
Compiler Construction
Lecture 4: Lexical analysis in the real world

Michael Engel

Includes material by

Jan Christian Meyer

Compiler Construction 04: Lexical analysis in the real world 2

Overview
• NFA to DFA conversion

• Subset construction algorithm
• DFA state minimization:

• Hopcroft's algorithm
• Myhill-Nerode method

• Using a scanner generator
• lex syntax and usage
• lex examples

Compiler Construction 04: Lexical analysis in the real world 3

What have we achieved so far?
• We know a method to convert a regular expression:

(all | and)

into a nondeterministic finite automaton (NFA):

using the McNaughton, Thompson and Yamada algorithm

a
l

l

a
n

d

Compiler Construction 04: Lexical analysis in the real world 4

Overhead of constructed NFAs
Let’s look at another example: a(b|c)*
• Construct the simple NFAs for a, b and c

s0
a

s2
b

s3 s4
c

s5

• Construct the NFA for b|c

s1

s6

s2ε
b

εs3

s4
ε

c

s7

εs5

Compiler Construction 04: Lexical analysis in the real world 5

Overhead of constructed NFAs
• Now construct the NFA for (b|c)*

s6

s2ε
b

εs3

s4
ε

c

s9

εs5

s7s8

ε

ε

• Looks pretty complex already? We're not even finished…

εε

Compiler Construction 04: Lexical analysis in the real world 6

Overhead of constructed NFAs
• Finally, construct the NFA for a(b|c)*

s6

s2ε
b

εs3

s4
ε

c

s9

εs5

s7s8

ε

ε

εεs1
ε

s0
a

• This NFA has many more states than a minimal human-built DFA:

s1s0
a

b,c

Compiler Construction 04: Lexical analysis in the real world 7

From NFA to DFA
• An NFA is not really helpful

…since its implementation is not obvious
• We know: every DFA is also an NFA (without ε-transitions)

• Every NFA can also be converted to an equivalent DFA
(this can be proven by induction, we just show the construction)

• The method to do this is called subset construction:

NFA: (QN, 𝛴, 𝛿N, n0, FN)

DFA: (QD, 𝛴, 𝛿D, d0, FD)

The alphabet 𝛴 stays the same

The set of states QN,
transition function 𝛿N,
start state qN0
and set of accepting states FN
are modified

Compiler Construction 04: Lexical analysis in the real world

Idea of the algorithm:
Find sets of states that are
equivalent (due to ε-
transitions) and join these to
form states of a DFA

ε-closure:
contains a set of states S and
any states in the NFA that can
be reached from one of the
states in S along paths that
contain only ε-transitions
(these are identical to a state
in S)

8

Subset construction algorithm
q0 ← ε-closure({n0});
QD ← q0;
WorkList ← {q0};

while (WorkList != ∅) do
 remove q from WorkList;
 for each character c∈𝛴 do
 t ← ε-closure(𝛿N(q,c));
 𝛿D[q,c] ← t;
 if t ∉ QD then
 add t to QD and to WorkList;
 end;
end;

Compiler Construction 04: Lexical analysis in the real world 9

Subset construction example
q0 ← ε-closure({n0});
QD ← q0;
WorkList ← {q0};

while (WorkList != ∅) do
 remove q from WorkList;
 for each character c∈𝛴 do
 t ← ε-closure(𝛿N(q,c));
 𝛿D[q,c] ← t;
 if t ∉ QD then
 add t to QD and to WorkList;
 end;
end;

n3

n4ε
b

εn5

n6ε
c

n9

εn7

n8n2

ε

ε

εε
n1

ε
n0

a

𝛿N a b c ε
n0 n1 – – –
n1 – – – n2

n2 – – – n3,n9

n3 – – – n4,n6

n4 – n5 – –
n5 – – – n8

n6 – – n7 –
n7 – – – n8

n8 – – – n3,n9

n9 – – – –

q0 ← {n0}
QD ← {n0};
WorkList ← {n0};

Compiler Construction 04: Lexical analysis in the real world 10

Subset construction example
q0 ← ε-closure({n0});
QD ← q0;
WorkList ← {q0};

while (WorkList != ∅) do
 remove q from WorkList;
 for each character c∈𝛴 do
 t ← ε-closure(𝛿N(q,c));
 𝛿D[q,c] ← t;
 if t ∉ QD then
 add t to QD and to WorkList;
 end;
end;

𝛿N a b c ε
n0 n1 – – –
n1 – – – n2

n2 – – – n3,n9

n3 – – – n4,n6

n4 – n5 – –
n5 – – – n8

n6 – – n7 –
n7 – – – n8

n8 – – – n3,n9

n9 – – – –

while-loop Iteration 1
WorkList ← {{n0}};
q ← n0;
c ← 'a':
 t ← ε-closure(𝛿N(q,c))
 = ε-closure(𝛿N(n0,’a'))
 = ε-closure(n1)
 = {n1,n2,n3,n4,n6,n9}
 𝛿D[n0,’a']←{n1,n2,n3,n4,n6,n9};
 QD ←{{n0},{n1,n2,n3,n4,n6,n9}};
 WorkList ←
 {{n1,n2,n3,n4,n6,n9}};

n3

n4ε
b

εn5

n6ε
c

n9

εn7

n8n2

ε

ε

εε
n1

ε
n0

a

Compiler Construction 04: Lexical analysis in the real world 11

Subset construction example
q0 ← ε-closure({n0});
QD ← q0;
WorkList ← {q0};

while (WorkList != ∅) do
 remove q from WorkList;
 for each character c∈𝛴 do
 t ← ε-closure(𝛿N(q,c));
 𝛿D[q,c] ← t;
 if t ∉ QD then
 add t to QD and to WorkList;
 end;
end;

n3

n4ε
b

εn5

n6ε
c

n9

εn7

n8n2

ε

ε

εε
n1

ε
n0

a

𝛿N a b c ε
n0 n1 – – –
n1 – – – n2

n2 – – – n3,n9

n3 – – – n4,n6

n4 – n5 – –
n5 – – – n8

n6 – – n7 –
n7 – – – n8

n8 – – – n3,n9

n9 – – – –

while-loop Iteration 1:

WorkList ← {n0};
q ← n0;
c ← 'b','c':
 t ← {}
 no change to QD, Worklist

We will skip the iterations

of the for loop that do not

change QD from now on

Compiler Construction 04: Lexical analysis in the real world 12

Subset construction example
q0 ← ε-closure({n0});
QD ← q0;
WorkList ← {q0};

while (WorkList != ∅) do
 remove q from WorkList;
 for each character c∈𝛴 do
 t ← ε-closure(𝛿N(q,c));
 𝛿D[q,c] ← t;
 if t ∉ QD then
 add t to QD and to WorkList;
 end;
end;

n3

n4ε
b

εn5

n6ε
c

n9

εn7

n8n2

ε

ε

εε
n1

ε
n0

a

𝛿N a b c ε
n0 n1 – – –
n1 – – – n2

n2 – – – n3,n9

n3 – – – n4,n6

n4 – n5 – –
n5 – – – n8

n6 – – n7 –
n7 – – – n8

n8 – – – n3,n9

n9 – – – –

while-loop Iteration 2
WorkList = {{n1,n2,n3,n4,n6,n9}};
q ← {n1,n2,n3,n4,n6,n9};
c ← 'b':
 t ← ε-closure(𝛿N(q,c))
 = ε-closure(𝛿N(q,’b’))
 = ε-closure(n5)
 = {n5,n8,n9,n3,n4,n6}
 𝛿D[q,’b’]←{n5,n8,n9,n3,n4,n6};
 QD ←{{n0},{n1,n2,n3,n4,n6,n9},
 {n5,n8,n9,n3,n4,n6}};
 WorkList ←
 {{n5,n8,n9,n3,n4,n6}};

Compiler Construction 04: Lexical analysis in the real world 13

Subset construction example
q0 ← ε-closure({n0});
QD ← q0;
WorkList ← {q0};

while (WorkList != ∅) do
 remove q from WorkList;
 for each character c∈𝛴 do
 t ← ε-closure(𝛿N(q,c));
 𝛿D[q,c] ← t;
 if t ∉ QD then
 add t to QD and to WorkList;
 end;
end;

n3

n4ε
b

εn5

n6ε
c

n9

εn7

n8n2

ε

ε

εε
n1

ε
n0

a

𝛿N a b c ε
n0 n1 – – –
n1 – – – n2

n2 – – – n3,n9

n3 – – – n4,n6

n4 – n5 – –
n5 – – – n8

n6 – – n7 –
n7 – – – n8

n8 – – – n3,n9

n9 – – – –

while-loop Iteration 2
WorkList = {{n1,n2,n3,n4,n6,n9}};
q ← {n1,n2,n3,n4,n6,n9};
c ← 'c':
 t ← ε-closure(𝛿N(q,c))
 = ε-closure(𝛿N(q,’c’))
 = ε-closure(n7)
 = {n7,n8,n9,n3,n4,n6}
 𝛿D[q,’c’]←{n7,n8,n9,n3,n4,n6};
 QD ←{{n0},{n1,n2,n3,n4,n6,n9},
 {n5,n8,n9,n3,n4,n6},
 {n7,n8,n9,n3,n4,n6}};
 WorkList ←
 {{n7,n8,n9,n3,n4,n6}};

Compiler Construction 04: Lexical analysis in the real world 14

Subset construction example
q0 ← ε-closure({n0});
QD ← q0;
WorkList ← {q0};

while (WorkList != ∅) do
 remove q from WorkList;
 for each character c∈𝛴 do
 t ← ε-closure(𝛿N(q,c));
 𝛿D[q,c] ← t;
 if t ∉ QD then
 add t to QD and to WorkList;
 end;
end;

n3

n4ε
b

εn5

n6ε
c

n9

εn7

n8n2

ε

ε

εε
n1

ε
n0

a

𝛿N a b c ε
n0 n1 – – –
n1 – – – n2

n2 – – – n3,n9

n3 – – – n4,n6

n4 – n5 – –
n5 – – – n8

n6 – – n7 –
n7 – – – n8

n8 – – – n3,n9

n9 – – – –

while-loop Iteration 3
WorkList = {{n7,n8,n9,n3,n4,n6}};
q ← {n7,n8,n9,n3,n4,n6};
c ← 'b','c':
 t ← ε-closure(𝛿N(q,c))
 = ε-closure(𝛿N(q,’c’))
 = ε-closure(n5,n7)
// we ran around the graph once!

No new states are added

to QD in this and the

following iteration!

Compiler Construction 04: Lexical analysis in the real world 15

Subset construction example

n3

n4ε
b

εn5

n6ε
c

n9

εn7

n8n2

ε

ε

εε
n1

ε
n0

a

Set
name

DFA
states

NFA
states ε-closure(𝛿N(q,*))

a b c

q0 d0 n0
{ n1, n2, n3,

 n4, n6, n9 } – –

q1 d1
{ n1, n2, n3,

 n4, n6, n9 } – { n5, n8, n9,
 n3, n4, n6 }

{ n7, n8, n9,
 n3, n4, n6 }

q2 d2
{ n5, n8, n9,

 n3, n4, n6 } – q2 q3

q3 d3
{ n7, n8, n9,

 n3, n4, n6 } – q2 q3

𝛿N a b c ε
n0 n1 – – –
n1 – – – n2

n2 – – – n3,n9

n3 – – – n4,n6

n4 – n5 – –
n5 – – – n8

n6 – – n7 –
n7 – – – n8

n8 – – – n3,n9

n9 – – – –

d1d0
a

d2

d3

b

c
bc

b

c

Compiler Construction 04: Lexical analysis in the real world 16

Subset construction: result

n3

n4ε
b

εn5

n6
ε

c

n9

εn7

n8n2

ε

ε

εεn1
ε

n0
a

Our NFA for a(b|c)*:

d1d0
a

d2

d3

b

c

bc

b

c s1s0
a

b,c

minimal DFAconstructed DFA

subset
construction

algorithm

still bigger than

Compiler Construction 04: Lexical analysis in the real world 17

Minimization of DFAs

d1d0
a

d2

d3

b

c

bc

b

c

s1s0
a

b,c

• DFAs resulting from subset construction can have a large set of
states
• This does not increase the time needed to scan a string
• It does increase the size of the recognizer in memory
• On modern computers, the speed of memory accesses often

governs the speed of computation
• A smaller recognizer may fit better into the processor’s cache

memory

Compiler Construction 04: Lexical analysis in the real world 18

Minimization of DFAs

d1d0
a

d2

d3

b

c

bc

b

c

s1s0
a

b,c

• We need a technique to detect when two states are equivalent
• i.e. when they produce the same behavior on any input string

• Hopcroft’s algorithm [3]
• finds equivalence classes of DFA states based on their

behavior
• from equivalence classes we can construct a minimal DFA

• We just give an intuitive overview, for details see [4], ch. 2.4.4

(states renumbered)

Compiler Construction 04: Lexical analysis in the real world 19

Hopcroft’s algorithm [3]

d1d0
a

d2

d3

b

c

bc

b

c

s1s0
a

b,c

• Idea:
• Two DFA states are equivalent if it's impossible to tell from

accepting/rejecting behavior alone which of them the DFA is in
• For each language, the minimum DFA accepting that language

has no equivalent states
• Hopcroft's algorithm works by computing the equivalence classes of

the states of the unminimized DFA
• The nub of this computation is an iteration where, at each step, we

have a partition of the states that is coarser than equivalence (i.e.,
equivalent states always belong to the same set of the partition)

Compiler Construction 04: Lexical analysis in the real world 20

Hopcroft’s algorithm

d1d0
a

d2

d3

b

c

bc

b

c

1. The initial partition is accepting states and rejecting states.
Clearly these are not equivalent

Compiler Construction 04: Lexical analysis in the real world 21

Hopcroft’s algorithm

d1d0
a

d2

d3

b

c

bc

b

c

2. Suppose that we have states q1 and q2 in the same set of the
current partition:

If there exists a symbol s such that 𝛿(q1, s) and 𝛿(q2, s) are in
different sets of the partition, then these states are not equivalent

⇒ split set of states into subsets of equivalent states

Compiler Construction 04: Lexical analysis in the real world 22

Hopcroft’s algorithm

d1d0
a

d2

d3

b

c

bc

b

c

3. When Step 2 is no longer possible, we have arrived at the true
equivalence classes

For our simple example, step 2 was never applicable, so the two
partitions define the states of the minimized DFA

s1s0
a

b,c

s0

s1

Compiler Construction 04: Lexical analysis in the real world 23

Hopcroft’s algorithm: example

s0
f

s3

s5

e

i

s3s0
f

• DFA to detect (fee | fie)
• s3 and s5 obviously (?) serve the same purpose

s1

s2

s4

e

e

s1
i,e

s2
e

Step Current
Partition

Examines
Set Char Action

0 {{s3,s5},{s0,s1,s2,s4}} – – –
1 {{s3,s5},{s0,s1,s2,s4}} {s3, s5} all none
2 {{s3,s5},{s0,s1,s2,s4}} {s0,s1,s2,s4} e split{s2,s4}
3 {{s3,s5},{s0,s1},{s2,s4}} {s0,s1} f split{s1}
4 {{s3,s5},{s0},{s1},{s2,s4}} all all none

(states renumbered)

Compiler Construction 04: Lexical analysis in the real world 24

More intuitive DFA minimization
Myhill-Nerode Theorem [5]
("Table Filling Method")
• Another algorithm to minimize DFAs

(with a bit higher computational
complexity than Hopcroft’s)
…but maybe easier to understand?

1. Draw a table for all pairs of
DFA states, leave the half above
(or below) the diagonal empty,
including the diagonal itself

2. Mark all pairs (p, q) of states
where p∈F and q∉F or vice versa
(here: all pairs where p or q = s5)
⇒ similar to Hopcroft's first partitioning

s1 s2 s3 s4 s5

s1

s2

s3

s4

s5 ✘ ✘ ✘ ✘

s1

a

s5
b

b

s2

s3

a

b

a a

s4

b
b

a

Compiler Construction 04: Lexical analysis in the real world 25

Myhill-Nerode DFA minimization #1
3. If there are any unmarked pairs

(p, q) such that [𝛿(p, x),𝛿(q, x)] is
marked, then mark [p, q] (here ‘x’
is an arbitrary input symbol)
– repeat this until no more
markings can be made

s1

a

s5
b

b

s2

s3

a

b

a a

s4

b
b

a

(s2,s1), x=a
(s2,a) = s2
(s1,a) = s2

(s2,s1), x=b
(s2,b) = s4
(s1,b) = s3

(s3,s1), x=a
(s3,a) = s2
(s1,a) = s2

(s3,s1), x=b
(s3,b) = s3
(s1,b) = s3

(s3,s2), x=a
(s3,a) = s2
(s2,a) = s2

(s3,s2), x=b
(s3,b) = s3
(s2,b) = s4

(s4,s1), x=a
(s4,a) = s2
(s1,a) = s2

(s4,s1), x=b
(s4,b) = s5
(s1,b) = s2

(s4,s2), x=a
(s4,a) = s2
(s2,a) = s2

(s4,s2), x=b
(s4,b) = s5
(s2,b) = s4

(s4,s3), x=a
(s4,a) = s2
(s3,a) = s2

(s4,s3), x=b
(s4,b) = s5
(s3,b) = s3

s1 s2 s3 s4 s5

s1

s2

s3

s4 ✘ ✘ ✘

s5 ✘ ✘ ✘ ✘

✘(s4,s1)

✘(s4,s2)
✘(s4,s3)

Compiler Construction 04: Lexical analysis in the real world 26

Myhill-Nerode DFA minimization #2
3. If there are any unmarked pairs

(p, q) such that [𝛿(p, x),𝛿(q, x)] is
marked, then mark [p, q] (here ‘x’
is an arbitrary input symbol)
– before the second iteration, only
(s2,s1),(s3,s1),(s3,s2) are unmarked

s1

a

s5
b

b

s2

s3

a

b

a a

s4

b
b

a

(s2,s1), x=a
(s2,a) = s2
(s1,a) = s2

(s2,s1), x=b
(s2,b) = s4
(s1,b) = s3

(s3,s1), x=a
(s3,a) = s2
(s1,a) = s2

(s3,s1), x=b
(s3,b) = s3
(s1,b) = s3

(s3,s2), x=a
(s3,a) = s2
(s2,a) = s2

(s3,s2), x=b
(s3,b) = s3
(s2,b) = s4

(s4,s1), x=a
(s4,a) = s2
(s1,a) = s2

(s4,s1), x=b
(s4,b) = s5
(s1,b) = s2

(s4,s2), x=a
(s4,a) = s2
(s2,a) = s2

(s4,s2), x=b
(s4,b) = s5
(s2,b) = s4

(s4,s3), x=a
(s4,a) = s2
(s3,a) = s2

(s4,s3), x=b
(s4,b) = s5
(s3,b) = s3

s1 s2 s3 s4 s5

s1

s2 ✘

s3 ✘

s4 ✘ ✘ ✘

s5 ✘ ✘ ✘ ✘

✘(s4,s1)

✘(s4,s2)
✘(s4,s3)

✘(s2,s1)

✘(s3,s2)

Compiler Construction 04: Lexical analysis in the real world 27

Myhill-Nerode DFA minimization
The only unmarked combination now
is (s3,s1). Both have identical subsequent
states for inputs 'a' and 'b' ⇒ no marking

4. The remaining unmarked
combinations of states can be
combined: here, only (s3,s1) → s1,3

s1 s2 s3 s4 s5

s1

s2 ✘

s3 ✘

s4 ✘ ✘ ✘

s5 ✘ ✘ ✘ ✘

s1

a

s5
b

b

s2

s3

a

b

a a

s4

b
b

a

s1,3

a

s5b

s2

a

b

a a

s4

b
b

a

minimized DFA

Compiler Construction 04: Lexical analysis in the real world 28

A real-world scanner generator: lex
• Invented in 1975 for Unix [1]

• today, GNU variant “flex” is still often used
• Takes a regexp-like input file and outputs a DFA implemented in C

• using current flex: ~1700–1800 lines of code
• using 7th edition Unix from 1979: 300 lines…

• Similar tools exist for Java (JFlex), Python (PLY), C# (C# Flex),
Haskell (Alex), Eiffel (gelex), go

LEX

C
compilerlex.yy.c

executable program ("a.out")
implementing the
lexical analyzer

lex.yy.cinput file.l

Compiler Construction 04: Lexical analysis in the real world 29

Lex specifications
• Lex files are suffixed *.l , and contain 3 sections:

• Declaration and function sections can contain regular C
code that makes its way into the final product

• Translation rules are compiled into a function called yylex()

• The output is a C file

<declarations>
%%
<translation rules>
%%
<functions>

A line containing the string

“%%"

separates the sections

Compiler Construction 04: Lexical analysis in the real world 30

Lex declarations
• The declaration section is used to

include C code (header includes,
declarations of global variables or
function prototypes) enclosed in “%{“ and “}%”
and can also be used to add directives “% …” for lex

• The functions section is plain C code (your support function
and the main function)

• The translation rules are regular expressions paired with
basic blocks (actions, written as C code fragments) related
to the pattern

<declarations>
%%
<translation rules>
%%
<functions>

Compiler Construction 04: Lexical analysis in the real world 31

A simple example
• A lex file that detects some regexps

without any attached code:

<declarations>
%%
<translation rules>
%%
<functions>

%%
[\n\t\v\]
if
then
endif
end
[0-9]+
%%

• This is not very useful, but it compiles…

$ lex example0.l
lex.yy.c was generated
$ ls
example0.l lex.yy.c
compile and link lex library
$ cc -o example0 lex.yy.c -ll

Compile with (Unix/Linux/OSX/WSL):example0.l

Compiler Construction 04: Lexical analysis in the real world 32

Some action!
• We can add actions to each of the

regexps:

<declarations>
%%
<translation rules>
%%
<functions>

%%
[\n\t\v\] { /* Do nothing, this is whitespace */ }
if { return IF; }
then { return THEN; }
endif { return ENDIF; }
end { return END; }
[0-9]+ { return INT; }
%%

• We need a bit of infrastructure to make this a useful scanner

example1.l

Inside the curly brackets

you write regular C code!

Compiler Construction 04: Lexical analysis in the real world 33

Add token definitions
• Each token is assigned a number

(starting at 0 if nothing is specified):

<declarations>
%%
<translation rules>
%%
<functions>

%{
#include <stdio.h>
enum { IF, THEN, ENDIF, INT, END };
%}
%%
[\n\t\v\] { /* Do nothing, this is whitespace */ }
if { return IF; }
then { return THEN; }
endif { return ENDIF; }
end { return END; }
[0-9]+ { return INT; }
%%

example1.l

In the declarations section you can

include C code between %{ and }%.

We use enums instead of #defines

to automatically enumerate token

numbers – failsafe!

Our scanner needs to print some

output, so include the header here

Compiler Construction 04: Lexical analysis in the real world 34

Building a complete program
• We need a main function that repeatedly

calls the generated scanner function yylex():

<declarations>
%%
<translation rules>
%%
<functions>

<previous declarations>
%%
<previous regexps and actions>
%%
int main (void) {
 int token = 0;
 while (token != END) {
 token = yylex();
 switch (token) {
 case IF: printf ("Found if\n"); break;
 case THEN: printf ("Found then\n"); break;
 case ENDIF: printf ("Found endif\n"); break;
 case INT: printf ("Found integer %s\n", yytext); break;
 case END: printf ("Hanging up... bye\n"); break;
}}}

example1.l

We call yylex() for each token

The global variable yytext

contains the character string

of the scanned token

Compiler Construction 04: Lexical analysis in the real world 35

Lex can run standalone
• If you need a simple scanner, you can run lex without a

parser
• The example code is online, try it out!

$ lex example1.l
lex.yy.c was generated
$ ls
example1.l lex.yy.c
compile and link lex library
$ cc -o example1 lex.yy.c -ll
now run the scanner
$./example1
if 1 then 42 endif end
Found if
Found integer 1
Found then
Found integer 42
Found endif
Hanging up... bye
$

Type in this line and press return

Output of our scanner

Compiler Construction 04: Lexical analysis in the real world 36

Introducing states and hierarchy
• Lex enables you to define hierarchy using states

• the states denote sub-automata
• e.g. useful for detecting "strings inside double quotes"

• Putting the statement

in the declarations section declares a state named STRING

• You can then specify states in the regexps

These two specify the start and end of a string, respectively
(<INITIAL> is implicitly defined)

%state STRING

<INITIAL>\"
<STRING>\" Double quotes need to

be escaped using a \

Compiler Construction 04: Lexical analysis in the real world 37

Switching between states
• Actions allow to switch

between states

<INITIAL>if { printf ("Found 'if'\n"); }
<INITIAL>end { printf ("Found 'end'\n"); return 0; }
<INITIAL>\" { printf ("Found string: "); BEGIN(STRING); }
<STRING>\" { printf ("\n"); BEGIN(INITIAL); }
<STRING>. { printf ("%c,", yytext[0]); }

A dot matches arbitrary characters,

the action prints the string contents

Matches every second double quote

Lex matches regexps from top
to bottom, so <STRING>\" has
precedence before <STRING>.

"
STRING

"

[other rules]

[any character]

State switching

Compiler Construction 04: Lexical analysis in the real world 38

Greedy automata
• When there are multiple accepting states, the DFA simulation

cannot guess whether to take the first match, or continue in the
hope of finding another

s1 s2 s3

[0-9]

[0-9]

'.'

[0-9]

• Common rule it that the longest match "wins" and the input-
recording buffer rolls back if input leads the DFA astray

123.456789

Compiler Construction 04: Lexical analysis in the real world 39

Summary
• Lexical analysis (scanning) is required to find simple text

patterns
• expressed as a regular language

• Implementable as NFAs and DFAs
• Equivalent representations can be constructed

• We can describe scanners as
• graphs
• tables
• regular expressions (regexps)

• Scanner generators help to turn regexps into C code for a
scanner

Compiler Construction 04: Lexical analysis in the real world 40

References
[1] M. E. Lesk and E. Schmidt:

Lex−A Lexical Analyzer Generator
in UNIX Programmer’s Manual, Seventh Edition, Volume 2B,
Bell Laboratories Murray Hill, NJ, 1975 (the Unix standard scanner generator)

[2] Peter Bumbulis and Donald D. Cowan:
RE2C: a more versatile scanner generator
ACM Letters on Programming Languages and Systems. 2 (1–4), 1993
github.com/skvadrik/re2c/ (this one can handle Unicode input)

[3] John Hopcroft:
An n log n algorithm for minimizing states in a finite automaton
Theory of machines and computations (Proc. Internat. Sympos, Technion, Haifa), 1971,
New York: Academic Press, pp. 189–196, MR 0403320

[4] Keith Cooper and Linda Torczon:
Engineering a Compiler (Second Edition)
ISBN 9780120884780 (hardcover), 9780080916613 (ebook)

[5] Nerode, Anil:
Linear Automaton Transformations
Proceedings of the AMS, 9, JSTOR 2033204, 1958

http://github.com/skvadrik/re2c/

