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Overview
• Ambiguity of grammars revisited 
• Elimination of left recursion 
• Top-down parsing 

• Recursive descent parsers:  
structure and implementation 

• Table-driven LL(1) parsers 
• Table generation
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Ambiguity of grammars Syntax
analysis

• For the compiler, it is important that each sentence in the 
language defined by a context-free grammar has a unique 
rightmost (or leftmost) derivation  

• A grammar in which multiple rightmost (or leftmost) derivations 
exist for a sentence is called an ambiguous grammar  
• it can produce multiple derivations and multiple parse trees 

• Multiple parse trees imply multiple possible meanings for a 
single program!  ⚡  
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Ambiguity of grammars: example Syntax
analysis

1  Statement → if Expr then Statement else Statement 
2             | if Expr then Statement 
3             | Assignment  
4             | …other statements…  

"dangling else"-
problem in 
ALGOL-like 
languages 
(e.g. PASCAL)

if Expr1 then if Expr2 then Assignment1 else Assignment2

This statement

has two distinct rightmost derivations with different behaviors: 

"else" part is optional
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3.2 Expressing Syntax 91

The classic example of an ambiguous construct in the grammar for a pro-
gramming language is the if-then-else construct of many Algol-like
languages. The straightforward grammar for if-then-else might be

1 Statement ! if Expr then Statement else Statement

2 | if Expr then Statement

3 | Assignment

4 | . . . other statements . . .

This fragment shows that the else is optional. Unfortunately, the code
fragment

if Expr1 then if Expr2 then Assignment1 else Assignment2

has two distinct rightmost derivations. The difference between them is
simple. The first derivation has Assignment2 controlled by the inner
if, so Assignment2 executes when Expr1 is true and Expr2 is false:

Statement

Expr2 elsethenif Statement

Assignment1

Statement

Assignment2

thenExpr1if

Statement

The second derivation associates the else clause with the first if, so that
Assignment2 executes when Expr1 is false, independent of the value of
Expr2:

else Statement

Assignment2

thenExpr1if

Statement

Expr2 thenif Statement

Assignment1

Statement

Clearly, these two derivations produce different behaviors in the compiled
code.
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Removing ambiguity Syntax
analysis

1  Statement → if Expr then Statement 
2             | if Expr then WithElse else Statement 
3             | Assignment  
4  WithElse  → if Expr then WithElse else WithElse 
5             | Assignment  

We can modify the grammar to include a rule that determined which 
if controls an else:

This solution restricts the set of statements that can occur in the 
then part of an if-then-else construct 
• It accepts the same set of sentences as the original grammar  
• but ensures that each else has an unambiguous match to a 

specific if
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Removing ambiguity: example Syntax
analysis

1  Statement → if Expr then Statement 
2             | if Expr then WithElse else Statement 
3             | Assignment  
4  WithElse  → if Expr then WithElse else WithElse 
5             | Assignment  

The modified grammar  
has only one rightmost  
derivation for the example 

Rule Sentential form
Statement

1 if Expr then Statement

2 if Expr then if Expr then WithElse else Statement

3 if Expr then if Expr then WithElse else Assignment

5 if Expr then if Expr then Assignment else Assignment

if Expr1 then if Expr2 then Assignment1 else Assignment2
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Order of derivations Syntax
analysis

Rule Sentential form
Expr

2 Expr Op name

6 Expr × name
1 "(" Expr ")" × name
2 "(" Expr Op name ")" × name
4 "(" Expr + name ")" × name
3 "(" name + name ")" × name

Rightmost:  
rewrite, at each step, the rightmost nonterminal 

1  Expr → "(" Expr ")"  
2        | Expr Op name 
3        | name  
4  Op   → + 
5        | - 
6        | × 
7        | ÷

Expr

OpExpr

Expr

Expr Op

"(" ")"

name(b)

name(c)

×

name(a) +
parse tree  
identical for both!

Rule Sentential form
Expr

2 Expr Op name

1 "(" Expr ")" Op name

2 "(" Expr Op name ")" Op name

3 "(" name Op name ")" Op name

4 "(" name + name ")" Op name

6 "(" name + name ")" × name

Leftmost: rewrite, at each step, the leftmost nonterminal 
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Left factoring
• Parsers (and scanners) only have a limited lookahead to upcoming 

tokens 

• Example: given a production 
A → abcdef X gh | abcdef Y gh 

the parser is unable to choose between the two productions if it can 
only look one character ahead 

• As with NFA→DFA conversion, we can make this approach work if 
we can postpone the decision until it makes a difference  

• Rewriting the grammar as  
A → abcdef A’ 
A’→ X gh | Y gh  
preserves the language by adding one production to collect a 
common prefix shared by several other productions 

Syntax
analysis
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Left recursion
• Let’s consider this grammar for a list of 'a’s: 

A → Aa | a 

which derives the following words: 
 
A → a 
A → Aa → aa 
A → Aa → Aaa → aaa 
… 

• The production A → Aa is left recursive, the head (nonterminal 
symbol) always appears on the left side of the production

Syntax
analysis
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An equivalent grammar
• The same sequences can be generated by this grammar: 

A  → aA’ 
A’ → aA’ | 𝜀 

It derives the following words: 
 
A → a 
A → aA’ → aaA’ → aa 
A → aA’ → aaA’ → aaaA’ → aaa 
…

Syntax
analysis

the empty string 𝜀 

returns from the  

production
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Eliminating left recursion
• If a nonterminal has m productions that are left recursive and  

n productions that are not  
A → A𝛼1 | A𝛼2 | A𝛼3 | … | A𝛼m 

A → 𝛽1 | 𝛽2 | 𝛽3 | … | 𝛽n 

we can introduce A’ and rewrite the productions as (see [1]): 
A  → 𝛽1 A’ | 𝛽2 A’ | 𝛽3 A’ | … | 𝛽n A’ 

A’ → 𝛼1A’ | 𝛼2A’ | 𝛼3A’ | … | 𝛼mA’ | 𝜀 
• This generates the same language and removes (immediate) left 

recursion  
• “Immediate” because left recursion can also happen in several 

steps (indirectly), e.g. in the following productions 
A → Bx and B → Ay result in A → Bx → Ayx 
Here, A again shows up on the left when derived from A

Syntax
analysis

greek letters (except 𝜀) stand  

for arbitrary combinations 

of other (non-)terminals
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What can we do with CFGs now?
• So far, we have encountered (see also [2]) 

• Context-Free Grammars, their derivations and syntax trees  

• Ambiguous grammars, and mentioned that there’s no single, 
true way to disambiguate them (it depends on what we want 
them to stand for)  

• Left factoring, which always shortens the distance to the next 
nonterminal  

• Left recursion elimination, which always shifts a nonterminal to 
the right 

Syntax
analysis
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Recursive descent parsing
• Example: grammar that models "if" and "while" statements: 
P → if COND then STATEMENT end  
   | if COND then STATEMENT else STATEMENT end 
   | while COND do STATEMENT end 

• Let’s make it a bit simpler: 
P → iCtSz | iCtSeSz | wCdSz 
C → c 
S → s 

• Let us parse the string "ictsesz" 
• A top-down parser begins at the start symbol P and chooses a 

production:

Syntax
analysis

P

???
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Recursive descent: what next?
• If we can only look ahead by one token and read an "i", we can 

choose between two productions: 
P → iCtSz  
   | iCtSeSz 

• We cannot make this choice before seeing more of the token stream 
• Left factoring makes this problem decidable with only one character 

of lookahead  
• It generates the following grammar: 
P  → iCtSP’ | wCdSz 
P’ → z | eSz 
C  → c 
S  → s

Syntax
analysis
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Recursive descent: what next? Syntax
analysis

P

P  → iCtSP’ | wCdSz 
P’ → z | eSz 
C  → c 
S  → s

• Now we only have one production 
to choose from when reading an "i": 

P → iCtSP’  

• and we can generate the parse tree 
equivalent to the derivation:

i tC S P’
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Recursive descent: going down… Syntax
analysis

P

P  → iCtSP’ | wCdSz 
P’ → z | eSz 
C  → c 
S  → s

• Recursive descent implies that we follow 
the children of the current parse tree 
node down to the leaves (which must be 
terminal symbols) 

• So let’s see if we can parse "ictsesz" 
• We follow the tree from P to its first child:

i tC S P’

 ictsesz 
↑

• we have an "i" as lookahead  
   ⇒ matches the first production for P! 

• Now, the remaining token stream is "ctsesz"

the arrow indicates 

the parser’s position 

in the token stream

The input token sequence:
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Backtrack and repeat Syntax
analysis

P

P  → iCtSP’ | wCdSz 
P’ → z | eSz 
C  → c 
S  → s

• we have an "i" as lookahead ⇒ match! 

• Now, the remaining token stream is 
"ctsesz" 

• We return (backtrack) to P to continue 
parsing:

i tC S P’

i ctsesz 
 ↑

• This gives us the nonterminal C  
• A nonterminal cannot match any token, so we 

need to pick another production

The input token sequence:
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Pick the next production Syntax
analysis

P

P  → iCtSP’ | wCdSz 
P’ → z | eSz 
C  → c 
S  → s

• There is only one choice to expand C 
• When going from P to C in the previous 

step, we did not consume a token 
• The lookahead is now c 

• Pick production C → c and expand 
the tree:

i tC S P’

i ctsesz 
 ↑

The input token sequence:

c

• we have a "c" as lookahead ⇒ "tsesz"
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The next terminal symbol Syntax
analysis

P

P  → iCtSP’ | wCdSz 
P’ → z | eSz 
C  → c 
S  → s

• The next terminal symbol in P is t 

• The lookahead is also t 
• Consume the token and expand the 

tree once more:

i tC S P’

ic tsesz 
  ↑

The input token sequence:

c

• remaining token stream:"sesz"
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The next nonterminal symbol S Syntax
analysis

P

P  → iCtSP’ | wCdSz 
P’ → z | eSz 
C  → c 
S  → s

• The next nonterminal in the first 
production is S, so we apply its production  

• The lookahead is now s 
• This matches the pattern derived from 
S, so we can expand the tree again:

i tC S P’

ict sesz 
    ↑

The input token sequence:

c

• remaining token stream: "esz"

s
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The next nonterminal symbol S Syntax
analysis

P

P  → iCtSP’ | wCdSz 
P’ → z | eSz 
C  → c 
S  → s

• The final nonterminal in the first production 
is P’ 

• Now we have to choose between: 
P’ → z and P’ → eSz 
We can now choose the right production 
using only one token of lookahead!

i tC S P’

icts esz 
     ↑

The input token sequence:

c

• remaining token stream: "sz"

s e S z



Compiler Construction 06: Top-down, LL(1) parsing 22

The final steps Syntax
analysis

P

P  → iCtSP’ | wCdSz 
P’ → z | eSz 
C  → c 
S  → s

• The remaining steps are similar to ones we 
have already seen 

• Take the next nonterminal symbol  
S and match the input to production S → s 
We can again choose the right 
production using only one symbol of 
lookahead!

i tC S P’

ictse sz 
       ↑

The input token sequence:

c

• remaining token stream: "sz"

s e S z

s
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Validated! Syntax
analysis

P

P  → iCtSP’ | wCdSz 
P’ → z | eSz 
C  → c 
S  → s

• The remaining nonterminal in the 
production P’→eSz is z 

• This matches the remaining input token 
→ we backtrack and find no further  
     children 
→ we we able to match all characters,  
     thus the input matches our grammar

i tC S P’

ictses z 
        ↑

The input token sequence:

c s e S z

→ ictsesz 
          ↑

✔

s
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Top-down parsing summarized
• Predictive parsing by recursive descent:  

• Start from the start symbol (top)  
• Verify terminals  
• Pick a unique production for  

nonterminals based on the lookahead  
• Expand the syntax tree by productions and  

recursively treat the new subtree in the same way  
• This requires that the grammar is suitable, but we can adapt them 

somewhat  
• Left factor where a common lookahead prevents picking the right 

production 
• Eliminate left-recursive productions 
• We only saw left factoring in action so far, but let’s do one other 

grammar 

Syntax
analysis

LL(1) parsing: 

• scan from Left to right 

• use Leftmost derivation 

• 1 symbol lookahead
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Implementing recursive descent
• Recursive descent parsers can easily be implemented by hand 
• Example: parsing A = aAc | b 

• We can naively try to implement the parser like this: 

Syntax
analysis

symbol sym; 
… 
sym = next(); 
if (sym == 'a') {  
   sym = next(); 
   if (sym == A)   { sym = next(); } else { error(); }  
   if (sym == 'c') { sym = next(); } else { error(); }  
}  
else  
if (sym == 'b')    { sym = next(); } else { error(); }

A = aAc  
|  
b

next() is the interface 

to the scanner!

Wait… will 
this work?
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Correct implementation
• Example: parsing A = aAc | b 
• Whenever we encounter a nonterminal such as A we have to 

parse its production!  
• Let us implement the  

parser as a function:

Syntax
analysis

symbol sym; 
… 
void A(void) { 
  if (sym == 'a') {  
     sym = next(); 
     A();  
     if (sym == 'c') { sym = next(); } else { error(); }  
  }  
  else  
  if (sym == 'b')    { sym = next(); } else { error(); } 
}

A = aAc  
|  
b

Recursively calling the parser for A allows  

to parse arbitrarily nested inputs!

Some more implementation hints (not in C) can be found in [3]
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Table-driven parsing
• As with scanners, coding a recursive descent parser for a 

complex language is lots of work and error prone 
• Idea: use tables to configure the parser 

• parser makes decisions based on indexing (nonterminal, 
terminal) pairs and finds a single production  

• To make that table, it’s a good idea to determine  
• What can the strings derived from a nonterminal begin with?  
• Which nonterminals can vanish, so that the lookahead symbol 

is actually part of the next production to choose?  
• What can come directly after a nonterminal that can vanish?  
(where ‘vanish’ means that there is a production X→ε, so that nonterminal X 
disappears from the intermediate form in the derivation without consuming any 
characters from the input token stream) 

Syntax
analysis
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Another example grammar

It doesn’t model anything in particular, it’s just a useful 
example

Syntax
analysis

S → u B D z  
B → B v | w  
D → E F 
E → y | ε  
F → x | ε 
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FIRST
• The set FIRST(α) is the set of terminals  

that can appear to the left in α  
• α is any combination of terminals  

and nonterminals  
• If we tabulate FIRST for all the heads in the grammar, we obtain 

• FIRST(S) = {u} – u begins the only production 
• FIRST(B) = {w} – however many times B→Bv is taken,  

                            w appears on the left in the end 
• FIRST(E) = {y} – only production that derives any terminal  
• FIRST(F) = {x} – ditto 
• FIRST(D) = {y,x} 

• y because D → EF → yF 
• x because D → EF → F → x (E can disappear by E→ε) 

Syntax
analysisS → u B D z  

B → B v | w  
D → E F 
E → y | ε  
F → x | ε 
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FOLLOW
• FOLLOW (N) for a nonterminal N is the set of  

terminals that can appear directly to its right  
• In order to find these, you have to  

examine all the places N appears in production  
bodies, and find the terminals directly to its right  

• If it has a nonterminal on its right, you have to follow all its 
productions too, and find out what can come up instead of it  

• That will be its FIRST set  
• If it has a nonterminal that can vanish to its right, you have to look at 

what comes afterwards...  
• ...and in general, collect all the terminals that can appear to the 

right in one way or another  
• This is a little trickier than FIRST, but it can be done manually 

• See fig. 3.8, p. 106 in [4] for an algorithm to compute FOLLOW

Syntax
analysis

S → u B D z  
B → B v | w  
D → E F 
E → y | ε  
F → x | ε 
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FOLLOW for our grammar
• FOLLOW(S) = {$} (the end of input)  

• FOLLOW(B) = {v,x,y,z} taken from the derivations  
• S → uBDz → uBvDz  
• S → uBDz → uBEFz → uBFz → uBxz  
• S → uBDz → uBEFz → uByFz 
• S → uBDz → uBEFz → uBFz → uBz  

• FOLLOW(D) = {z} (from S → uBDz)  

• FOLLOW(E) = {x,z} taken from the derivations  
• S → uBDz → uBEFz → uBExz 
• S → uBDz → uBEFz → uBEz  

• FOLLOW(F) = {z} – from S → uBDz → uBEFz

Syntax
analysis

S → u B D z  
B → B v | w  
D → E F 
E → y | ε  
F → x | ε 
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Nullability
• A nonterminal is nullable if it can  

produce the empty string  
(in any number of steps)  

• Here, the notation might be different  
between various textbooks 

• E.g., the Aho/Ullman/Seti/Lam "Dragon book" [5] (one of the standard 
compiler textbooks) denotes this by putting ε in the FIRST set 

• We denote it by keeping a separate record  
• To summarize,  

• nullable (S) = no – there are terminals in the only production 
• nullable (B) = no – there are terminals in both productions 
• nullable (E) = yes – it produces E→ε 
• nullable (F) = yes – it produces F→ε 
• nullable (D) = yes – D→EF→F→ε

Syntax
analysisS → u B D z  

B → B v | w  
D → E F 
E → y | ε  
F → x | ε 
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Building the parsing table
• Obtain the FIRST and FOLLOW sets and nullable information for 

your grammar 

• Consider every production X→α in the grammar, and apply two 
rules  

• Enter the production X→α at (X,t) where t is in FIRST(α)  

• When α→*ε, enter the production X→α at (X,t)  
where t is in FOLLOW(X) 

Syntax
analysis
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Oops, a left recursion! Syntax
analysis

u w v x y z

S S→uBDz

B
B→w  
B→Bv 

D D→EF D→EF 

E E→y 

F F→x 

This will not work, expanding B on lookahead  
‘w’ requires a choice the parser cannot make
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Fix the grammar
• Eliminating left recursion gives us 

Syntax
analysis

S → u B D z  
B → B v | w  
D → E F 
E → y | ε  
F → x | ε 

S → u B D z  
B → w B’ 
B’→ v B’| ε 
D → E F 
E → y | ε  
F → x | ε 

• Update the FIRST, FOLLOW, nullable sets after the change: 
• FIRST(B) = {w}, FOLLOW(B) = {x,y,z}, nullable(B) = no 
• FIRST(B’) = {v}, FOLLOW(B’) = {x,y,z}, nullable(B’) = yes  
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This is better… after rule 1 Syntax
analysis

u w v x y z

S S→uBDz

B B→wB’ 

B’ B’→vB’

D D→EF D→EF 

E E→y 

F F→x 
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Now apply rule 2 Syntax
analysis

u w v x y z

S S→uBDz

B B→wB’ 

B’ B’→vB’ B’→ε B’→ε B’→ε 

D D→EF D→EF D→EF

E E→ε E→y E→ε 

F F→x F→ε

Where nonterminal symbols are nullable, insert at FOLLOW 
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Result: a LL(1) parse table
• There is only one rule to choose from given a combination (NT, T) 

of a nonterminal and a terminal symbol 
• Thus, the parse tree can be built deterministically by following the 

method from the first example  
• Pick productions for NTs by looking them up in the table 
• Encountering a combination without production ⇒ error 

• The LL(1) parse table can, of course, also be constructed by an 
algorithm that processes (parses) the input grammar 

• See [4], fig. 3.12, p. 113 
(note: the book adds the set FIRST+ to simplify notation) 

• This is the first step to create a parser generator (also called 
compiler compiler) 

Syntax
analysis
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So far, so good… Syntax
analysis

• Most programming language constructs can be expressed in a 
backtrack-free grammar  

• Predictive parsers for these are simple, compact, and efficient 
• They can be implemented in a number of ways, including hand-

coded, recursive descent parsers and generated LL(1) parsers, 
either table driven or direct coded  

• The primary drawback of top-down, predictive parsers lies in their 
inability to handle left recursion  

• Left-recursive grammars model the left-to-right associativity of 
expression operators in a more natural way than right-recursive 
grammars  

• What lies ahead? 
• More parsing: bottom up – LR(1) parsers 
• These are the basis for many parser generators, e.g. yacc/bison
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