
Compiler Construction
Lecture 6: Top-down parsing and LL(1) parser construction

Michael Engel

Includes material by

Jan Christian Meyer

Compiler Construction 06: Top-down, LL(1) parsing 2

Overview
• Ambiguity of grammars revisited
• Elimination of left recursion
• Top-down parsing

• Recursive descent parsers:
structure and implementation

• Table-driven LL(1) parsers
• Table generation

Compiler Construction 06: Top-down, LL(1) parsing 3

Ambiguity of grammars Syntax
analysis

• For the compiler, it is important that each sentence in the
language defined by a context-free grammar has a unique
rightmost (or leftmost) derivation

• A grammar in which multiple rightmost (or leftmost) derivations
exist for a sentence is called an ambiguous grammar
• it can produce multiple derivations and multiple parse trees

• Multiple parse trees imply multiple possible meanings for a
single program! ⚡

Compiler Construction 06: Top-down, LL(1) parsing 4

Ambiguity of grammars: example Syntax
analysis

1 Statement → if Expr then Statement else Statement
2 | if Expr then Statement
3 | Assignment
4 | …other statements…

"dangling else"-
problem in
ALGOL-like
languages
(e.g. PASCAL)

if Expr1 then if Expr2 then Assignment1 else Assignment2

This statement

has two distinct rightmost derivations with different behaviors:

"else" part is optional

“06-ch03-083-160-9780120884780” — 2011/1/13 — 15:21 — page 91 — #9

3.2 Expressing Syntax 91

The classic example of an ambiguous construct in the grammar for a pro-
gramming language is the if-then-else construct of many Algol-like
languages. The straightforward grammar for if-then-else might be

1 Statement ! if Expr then Statement else Statement

2 | if Expr then Statement

3 | Assignment

4 | . . . other statements . . .

This fragment shows that the else is optional. Unfortunately, the code
fragment

if Expr1 then if Expr2 then Assignment1 else Assignment2

has two distinct rightmost derivations. The difference between them is
simple. The first derivation has Assignment2 controlled by the inner
if, so Assignment2 executes when Expr1 is true and Expr2 is false:

Statement

Expr2 elsethenif Statement

Assignment1

Statement

Assignment2

thenExpr1if

Statement

The second derivation associates the else clause with the first if, so that
Assignment2 executes when Expr1 is false, independent of the value of
Expr2:

else Statement

Assignment2

thenExpr1if

Statement

Expr2 thenif Statement

Assignment1

Statement

Clearly, these two derivations produce different behaviors in the compiled
code.

“06-ch03-083-160-9780120884780” — 2011/1/13 — 15:21 — page 91 — #9

3.2 Expressing Syntax 91

The classic example of an ambiguous construct in the grammar for a pro-
gramming language is the if-then-else construct of many Algol-like
languages. The straightforward grammar for if-then-else might be

1 Statement ! if Expr then Statement else Statement

2 | if Expr then Statement

3 | Assignment

4 | . . . other statements . . .

This fragment shows that the else is optional. Unfortunately, the code
fragment

if Expr1 then if Expr2 then Assignment1 else Assignment2

has two distinct rightmost derivations. The difference between them is
simple. The first derivation has Assignment2 controlled by the inner
if, so Assignment2 executes when Expr1 is true and Expr2 is false:

Statement

Expr2 elsethenif Statement

Assignment1

Statement

Assignment2

thenExpr1if

Statement

The second derivation associates the else clause with the first if, so that
Assignment2 executes when Expr1 is false, independent of the value of
Expr2:

else Statement

Assignment2

thenExpr1if

Statement

Expr2 thenif Statement

Assignment1

Statement

Clearly, these two derivations produce different behaviors in the compiled
code.

Compiler Construction 06: Top-down, LL(1) parsing 5

Removing ambiguity Syntax
analysis

1 Statement → if Expr then Statement
2 | if Expr then WithElse else Statement
3 | Assignment
4 WithElse → if Expr then WithElse else WithElse
5 | Assignment

We can modify the grammar to include a rule that determined which
if controls an else:

This solution restricts the set of statements that can occur in the
then part of an if-then-else construct
• It accepts the same set of sentences as the original grammar
• but ensures that each else has an unambiguous match to a

specific if

Compiler Construction 06: Top-down, LL(1) parsing 6

Removing ambiguity: example Syntax
analysis

1 Statement → if Expr then Statement
2 | if Expr then WithElse else Statement
3 | Assignment
4 WithElse → if Expr then WithElse else WithElse
5 | Assignment

The modified grammar
has only one rightmost
derivation for the example

Rule Sentential form
Statement

1 if Expr then Statement

2 if Expr then if Expr then WithElse else Statement

3 if Expr then if Expr then WithElse else Assignment

5 if Expr then if Expr then Assignment else Assignment

if Expr1 then if Expr2 then Assignment1 else Assignment2

Compiler Construction 06: Top-down, LL(1) parsing 7

Order of derivations Syntax
analysis

Rule Sentential form
Expr

2 Expr Op name

6 Expr × name
1 "(" Expr ")" × name
2 "(" Expr Op name ")" × name
4 "(" Expr + name ")" × name
3 "(" name + name ")" × name

Rightmost:
rewrite, at each step, the rightmost nonterminal

1 Expr → "(" Expr ")"
2 | Expr Op name
3 | name
4 Op → +
5 | -
6 | ×
7 | ÷

Expr

OpExpr

Expr

Expr Op

"(" ")"

name(b)

name(c)

×

name(a) +
parse tree
identical for both!

Rule Sentential form
Expr

2 Expr Op name

1 "(" Expr ")" Op name

2 "(" Expr Op name ")" Op name

3 "(" name Op name ")" Op name

4 "(" name + name ")" Op name

6 "(" name + name ")" × name

Leftmost: rewrite, at each step, the leftmost nonterminal

Compiler Construction 06: Top-down, LL(1) parsing 8

Left factoring
• Parsers (and scanners) only have a limited lookahead to upcoming

tokens

• Example: given a production
A → abcdef X gh | abcdef Y gh

the parser is unable to choose between the two productions if it can
only look one character ahead

• As with NFA→DFA conversion, we can make this approach work if
we can postpone the decision until it makes a difference

• Rewriting the grammar as
A → abcdef A’
A’→ X gh | Y gh
preserves the language by adding one production to collect a
common prefix shared by several other productions

Syntax
analysis

Compiler Construction 06: Top-down, LL(1) parsing 9

Left recursion
• Let’s consider this grammar for a list of 'a’s:

A → Aa | a

which derives the following words:

A → a
A → Aa → aa
A → Aa → Aaa → aaa
…

• The production A → Aa is left recursive, the head (nonterminal
symbol) always appears on the left side of the production

Syntax
analysis

Compiler Construction 06: Top-down, LL(1) parsing 10

An equivalent grammar
• The same sequences can be generated by this grammar:

A → aA’
A’ → aA’ | 𝜀

It derives the following words:

A → a
A → aA’ → aaA’ → aa
A → aA’ → aaA’ → aaaA’ → aaa
…

Syntax
analysis

the empty string 𝜀

returns from the

production

Compiler Construction 06: Top-down, LL(1) parsing 11

Eliminating left recursion
• If a nonterminal has m productions that are left recursive and

n productions that are not
A → A𝛼1 | A𝛼2 | A𝛼3 | … | A𝛼m

A → 𝛽1 | 𝛽2 | 𝛽3 | … | 𝛽n

we can introduce A’ and rewrite the productions as (see [1]):
A → 𝛽1 A’ | 𝛽2 A’ | 𝛽3 A’ | … | 𝛽n A’

A’ → 𝛼1A’ | 𝛼2A’ | 𝛼3A’ | … | 𝛼mA’ | 𝜀
• This generates the same language and removes (immediate) left

recursion
• “Immediate” because left recursion can also happen in several

steps (indirectly), e.g. in the following productions
A → Bx and B → Ay result in A → Bx → Ayx
Here, A again shows up on the left when derived from A

Syntax
analysis

greek letters (except 𝜀) stand

for arbitrary combinations

of other (non-)terminals

Compiler Construction 06: Top-down, LL(1) parsing 12

What can we do with CFGs now?
• So far, we have encountered (see also [2])

• Context-Free Grammars, their derivations and syntax trees

• Ambiguous grammars, and mentioned that there’s no single,
true way to disambiguate them (it depends on what we want
them to stand for)

• Left factoring, which always shortens the distance to the next
nonterminal

• Left recursion elimination, which always shifts a nonterminal to
the right

Syntax
analysis

Compiler Construction 06: Top-down, LL(1) parsing 13

Recursive descent parsing
• Example: grammar that models "if" and "while" statements:
P → if COND then STATEMENT end
 | if COND then STATEMENT else STATEMENT end
 | while COND do STATEMENT end

• Let’s make it a bit simpler:
P → iCtSz | iCtSeSz | wCdSz
C → c
S → s

• Let us parse the string "ictsesz"
• A top-down parser begins at the start symbol P and chooses a

production:

Syntax
analysis

P

???

Compiler Construction 06: Top-down, LL(1) parsing 14

Recursive descent: what next?
• If we can only look ahead by one token and read an "i", we can

choose between two productions:
P → iCtSz
 | iCtSeSz

• We cannot make this choice before seeing more of the token stream
• Left factoring makes this problem decidable with only one character

of lookahead
• It generates the following grammar:
P → iCtSP’ | wCdSz
P’ → z | eSz
C → c
S → s

Syntax
analysis

Compiler Construction 06: Top-down, LL(1) parsing 15

Recursive descent: what next? Syntax
analysis

P

P → iCtSP’ | wCdSz
P’ → z | eSz
C → c
S → s

• Now we only have one production
to choose from when reading an "i":

P → iCtSP’

• and we can generate the parse tree
equivalent to the derivation:

i tC S P’

Compiler Construction 06: Top-down, LL(1) parsing 16

Recursive descent: going down… Syntax
analysis

P

P → iCtSP’ | wCdSz
P’ → z | eSz
C → c
S → s

• Recursive descent implies that we follow
the children of the current parse tree
node down to the leaves (which must be
terminal symbols)

• So let’s see if we can parse "ictsesz"
• We follow the tree from P to its first child:

i tC S P’

 ictsesz
↑

• we have an "i" as lookahead
 ⇒ matches the first production for P!

• Now, the remaining token stream is "ctsesz"

the arrow indicates

the parser’s position

in the token stream

The input token sequence:

Compiler Construction 06: Top-down, LL(1) parsing 17

Backtrack and repeat Syntax
analysis

P

P → iCtSP’ | wCdSz
P’ → z | eSz
C → c
S → s

• we have an "i" as lookahead ⇒ match!

• Now, the remaining token stream is
"ctsesz"

• We return (backtrack) to P to continue
parsing:

i tC S P’

i ctsesz
 ↑

• This gives us the nonterminal C
• A nonterminal cannot match any token, so we

need to pick another production

The input token sequence:

Compiler Construction 06: Top-down, LL(1) parsing 18

Pick the next production Syntax
analysis

P

P → iCtSP’ | wCdSz
P’ → z | eSz
C → c
S → s

• There is only one choice to expand C
• When going from P to C in the previous

step, we did not consume a token
• The lookahead is now c

• Pick production C → c and expand
the tree:

i tC S P’

i ctsesz
 ↑

The input token sequence:

c

• we have a "c" as lookahead ⇒ "tsesz"

Compiler Construction 06: Top-down, LL(1) parsing 19

The next terminal symbol Syntax
analysis

P

P → iCtSP’ | wCdSz
P’ → z | eSz
C → c
S → s

• The next terminal symbol in P is t

• The lookahead is also t
• Consume the token and expand the

tree once more:

i tC S P’

ic tsesz
 ↑

The input token sequence:

c

• remaining token stream:"sesz"

Compiler Construction 06: Top-down, LL(1) parsing 20

The next nonterminal symbol S Syntax
analysis

P

P → iCtSP’ | wCdSz
P’ → z | eSz
C → c
S → s

• The next nonterminal in the first
production is S, so we apply its production

• The lookahead is now s
• This matches the pattern derived from
S, so we can expand the tree again:

i tC S P’

ict sesz
 ↑

The input token sequence:

c

• remaining token stream: "esz"

s

Compiler Construction 06: Top-down, LL(1) parsing 21

The next nonterminal symbol S Syntax
analysis

P

P → iCtSP’ | wCdSz
P’ → z | eSz
C → c
S → s

• The final nonterminal in the first production
is P’

• Now we have to choose between:
P’ → z and P’ → eSz
We can now choose the right production
using only one token of lookahead!

i tC S P’

icts esz
 ↑

The input token sequence:

c

• remaining token stream: "sz"

s e S z

Compiler Construction 06: Top-down, LL(1) parsing 22

The final steps Syntax
analysis

P

P → iCtSP’ | wCdSz
P’ → z | eSz
C → c
S → s

• The remaining steps are similar to ones we
have already seen

• Take the next nonterminal symbol
S and match the input to production S → s
We can again choose the right
production using only one symbol of
lookahead!

i tC S P’

ictse sz
 ↑

The input token sequence:

c

• remaining token stream: "sz"

s e S z

s

Compiler Construction 06: Top-down, LL(1) parsing 23

Validated! Syntax
analysis

P

P → iCtSP’ | wCdSz
P’ → z | eSz
C → c
S → s

• The remaining nonterminal in the
production P’→eSz is z

• This matches the remaining input token
→ we backtrack and find no further
 children
→ we we able to match all characters,
 thus the input matches our grammar

i tC S P’

ictses z
 ↑

The input token sequence:

c s e S z

→ ictsesz
 ↑

✔

s

Compiler Construction 06: Top-down, LL(1) parsing 24

Top-down parsing summarized
• Predictive parsing by recursive descent:

• Start from the start symbol (top)
• Verify terminals
• Pick a unique production for

nonterminals based on the lookahead
• Expand the syntax tree by productions and

recursively treat the new subtree in the same way
• This requires that the grammar is suitable, but we can adapt them

somewhat
• Left factor where a common lookahead prevents picking the right

production
• Eliminate left-recursive productions
• We only saw left factoring in action so far, but let’s do one other

grammar

Syntax
analysis

LL(1) parsing:

• scan from Left to right

• use Leftmost derivation

• 1 symbol lookahead

Compiler Construction 06: Top-down, LL(1) parsing 25

Implementing recursive descent
• Recursive descent parsers can easily be implemented by hand
• Example: parsing A = aAc | b

• We can naively try to implement the parser like this:

Syntax
analysis

symbol sym;
…
sym = next();
if (sym == 'a') {
 sym = next();
 if (sym == A) { sym = next(); } else { error(); }
 if (sym == 'c') { sym = next(); } else { error(); }
}
else
if (sym == 'b') { sym = next(); } else { error(); }

A = aAc
|
b

next() is the interface

to the scanner!

Wait… will
this work?

Compiler Construction 06: Top-down, LL(1) parsing 26

Correct implementation
• Example: parsing A = aAc | b
• Whenever we encounter a nonterminal such as A we have to

parse its production!
• Let us implement the

parser as a function:

Syntax
analysis

symbol sym;
…
void A(void) {
 if (sym == 'a') {
 sym = next();
 A();
 if (sym == 'c') { sym = next(); } else { error(); }
 }
 else
 if (sym == 'b') { sym = next(); } else { error(); }
}

A = aAc
|
b

Recursively calling the parser for A allows

to parse arbitrarily nested inputs!

Some more implementation hints (not in C) can be found in [3]

Compiler Construction 06: Top-down, LL(1) parsing 27

Table-driven parsing
• As with scanners, coding a recursive descent parser for a

complex language is lots of work and error prone
• Idea: use tables to configure the parser

• parser makes decisions based on indexing (nonterminal,
terminal) pairs and finds a single production

• To make that table, it’s a good idea to determine
• What can the strings derived from a nonterminal begin with?
• Which nonterminals can vanish, so that the lookahead symbol

is actually part of the next production to choose?
• What can come directly after a nonterminal that can vanish?
(where ‘vanish’ means that there is a production X→ε, so that nonterminal X
disappears from the intermediate form in the derivation without consuming any
characters from the input token stream)

Syntax
analysis

Compiler Construction 06: Top-down, LL(1) parsing 28

Another example grammar

It doesn’t model anything in particular, it’s just a useful
example

Syntax
analysis

S → u B D z
B → B v | w
D → E F
E → y | ε
F → x | ε

Compiler Construction 06: Top-down, LL(1) parsing 29

FIRST
• The set FIRST(α) is the set of terminals

that can appear to the left in α
• α is any combination of terminals

and nonterminals
• If we tabulate FIRST for all the heads in the grammar, we obtain

• FIRST(S) = {u} – u begins the only production
• FIRST(B) = {w} – however many times B→Bv is taken,

 w appears on the left in the end
• FIRST(E) = {y} – only production that derives any terminal
• FIRST(F) = {x} – ditto
• FIRST(D) = {y,x}

• y because D → EF → yF
• x because D → EF → F → x (E can disappear by E→ε)

Syntax
analysisS → u B D z

B → B v | w
D → E F
E → y | ε
F → x | ε

Compiler Construction 06: Top-down, LL(1) parsing 30

FOLLOW
• FOLLOW (N) for a nonterminal N is the set of

terminals that can appear directly to its right
• In order to find these, you have to

examine all the places N appears in production
bodies, and find the terminals directly to its right

• If it has a nonterminal on its right, you have to follow all its
productions too, and find out what can come up instead of it

• That will be its FIRST set
• If it has a nonterminal that can vanish to its right, you have to look at

what comes afterwards...
• ...and in general, collect all the terminals that can appear to the

right in one way or another
• This is a little trickier than FIRST, but it can be done manually

• See fig. 3.8, p. 106 in [4] for an algorithm to compute FOLLOW

Syntax
analysis

S → u B D z
B → B v | w
D → E F
E → y | ε
F → x | ε

Compiler Construction 06: Top-down, LL(1) parsing 31

FOLLOW for our grammar
• FOLLOW(S) = {$} (the end of input)

• FOLLOW(B) = {v,x,y,z} taken from the derivations
• S → uBDz → uBvDz
• S → uBDz → uBEFz → uBFz → uBxz
• S → uBDz → uBEFz → uByFz
• S → uBDz → uBEFz → uBFz → uBz

• FOLLOW(D) = {z} (from S → uBDz)

• FOLLOW(E) = {x,z} taken from the derivations
• S → uBDz → uBEFz → uBExz
• S → uBDz → uBEFz → uBEz

• FOLLOW(F) = {z} – from S → uBDz → uBEFz

Syntax
analysis

S → u B D z
B → B v | w
D → E F
E → y | ε
F → x | ε

Compiler Construction 06: Top-down, LL(1) parsing 32

Nullability
• A nonterminal is nullable if it can

produce the empty string
(in any number of steps)

• Here, the notation might be different
between various textbooks

• E.g., the Aho/Ullman/Seti/Lam "Dragon book" [5] (one of the standard
compiler textbooks) denotes this by putting ε in the FIRST set

• We denote it by keeping a separate record
• To summarize,

• nullable (S) = no – there are terminals in the only production
• nullable (B) = no – there are terminals in both productions
• nullable (E) = yes – it produces E→ε
• nullable (F) = yes – it produces F→ε
• nullable (D) = yes – D→EF→F→ε

Syntax
analysisS → u B D z

B → B v | w
D → E F
E → y | ε
F → x | ε

Compiler Construction 06: Top-down, LL(1) parsing 33

Building the parsing table
• Obtain the FIRST and FOLLOW sets and nullable information for

your grammar

• Consider every production X→α in the grammar, and apply two
rules

• Enter the production X→α at (X,t) where t is in FIRST(α)

• When α→*ε, enter the production X→α at (X,t)
where t is in FOLLOW(X)

Syntax
analysis

Compiler Construction 06: Top-down, LL(1) parsing 34

Oops, a left recursion! Syntax
analysis

u w v x y z

S S→uBDz

B
B→w
B→Bv

D D→EF D→EF

E E→y

F F→x

This will not work, expanding B on lookahead
‘w’ requires a choice the parser cannot make

Compiler Construction 06: Top-down, LL(1) parsing 35

Fix the grammar
• Eliminating left recursion gives us

Syntax
analysis

S → u B D z
B → B v | w
D → E F
E → y | ε
F → x | ε

S → u B D z
B → w B’
B’→ v B’| ε
D → E F
E → y | ε
F → x | ε

• Update the FIRST, FOLLOW, nullable sets after the change:
• FIRST(B) = {w}, FOLLOW(B) = {x,y,z}, nullable(B) = no
• FIRST(B’) = {v}, FOLLOW(B’) = {x,y,z}, nullable(B’) = yes

Compiler Construction 06: Top-down, LL(1) parsing 36

This is better… after rule 1 Syntax
analysis

u w v x y z

S S→uBDz

B B→wB’

B’ B’→vB’

D D→EF D→EF

E E→y

F F→x

Compiler Construction 06: Top-down, LL(1) parsing 37

Now apply rule 2 Syntax
analysis

u w v x y z

S S→uBDz

B B→wB’

B’ B’→vB’ B’→ε B’→ε B’→ε

D D→EF D→EF D→EF

E E→ε E→y E→ε

F F→x F→ε

Where nonterminal symbols are nullable, insert at FOLLOW

Compiler Construction 06: Top-down, LL(1) parsing 38

Result: a LL(1) parse table
• There is only one rule to choose from given a combination (NT, T)

of a nonterminal and a terminal symbol
• Thus, the parse tree can be built deterministically by following the

method from the first example
• Pick productions for NTs by looking them up in the table
• Encountering a combination without production ⇒ error

• The LL(1) parse table can, of course, also be constructed by an
algorithm that processes (parses) the input grammar

• See [4], fig. 3.12, p. 113
(note: the book adds the set FIRST+ to simplify notation)

• This is the first step to create a parser generator (also called
compiler compiler)

Syntax
analysis

Compiler Construction 06: Top-down, LL(1) parsing 39

So far, so good… Syntax
analysis

• Most programming language constructs can be expressed in a
backtrack-free grammar

• Predictive parsers for these are simple, compact, and efficient
• They can be implemented in a number of ways, including hand-

coded, recursive descent parsers and generated LL(1) parsers,
either table driven or direct coded

• The primary drawback of top-down, predictive parsers lies in their
inability to handle left recursion

• Left-recursive grammars model the left-to-right associativity of
expression operators in a more natural way than right-recursive
grammars

• What lies ahead?
• More parsing: bottom up – LR(1) parsers
• These are the basis for many parser generators, e.g. yacc/bison

Compiler Construction 06: Top-down, LL(1) parsing 40

References
[1] A.V. Aho, S.C. Johnson, J.D. Ullman:
 Deterministic parsing of ambiguous grammars
 Communications of the ACM, August 1975, doi:10.1145/360933.360969
[2] D.J. Rosenkrantz, R.E. Stearns:
 Properties of Deterministic Top Down Grammars
 Information and Control. 17 (3): 226–256, 1970. doi:10.1016/s0019-9958(70)90446-8
[3] Niklaus Wirth:
 Compiler Construction
 Original version: Addison-Wesley 1996, ISBN 0-201-40353-6
 Revised edition 2017 freely available at
 https://inf.ethz.ch/personal/wirth/CompilerConstruction/index.html
 – in this small book of a bit more than 100 pages, Wirth explains the design and
 implementation of a small compiler for a subset of the Oberon language. This
 book is rather implementation-oriented, so don't expect too much theoretical detail
[4] Keith Cooper and Linda Torczon:
 Engineering a Compiler (second Edition)
 ISBN 9780120884780 (hardcover), 9780080916613 (ebook)
[5] Alfred Aho, Monica S. Lam, Ravi Sethi, Jeffrey Ullman:
 Compilers: Principles, Techniques, and Tools (second edition)
 Addison-Wesley 2006, ISBN 978-0321486813

Syntax
analysis

https://inf.ethz.ch/personal/wirth/CompilerConstruction/index.html

