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Overview
• NFA to DFA conversion  

• Subset construction algorithm 
• DFA state minimization:  

• Hopcroft's algorithm 
• Myhill-Nerode method 

• Using a scanner generator 
• lex syntax and usage 
• lex examples
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What have we achieved so far?
• We know a method to convert a regular expression: 

(all | and)  

into a nondeterministic finite automaton (NFA): 

using the McNaughton, Thompson and Yamada algorithm

a
l

l

a
n

d
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Overhead of constructed NFAs
Let’s look at another example: a(b|c)* 
• Construct the simple NFAs for a, b and c

s0
a

s2
b

s3 s4
c

s5

• Construct the NFA for b|c

s1

s6

s2ε
b

εs3

s4
ε

c

s7

εs5
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Overhead of constructed NFAs
• Now construct the NFA for (b|c)*

s6

s2ε
b

εs3

s4
ε

c

s9

εs5

s7s8

ε

ε

• Looks pretty complex already? We're not even finished…

εε
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Overhead of constructed NFAs
• Finally, construct the NFA for a(b|c)*

s6

s2ε
b

εs3

s4
ε

c

s9

εs5

s7s8

ε

ε

εεs1
ε

s0
a

• This NFA has many more states than a minimal human-built DFA:

s1s0
a

b,c
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From NFA to DFA
• An NFA is not really helpful 

…since its implementation is not obvious 
• We know: every DFA is also an NFA (without ε-transitions) 

• Every NFA can also be converted to an equivalent DFA 
(this can be proven by induction, we just show the construction) 

• The method to do this is called subset construction:

NFA: ( QN, 𝛴, 𝛿N, n0, FN )

DFA: ( QD, 𝛴, 𝛿D, d0, FD )

The alphabet 𝛴 stays the same 

The set of states QN,  
transition function 𝛿N,  
start state qN0 
and set of accepting states FN 
are modified
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Idea of the algorithm: 
Find sets of states that are 
equivalent (due to ε-
transitions) and join these to 
form states of a DFA  

ε-closure: 
contains a set of states S and 
any states in the NFA that can 
be reached from one of the 
states in S along paths that 
contain only ε-transitions 
(these are identical to a state 
in S)

8

Subset construction algorithm
q0 ← ε-closure({n0});  
QD ← q0; 
WorkList ← {q0};  

while (WorkList != ∅) do  
  remove q from WorkList;  
  for each character c∈𝛴 do 
    t ← ε-closure(𝛿N(q,c));  
    𝛿D[q,c] ← t;  
    if t ∉ QD then 
      add t to QD and to WorkList;  
  end;  
end; 
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Subset construction example
q0 ← ε-closure({n0});  
QD ← q0; 
WorkList ← {q0};  

while (WorkList != ∅) do  
  remove q from WorkList;  
  for each character c∈𝛴 do 
    t ← ε-closure(𝛿N(q,c));  
    𝛿D[q,c] ← t;  
    if t ∉ QD then 
      add t to QD and to WorkList;  
  end;  
end; 

n3

n4ε
b

εn5

n6ε
c

n9

εn7

n8n2

ε

ε

εε
n1

ε
n0

a

𝛿N a b c ε
n0 n1 – – –
n1 – – – n2

n2 – – – n3,n9

n3 – – – n4,n6

n4 – n5 – –
n5 – – – n8

n6 – – n7 –
n7 – – – n8

n8 – – – n3,n9

n9 – – – –

q0 ← {n0} 
QD ← {n0}; 
WorkList ← {n0};
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Subset construction example
q0 ← ε-closure({n0});  
QD ← q0; 
WorkList ← {q0};  

while (WorkList != ∅) do  
  remove q from WorkList;  
  for each character c∈𝛴 do 
    t ← ε-closure(𝛿N(q,c));  
    𝛿D[q,c] ← t;  
    if t ∉ QD then 
      add t to QD and to WorkList;  
  end;  
end; 

𝛿N a b c ε
n0 n1 – – –
n1 – – – n2

n2 – – – n3,n9

n3 – – – n4,n6

n4 – n5 – –
n5 – – – n8

n6 – – n7 –
n7 – – – n8

n8 – – – n3,n9

n9 – – – –

while-loop Iteration 1 
WorkList ← {{n0}}; 
q ← n0; 
c ← 'a': 
  t ← ε-closure(𝛿N(q,c)) 
    = ε-closure(𝛿N(n0,’a')) 
    = ε-closure(n1) 
    = {n1,n2,n3,n4,n6,n9} 
  𝛿D[n0,’a']←{n1,n2,n3,n4,n6,n9};  
  QD ←{{n0},{n1,n2,n3,n4,n6,n9}}; 
  WorkList ←       
           {{n1,n2,n3,n4,n6,n9}};

n3

n4ε
b

εn5

n6ε
c

n9

εn7

n8n2

ε

ε

εε
n1

ε
n0

a
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Subset construction example
q0 ← ε-closure({n0});  
QD ← q0; 
WorkList ← {q0};  

while (WorkList != ∅) do  
  remove q from WorkList;  
  for each character c∈𝛴 do 
    t ← ε-closure(𝛿N(q,c));  
    𝛿D[q,c] ← t;  
    if t ∉ QD then 
      add t to QD and to WorkList;  
  end;  
end; 

n3

n4ε
b

εn5

n6ε
c

n9

εn7

n8n2

ε

ε

εε
n1

ε
n0

a

𝛿N a b c ε
n0 n1 – – –
n1 – – – n2

n2 – – – n3,n9

n3 – – – n4,n6

n4 – n5 – –
n5 – – – n8

n6 – – n7 –
n7 – – – n8

n8 – – – n3,n9

n9 – – – –

while-loop Iteration 1: 

WorkList ← {n0}; 
q ← n0; 
c ← 'b','c': 
  t ← {} 
  no change to QD, Worklist

We will skip the iterations 

of the for loop that do not 

change QD from now on
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Subset construction example
q0 ← ε-closure({n0});  
QD ← q0; 
WorkList ← {q0};  

while (WorkList != ∅) do  
  remove q from WorkList;  
  for each character c∈𝛴 do 
    t ← ε-closure(𝛿N(q,c));  
    𝛿D[q,c] ← t;  
    if t ∉ QD then 
      add t to QD and to WorkList;  
  end;  
end; 

n3

n4ε
b

εn5

n6ε
c

n9

εn7

n8n2

ε

ε

εε
n1

ε
n0

a

𝛿N a b c ε
n0 n1 – – –
n1 – – – n2

n2 – – – n3,n9

n3 – – – n4,n6

n4 – n5 – –
n5 – – – n8

n6 – – n7 –
n7 – – – n8

n8 – – – n3,n9

n9 – – – –

while-loop Iteration 2 
WorkList = {{n1,n2,n3,n4,n6,n9}}; 
q ← {n1,n2,n3,n4,n6,n9}; 
c ← 'b': 
  t ← ε-closure(𝛿N(q,c)) 
    = ε-closure(𝛿N(q,’b’)) 
    = ε-closure(n5) 
    = {n5,n8,n9,n3,n4,n6} 
  𝛿D[q,’b’]←{n5,n8,n9,n3,n4,n6};  
  QD ←{{n0},{n1,n2,n3,n4,n6,n9}, 
            {n5,n8,n9,n3,n4,n6}}; 
  WorkList ←       
           {{n5,n8,n9,n3,n4,n6}};
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Subset construction example
q0 ← ε-closure({n0});  
QD ← q0; 
WorkList ← {q0};  

while (WorkList != ∅) do  
  remove q from WorkList;  
  for each character c∈𝛴 do 
    t ← ε-closure(𝛿N(q,c));  
    𝛿D[q,c] ← t;  
    if t ∉ QD then 
      add t to QD and to WorkList;  
  end;  
end; 

n3

n4ε
b

εn5

n6ε
c

n9

εn7

n8n2

ε

ε

εε
n1

ε
n0

a

𝛿N a b c ε
n0 n1 – – –
n1 – – – n2

n2 – – – n3,n9

n3 – – – n4,n6

n4 – n5 – –
n5 – – – n8

n6 – – n7 –
n7 – – – n8

n8 – – – n3,n9

n9 – – – –

while-loop Iteration 2 
WorkList = {{n1,n2,n3,n4,n6,n9}}; 
q ← {n1,n2,n3,n4,n6,n9}; 
c ← 'c': 
  t ← ε-closure(𝛿N(q,c)) 
    = ε-closure(𝛿N(q,’c’)) 
    = ε-closure(n7) 
    = {n7,n8,n9,n3,n4,n6} 
  𝛿D[q,’c’]←{n7,n8,n9,n3,n4,n6};  
  QD ←{{n0},{n1,n2,n3,n4,n6,n9}, 
            {n5,n8,n9,n3,n4,n6}, 
            {n7,n8,n9,n3,n4,n6}}; 
  WorkList ←       
           {{n7,n8,n9,n3,n4,n6}};
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Subset construction example
q0 ← ε-closure({n0});  
QD ← q0; 
WorkList ← {q0};  

while (WorkList != ∅) do  
  remove q from WorkList;  
  for each character c∈𝛴 do 
    t ← ε-closure(𝛿N(q,c));  
    𝛿D[q,c] ← t;  
    if t ∉ QD then 
      add t to QD and to WorkList;  
  end;  
end; 

n3

n4ε
b

εn5

n6ε
c

n9

εn7

n8n2

ε

ε

εε
n1

ε
n0

a

𝛿N a b c ε
n0 n1 – – –
n1 – – – n2

n2 – – – n3,n9

n3 – – – n4,n6

n4 – n5 – –
n5 – – – n8

n6 – – n7 –
n7 – – – n8

n8 – – – n3,n9

n9 – – – –

while-loop Iteration 3 
WorkList = {{n7,n8,n9,n3,n4,n6}}; 
q ← {n7,n8,n9,n3,n4,n6}; 
c ← 'b','c': 
  t ← ε-closure(𝛿N(q,c)) 
    = ε-closure(𝛿N(q,’c’)) 
    = ε-closure(n5,n7) 
// we ran around the graph once!

No new states are added 

to QD in this and the  

following iteration!
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Subset construction example

n3

n4ε
b

εn5

n6ε
c

n9

εn7

n8n2

ε

ε

εε
n1

ε
n0

a

Set  
name

DFA 
states

NFA 
states ε-closure(𝛿N(q,*)) 

a b c

q0 d0 n0
{ n1, n2, n3, 

       n4, n6, n9 } – –

q1 d1
{ n1, n2, n3, 

       n4, n6, n9 } – { n5, n8, n9, 
       n3, n4, n6 }

{ n7, n8, n9, 
       n3, n4, n6 }

q2 d2
{ n5, n8, n9, 

       n3, n4, n6 } – q2 q3

q3 d3
{ n7, n8, n9, 

       n3, n4, n6 } – q2 q3

𝛿N a b c ε
n0 n1 – – –
n1 – – – n2

n2 – – – n3,n9

n3 – – – n4,n6

n4 – n5 – –
n5 – – – n8

n6 – – n7 –
n7 – – – n8

n8 – – – n3,n9

n9 – – – –

d1d0
a

d2

d3

b

c
bc

b

c
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Subset construction: result

n3

n4ε
b

εn5

n6
ε

c

n9

εn7

n8n2

ε

ε

εεn1
ε

n0
a

Our NFA for a(b|c)*:

d1d0
a

d2

d3

b

c

bc

b

c s1s0
a

b,c

minimal DFAconstructed DFA

subset 
construction 

algorithm

still bigger than
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Minimization of DFAs

d1d0
a

d2

d3

b

c

bc

b

c

s1s0
a

b,c

• DFAs resulting from subset construction can have a large set of 
states  
• This does not increase the time needed to scan a string 
• It does increase the size of the recognizer in memory 
• On modern computers, the speed of memory accesses often 

governs the speed of computation 
• A smaller recognizer may fit better into the processor’s cache 

memory
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Minimization of DFAs

d1d0
a

d2

d3

b

c

bc

b

c

s1s0
a

b,c

• We need a technique to detect when two states are equivalent 
• i.e. when they produce the same behavior on any input string  

• Hopcroft’s algorithm [3] 
• finds equivalence classes of DFA states based on their 

behavior 
• from equivalence classes we can construct a minimal DFA  

• We just give an intuitive overview, for details see [4], ch. 2.4.4

(states renumbered)
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Hopcroft’s algorithm [3]

d1d0
a

d2

d3

b

c

bc

b

c

s1s0
a

b,c

• Idea: 
• Two DFA states are equivalent if it's impossible to tell from 

accepting/rejecting behavior alone which of them the DFA is in 
• For each language, the minimum DFA accepting that language 

has no equivalent states 
• Hopcroft's algorithm works by computing the equivalence classes of 

the states of the unminimized DFA 
• The nub of this computation is an iteration where, at each step, we 

have a partition of the states that is coarser than equivalence (i.e., 
equivalent states always belong to the same set of the partition)



Compiler Construction 04: Lexical analysis in the real world 20

Hopcroft’s algorithm

d1d0
a

d2

d3

b

c

bc

b

c

1. The initial partition is accepting states and rejecting states. 
Clearly these are not equivalent
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Hopcroft’s algorithm

d1d0
a

d2

d3

b

c

bc

b

c

2. Suppose that we have states q1 and q2 in the same set of the 
current partition: 
 
If there exists a symbol s such that 𝛿(q1, s) and 𝛿(q2, s) are in 
different sets of the partition, then these states are not equivalent 
 
⇒ split set of states into subsets of equivalent states
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Hopcroft’s algorithm

d1d0
a

d2

d3

b

c

bc

b

c

3. When Step 2 is no longer possible, we have arrived at the true 
equivalence classes 

For our simple example, step 2 was never applicable, so the two 
partitions define the states of the minimized DFA

s1s0
a

b,c

s0

s1
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Hopcroft’s algorithm: example

s0
f

s3

s5

e

i

s3s0
f

• DFA to detect ( fee | fie ) 
• s3 and s5 obviously (?) serve the same purpose

s1

s2

s4

e

e

s1
i,e

s2
e

Step Current 
Partition

Examines
Set Char Action

0 {{s3,s5},{s0,s1,s2,s4}} – – –
1 {{s3,s5},{s0,s1,s2,s4}} {s3, s5} all none
2 {{s3,s5},{s0,s1,s2,s4}} {s0,s1,s2,s4} e split{s2,s4}
3 {{s3,s5},{s0,s1},{s2,s4}} {s0,s1} f split{s1}
4 {{s3,s5},{s0},{s1},{s2,s4}} all all none

(states renumbered)
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More intuitive DFA minimization
Myhill-Nerode Theorem [5] 
("Table Filling Method") 
• Another algorithm to minimize DFAs  

(with a bit higher computational  
complexity than Hopcroft’s) 
…but maybe easier to understand? 

1. Draw a table for all pairs of  
DFA states, leave the half above  
(or below) the diagonal empty, 
including the diagonal itself 

2. Mark all pairs (p, q) of states  
where p∈F and q∉F or vice versa 
(here: all pairs where p or q = s5) 
⇒ similar to Hopcroft's first partitioning

s1 s2 s3 s4 s5

s1

s2

s3

s4

s5 ✘ ✘ ✘ ✘

s1

a

s5
b

b

s2

s3

a

b

a a

s4

b
b

a
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Myhill-Nerode DFA minimization #1
3. If there are any unmarked pairs  

(p, q) such that [𝛿(p, x),𝛿(q, x)] is 
marked, then mark [p, q] (here ‘x’ 
is an arbitrary input symbol) 
– repeat this until no more 
markings can be made

s1

a

s5
b

b

s2

s3

a

b

a a

s4

b
b

a

(s2,s1), x=a 
(s2,a) = s2 
(s1,a) = s2

(s2,s1), x=b 
(s2,b) = s4 
(s1,b) = s3

(s3,s1), x=a 
(s3,a) = s2 
(s1,a) = s2

(s3,s1), x=b 
(s3,b) = s3 
(s1,b) = s3

(s3,s2), x=a 
(s3,a) = s2 
(s2,a) = s2

(s3,s2), x=b 
(s3,b) = s3 
(s2,b) = s4

(s4,s1), x=a 
(s4,a) = s2 
(s1,a) = s2

(s4,s1), x=b 
(s4,b) = s5 
(s1,b) = s2

(s4,s2), x=a 
(s4,a) = s2 
(s2,a) = s2

(s4,s2), x=b 
(s4,b) = s5 
(s2,b) = s4

(s4,s3), x=a 
(s4,a) = s2 
(s3,a) = s2

(s4,s3), x=b 
(s4,b) = s5 
(s3,b) = s3

s1 s2 s3 s4 s5

s1

s2

s3

s4 ✘ ✘ ✘

s5 ✘ ✘ ✘ ✘

✘(s4,s1)

✘(s4,s2)
✘(s4,s3)
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Myhill-Nerode DFA minimization #2
3. If there are any unmarked pairs  

(p, q) such that [𝛿(p, x),𝛿(q, x)] is 
marked, then mark [p, q] (here ‘x’ 
is an arbitrary input symbol) 
– before the second iteration, only  
(s2,s1),(s3,s1),(s3,s2) are unmarked

s1

a

s5
b

b

s2

s3

a

b

a a

s4

b
b

a

(s2,s1), x=a 
(s2,a) = s2 
(s1,a) = s2

(s2,s1), x=b 
(s2,b) = s4 
(s1,b) = s3

(s3,s1), x=a 
(s3,a) = s2 
(s1,a) = s2

(s3,s1), x=b 
(s3,b) = s3 
(s1,b) = s3

(s3,s2), x=a 
(s3,a) = s2 
(s2,a) = s2

(s3,s2), x=b 
(s3,b) = s3 
(s2,b) = s4

(s4,s1), x=a 
(s4,a) = s2 
(s1,a) = s2

(s4,s1), x=b 
(s4,b) = s5 
(s1,b) = s2

(s4,s2), x=a 
(s4,a) = s2 
(s2,a) = s2

(s4,s2), x=b 
(s4,b) = s5 
(s2,b) = s4

(s4,s3), x=a 
(s4,a) = s2 
(s3,a) = s2

(s4,s3), x=b 
(s4,b) = s5 
(s3,b) = s3

s1 s2 s3 s4 s5

s1

s2 ✘

s3 ✘

s4 ✘ ✘ ✘

s5 ✘ ✘ ✘ ✘

✘(s4,s1)

✘(s4,s2)
✘(s4,s3)

✘(s2,s1)

✘(s3,s2)
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Myhill-Nerode DFA minimization
The only unmarked combination now 
is (s3,s1). Both have identical subsequent  
states for inputs 'a' and 'b' ⇒ no marking   

4. The remaining unmarked 
combinations of states can be 
combined: here, only (s3,s1) → s1,3

s1 s2 s3 s4 s5

s1

s2 ✘

s3 ✘

s4 ✘ ✘ ✘

s5 ✘ ✘ ✘ ✘

s1

a

s5
b

b

s2

s3

a

b

a a

s4

b
b

a

s1,3

a

s5b

s2

a

b

a a

s4

b
b

a

minimized DFA
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A real-world scanner generator: lex
• Invented in 1975 for Unix [1] 

• today, GNU variant “flex” is still often used 
• Takes a regexp-like input file and outputs a DFA implemented in C 

• using current flex: ~1700–1800 lines of code 
• using 7th edition Unix from 1979: 300 lines… 

• Similar tools exist for Java (JFlex), Python (PLY), C# (C# Flex), 
Haskell (Alex), Eiffel (gelex), go

LEX

C 
compilerlex.yy.c

executable program ("a.out") 
implementing the  
lexical analyzer

lex.yy.cinput file.l
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Lex specifications
• Lex files are suffixed *.l , and contain 3 sections:  

 
 
 
 

• Declaration and function sections can contain regular C 
code that makes its way into the final product  

• Translation rules are compiled into a function called yylex()  

• The output is a C file 

<declarations> 
%% 
<translation rules>  
%% 
<functions>

A line containing the string  

“%%" 

separates the sections
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Lex declarations
• The declaration section is used to 

include C code (header includes,  
declarations of global variables or  
function prototypes) enclosed in “%{“ and “}%” 
and can also be used to add directives “% …” for lex 

• The functions section is plain C code (your support function 
and the main function) 

• The translation rules are regular expressions paired with 
basic blocks (actions, written as C code fragments) related 
to the pattern 

<declarations> 
%% 
<translation rules>  
%% 
<functions>
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A simple example
• A lex file that detects some regexps 

without any attached code:

<declarations> 
%% 
<translation rules>  
%% 
<functions>

%% 
[\n\t\v\ ] 
if 
then  
endif  
end  
[0-9]+  
%%

• This is not very useful, but it compiles…

$ lex example0.l 
# lex.yy.c was generated 
$ ls 
example0.l   lex.yy.c 
# compile and link lex library 
$ cc -o example0 lex.yy.c -ll

Compile with (Unix/Linux/OSX/WSL):example0.l
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Some action!
• We can add actions to each of the 

regexps:

<declarations> 
%% 
<translation rules>  
%% 
<functions>

%% 
[\n\t\v\ ]   { /* Do nothing, this is whitespace */ }  
if           { return IF; } 
then         { return THEN; }  
endif        { return ENDIF; } 
end          { return END; } 
[0-9]+       { return INT; } 
%%

• We need a bit of infrastructure to make this a useful scanner

example1.l

Inside the curly brackets 

you write regular C code!
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Add token definitions
• Each token is assigned a number 

(starting at 0 if nothing is specified):

<declarations> 
%% 
<translation rules>  
%% 
<functions>

%{ 
#include <stdio.h> 
enum { IF, THEN, ENDIF, INT, END };  
%} 
%% 
[\n\t\v\ ]   { /* Do nothing, this is whitespace */ }  
if           { return IF; } 
then         { return THEN; }  
endif        { return ENDIF; } 
end          { return END; } 
[0-9]+       { return INT; } 
%%

example1.l

In the declarations section you can 

include C code between %{ and }%. 

We use enums instead of #defines 

to automatically enumerate token 

numbers – failsafe!

Our scanner needs to print some  

output, so include the header here
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Building a complete program
• We need a main function that repeatedly 

calls the generated scanner function yylex():

<declarations> 
%% 
<translation rules>  
%% 
<functions>

<previous declarations> 
%% 
<previous regexps and actions> 
%% 
int main (void) {  
  int token = 0; 
  while (token != END) {  
    token = yylex();  
    switch (token) {  
      case IF: printf ("Found if\n"); break; 
      case THEN: printf ("Found then\n"); break; 
      case ENDIF: printf ("Found endif\n"); break; 
      case INT: printf ("Found integer %s\n", yytext); break; 
      case END: printf ("Hanging up... bye\n"); break;  
}}}

example1.l

We call yylex() for each token

The global variable yytext 

contains the character string 

of the scanned token
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Lex can run standalone
• If you need a simple scanner, you can run lex without a 

parser 
• The example code is online, try it out!

$ lex example1.l 
# lex.yy.c was generated 
$ ls 
example1.l   lex.yy.c 
# compile and link lex library 
$ cc -o example1 lex.yy.c -ll 
# now run the scanner 
$ ./example1 
if 1 then 42 endif end 
Found if 
Found integer 1 
Found then 
Found integer 42 
Found endif 
Hanging up... bye 
$

Type in this line and press return

Output of our scanner
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Introducing states and hierarchy
• Lex enables you to define hierarchy using states 

• the states denote sub-automata 
• e.g. useful for detecting "strings inside double quotes" 

• Putting the statement 
 
 
in the declarations section declares a state named STRING 

• You can then specify states in the regexps  
 
 
 
These two specify the start and end of a string, respectively 
(<INITIAL> is implicitly defined)

%state STRING

<INITIAL>\" 
<STRING>\" Double quotes need to 

be escaped using a \
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Switching between states
• Actions allow to switch  

between states

<INITIAL>if  { printf ( "Found 'if'\n" ); }  
<INITIAL>end { printf ( "Found 'end'\n" ); return 0; }  
<INITIAL>\"  { printf ( "Found string: " ); BEGIN(STRING); }  
<STRING>\"   { printf ( "\n" ); BEGIN(INITIAL); }  
<STRING>.    { printf ( "%c,", yytext[0] ); } 

A dot matches arbitrary characters, 

the action prints the string contents

Matches every second double quote

Lex matches regexps from top  
to bottom, so <STRING>\" has 
precedence before <STRING>.

"
STRING

"

[other rules]

[any character]

State switching
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Greedy automata
• When there are multiple accepting states, the DFA simulation 

cannot guess whether to take the first match, or continue in the 
hope of finding another 

s1 s2 s3

[0-9]

[0-9]

'.'

[0-9]

• Common rule it that the longest match "wins" and the input-
recording buffer rolls back if input leads the DFA astray 

123.456789
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Summary
• Lexical analysis (scanning) is required to find simple text 

patterns 
• expressed as a regular language 

• Implementable as NFAs and DFAs 
• Equivalent representations can be constructed 

• We can describe scanners as 
• graphs 
• tables 
• regular expressions (regexps) 

• Scanner generators help to turn regexps into C code for a 
scanner
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