) code
• sequence of operations that always execute together

• unless an operation raises an exception
• control always enters a basic block at its first operation and

exits at its last operation
• A control-flow graph (CFG) models the flow of control between

the basic blocks in a program
• A CFG is a directed graph, G = (N, E)

• each node n ∈ N corresponds to a basic block
• each edge e = (ni , nj) ∈ E corresponds to a possible transfer

of control from block ni to block nj

Intermediate
code

Compiler Construction 12: IRs and TAC 13

CFG example

• CFG provides a graphical representation of the possible runtime
control-flow paths
• The CFG differs from syntax-oriented IRs, such as an AST,

in which the edges show grammatical structure

Intermediate
code

while (i < 100) {
 stmt1;
}
stmt2;

while (i < 100)

stmt1

stmt2

CFG for a while loop:

The AST for this loop
would be acyclic!

CFG for if-then-else: if (x == y) {
 stmt1;
} else {
 stmt2;
}
stmt3;

if (x == y)

stmt1 stmt2

stmt3 Control always flows
from stmt1 and stmt2

to stmt3

Compiler Construction 12: IRs and TAC 14

Use of CFGs

• Compilers typically use a CFG in conjunction with another IR
• The CFG represents the relationships among blocks
• operations inside a block are represented with another IR, such

as an expression-level AST, a DAG, or one of the linear IRs.
• The resulting combination is a hybrid IR

• Many parts of the compiler rely on a CFG, either explicitly or implicitly
• optimization generally begins with control-flow analysis and

CFG construction
• Instruction scheduling needs a CFG to understand how the

scheduled code for individual blocks flows together
• Global register allocation relies on a CFG to understand how

often each operation might execute and where to insert loads
and stores for spilled values

Intermediate
code

Compiler Construction 12: IRs and TAC 15

Graphs: dependence graph

• Compilers also use graphs to encode the flow of values
• from the point where a value is created, a definition (def)
• …to any point where it is used, a use

• Data-dependence graph embody this relationship
• Nodes represent operations

• Most operations contain both definitions and uses
• Edges connect two nodes

• one that defines a value and another that uses it
• Dependence graphs are drawn with edges that run from definition

to use

Intermediate
code

Compiler Construction 12: IRs and TAC 16

• To capture the data flow, the dependence graph extracts data-flow
information from an IR representation (here: a linear low-level IR
form of a tree)

Intermediate
code

 1 load rarp, @a => ra
 2 load 2 => r2
 3 load rarp, @b => rb
 4 load rarp, @c => rc
 5 load rarp, @d => rd
 6 mult ra, r2 => ra
 7 mult ra, rb => ra
 8 mult ra, rc => ra
 9 mult ra, rd => ra
10 store ra => rarp, @a

2

rarp

1

36

4

5

7

Dependence graph example

Linear IR code for a←a×2×b×c×d

8

9

10

Linear IR
line numbers

Compiler Construction 12: IRs and TAC 17

• References to a[i] are shown deriving their values from a node
representing prior definitions of a

• This connects all uses of a together through a single node
• Without sophisticated analysis of the subscript expressions, the

compiler cannot differentiate between references to individual array
elements

Intermediate
code

 1 x = 0;
 2 i = 1;
 3 while (i < 100) {
 4 if (a[i] > 0)
 5 x = x + a[i];
 6 i = i + 1;
 }
 7 print(x);

2 a

13

6

4

5

7

Interaction: CF and Dependence Graph

Compiler Construction 12: IRs and TAC 18

Linear IRs

An alternative to graphs
• A sequence of instructions that execute in their order of appearance

• linear IRs used in compilers resemble the assembly code for
an abstract machine

• Linear IRs must include a mechanism to encode transfers of
control among points in the program

• control flow in a linear IR usually models the implementation
of control flow on the target machine.

• linear codes usually include conditional branches and jumps
• control flow demarcates the basic blocks in a linear IR
• blocks end at branches, at jumps, or just before labelled

operations

Intermediate
code

Compiler Construction 12: IRs and TAC 19

Types of linear IRs

• One-address codes model the behavior of accumulator machines
and stack machines

• These codes expose the machine’s use of implicit names so
that the compiler can tailor the code for it

• The resulting code is quite compact
• Two-address codes model a machine with destructive operations

• These codes fell into disuse as memory constraints became
less important; three-address code can model destructive
operations explicitly

• Three-address codes model a machine where most operations
take two operands and produce a result

• The rise of RISC architectures in the 1980s/1990s made these
codes popular, since TAC resembles a simple RISC machine

Intermediate
code

Compiler Construction 12: IRs and TAC 20

Linear IRs: stack machines

• Stack-machine code offers a compact and storage-efficient
representation [3]

• one form of one-address code
• assumes the presence of a stack of operands

• Most operations take their operands from the stack and push their
results back onto the stack

• e.g., an integer subtract operation would remove the top two
elements from the stack and push their difference onto the stack

• Stack discipline creates a need for
some new operations

• swap operation interchanges top
two elements of the stack

• Lilith was a stack machine designed
at ETHZ for running Modula-2 code [2]

Intermediate
code

Compiler Construction 12: IRs and TAC 21

Example: stack machine code

• Operations remove their operands from stack and push the result
• Here, the stack grows from the top towards the bottom

Intermediate
code

push 2
push b
multiply
push a
subtract

Stack machine
code for
a - 2 × b

push 2
push b
multiply
push a
subtract

Stack

2

?

push 2
push b
multiply
push a
subtract

Stack

b

2

push 2
push b
multiply
push a
subtract

Stack

2 * b

?

push 2
push b
multiply
push a
subtract

Stack

a

2 * b

push 2
push b
multiply
push a
subtract

Stack

a-2*b

?

Execution sequence and related stack state:

Compiler Construction 12: IRs and TAC 22

Example: Java Bytecode

• A compact representation of stack-machine code [3]
• usually represented in binary form

Intermediate
code

public static void main(String[] args) {

 int a = 1;

 int b = 2;

 int c = a + b;

}

public static void main(java.lang.String[]);
descriptor: ([Ljava/lang/String;)V
flags: (0x0009) ACC_PUBLIC, ACC_STATIC

Code: stack=2, locals=4, args_size=1

0: iconst_1
1: istore_1
2: iconst_2
3: istore_2
4: iload_1
5: iload_2
6: iadd
7: istore_3
8: return

You can disassemble
Java bytecode using
javap -v Test.class

Compiler Construction 12: IRs and TAC 23

Three-address code (TAC)

• Most operations in TAC have the form i = j op k
• one operator (op), two operands (j and k) and one result (i)
• some operators will need fewer arguments

• e.g. immediate loas and jumps
• sometimes, an op with more than three addresses is needed

• Three-address code is reasonably compact
• most ops consist of four items: an operation and three names
• both the operation and the names are drawn from limited sets
• operations typically require 1 or 2 bytes
• names are typically represented by integers or table indices

• in either case, 4 bytes is usually enough

Intermediate
code

Compiler Construction 12: IRs and TAC 24

TAC example

• TAC resembles a RISC-like register machine
• Operands have to be loaded into registers
• Operations (other than load/store) operate on register values
• Results are delivered in registers

• Limited constraints for naming/allocating registers compared to real
machines

Intermediate
code

t1 ← 2
t2 ← b
t3 ← t1 × t2
t4 ← a
t5 ← t4 - t3

TAC code for a - 2 × b

MOV R1, #2 // R1=2
LDR R2, =b
LDR R2, [R2] // R2=b
MULU R3, R0, R2 // R3=2*b
LDR R4, =a
LDR R4, [R4] // R4=a
SUB R5, R4, R3 // R5=R4-R3=a-2*b

ARM assembler code for a - 2 × b

Compiler Construction 12: IRs and TAC 25

Example: LLVM IR

LLVM IR ("bitcode") is a typed TAC [5]

Intermediate
code

define i32 @foo(i32, i32) #0 {
 %3 = alloca i32, align 4
 %4 = alloca i32, align 4
 store i32 %0, i32* %3, align 4
 store i32 %1, i32* %4, align 4
 %5 = load i32, i32* %3, align 4
 %6 = load i32, i32* %4, align 4
 %7 = mul nsw i32 2, %6
 %8 = sub nsw i32 %5, %7
 ret i32 %8
}

LLVM IR code for

int foo(int a, int b) {
 return a - 2 * b;
}

Generated with
clang -S -emit-llvm foo.c

%3 = alloca i32, align 4
%4 = alloca i32, align 4

store i32 %0, i32* %3, align 4
store i32 %1, i32* %4, align 4

define i32 @foo(i32, i32) #0 function "foo" gets two int32 params
(%0, %1) and returns an int32

reserve 2 * 4 bytes memory
for temp variables, pointers
returned in %3, %4

copy %0 → mem @ %3
and %1 → mem @ %4

%5 = load i32, i32* %3, align 4
%6 = load i32, i32* %4, align 4

mem @ %3 → %5
mem @ %4 → %6

%7 = mul nsw i32 2, %6 %7 = 2 * %6

%8 = sub nsw i32 %5, %7 %8 = %5 (=%0) - %7

ret i32 %8 return %8 to caller

Compiler Construction 12: IRs and TAC 26

What’s next?

• More on intermediate representations
• Efficient implementation
• Static single assignment (SSA) form

References
[1] James Stanier and Des Watson. 2013.
 Intermediate representations in imperative compilers: A survey.
 ACM Comput. Surv. 45, 3, Article 26 (July 2013), https://doi.org/10.1145/2480741.2480743
[2] Richard S. Ohran. 1984.
 Lilith: A Workstation Computer for Modula-2. Dissertation ETH No. 7646,
 http://www.bitsavers.org/pdf/eth/lilith/ETH7646_Lilith_A_Workstation_Computer_For_Modula-2_1984.pdf
[3] Philip J. Koopman, Jr. 1989.
 Stack Computers: the new wave, Ellis Horwood publishers
 available at http://users.ece.cmu.edu/~koopman/stack_computers/index.html
[4] Alex Buckley et al. 2014. The Java Virtual Machine Specification, Java SE 8 Edition,
 https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
[5] LLVM Language Reference Manual. https://llvm.org/docs/LangRef.html

Intermediate
code

https://doi.org/10.1145/2480741.2480743
http://www.bitsavers.org//pdf/eth/lilith/ETH7646_Lilith_A_Workstation_Computer_For_Modula-2_1984.pdf
http://users.ece.cmu.edu/~koopman/stack_computers/index.html
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
https://llvm.org/docs/LangRef.html

