NTNU | Norwegian University of Science and Technology

Compiler Construction

Lecture 3: Scanner Generators

Michael Engel

Overview

- DFAs and regular expressions
- Nondeterministic finite automata (NFA)
- From regular expressions to NFAs

The DFA, again

This DFA from the previous lecture...

...was able to tell you whether a character sequence is a valid decimal number (integer + optional fractional part) or not

• Start with the initial state s_1 , then follow the edges

Lexical analysis

More about lexemes

Science and Technology

Lexical

analysis

DFA formal notation

Formal definition: DFA = 5-tuple (Q, Σ , δ , q_0 , F)

Q is a finite set called the **states**,

Σ is a finite set called the *alphabet*,

δ: Q × Σ → Q is the *transition function*,

 $q_0 \in Q$ is the *start state*, and

 $F \subseteq Q$ is the set of *accepting states*

$$Q = \{s_1, s_2, s_3\}$$

$$\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, .\}$$

$$q_0 = s_1$$

$$F = \{s_2, s_3\}$$

$$\delta =$$

$$\delta \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad .$$

$$s_1 \quad s_2 \quad s_1$$

$$s_3 \quad s_3 \quad s_3$$

Norwegian University of Science and Technology

Alphabets in DFAs

- *Alphabet*: finite set of symbols (characters)
 - {0,1} is the alphabet of binary strings
 - [A-Za-z0-9] is the alphabet of alphanumeric strings
- A *language* is a set of valid strings (sequences of symbols) over an alphabet
 - L = {000, 010, 100, 110} is the language of "even, positive binary numbers less than 8"
- A finite automaton *accepts a language*
 - it decides whether or not a given string belongs to the language described by it

Operations on languages

- **Union** of languages: $s \in L_1 \cup L_2$ if $s \in L_1$ or $s \in L_2$
- **Concatenation**: $L_1L_2 = \{ s_1s_2 \mid s_1 \in L_1 \text{ and } s_2 \in L_2 \}$
- Concatenation of a language with itself: "multiplication" (*Cartesian product*):
 LLL = { s₁s₂s₃ | s₁ ∈ L and s₂ ∈ L and s₃ ∈ L }
- Closures
 - $L^* = \bigcup_{i=0,1,2,...} L^i$: "Kleene closure": **0** or more strings from L
 - $L^+ = \bigcup_{i=1,2,...} L^i$: "Positive closure": **1** or more strings from L

Operations on languages: examples

- **Union** of languages: $s \in L_1 \cup L_2$ if $s \in L_1$ or $s \in L_2$
 - $L_1 = \{000, 010, 100, 110\}, L_2 = \{001, 011, 101, 111\}$ $\Rightarrow L_1 \cup L_2 = \{000, 001, 010, 011, 100, 101, 110, 111\}$
- **Concatenation**: $L_1L_2 = \{ s_1s_2 \mid s_1 \in L_1 \text{ and } s_2 \in L_2 \}$

•
$$L_1 = \{\text{"ab", "c"}\}, L_2 = \{\text{"x"}\}$$

 $\Rightarrow L_1 L_2 = \{\text{"abx", "cx"}\}$

 Concatenation of a language with itself: "multiplication" (*Cartesian product*):

 $LLL = \{ s_1s_2s_3 \mid s_1 \in L \text{ and } s_2 \in L \text{ and } s_3 \in L \}$

Operations on languages: examples

Closures

• $L^* = \bigcup_{i=0,1,2,...} L^i$: "Kleene closure": **0** or more strings from L

0 strings = empty word ε ("epsilon")

{"ab","c"}* = { ε, "ab", "c", "abab", "abc", "cab", "cc", "ababab", "ababc", "abcab", "abcc", "cabab", "cabc", "ccab", "ccc", ...}

• $L^+ = \bigcup_{i=1,2,...} L^i$: "Positive closure": **1** or more strings from L

{"a", "b", "c"}⁺ = { "a", "b", "c", "aa", "ab", "ac", "ba", "bb", "bc", "ca", "cb", "cc", "aaa", "aab", ...}

• $L^* = {\varepsilon} \cup L^+$

Norwegian University of

Science and Technology

Regular expressions ("regexp")

Given: *Empty string* ϵ (epsilon), Alphabet Σ (sigma)

Recursive definition of regular expressions:

<u>Basis</u>

- ε is a regular expression, $L(\varepsilon)$ is the language with only ε in it
- If a is in Σ, then a is also a regular expression, L(a) is the language with only a in it

Induction

- If r_1 and r_2 are regexps $\Rightarrow r_1 | r_2$ is regexp for $L(r_1) \cup L(r_2)$ (selection)
- If r_1 and r_2 are regexps \Rightarrow r_1r_2 is regexp for L(r_1)L(r_2) (*concatenation*)
- If r is a regular expression \Rightarrow r* denotes L(r)* (*Kleene closure*)
- (r) is a regular expression denoting L(r)
 (We can add parentheses to group parts of the regexp)

DFAs and regular expressions

Again, the DFA which accepts decimal numbers:

This DFA corresponds to the following regular expression:

Lexical

analysis

Three ways to describe a language

- Graphs
 - provide a quick overview of the structure
- Tables
 - help writing programs to implement the DFA
- Regular expressions
 - help generating accepting automata automatically

Regular languages

- All three representations are equivalent
 - We have not shown a formal way to transform one representations into the other and did not prove this
 - Maybe you can still see it?
- The *family* of languages that can be recognized by automata/regexps is called *regular languages*
- They are an important and powerful class of languages
 - However, they do not cover all use cases
 - e.g., *recursion* cannot be specified using regexps
 - more on this later...

Combining automata

Wanted: language that includes the words {"all", "and"}

• Simple DFAs to detect each of the words separately:

We omit the numbering of states if the specific number is not relevant for an example

Combining automata

Wanted: language that includes the words {"all", "and"}

- Can we build an automaton to detect **both** words?
 - How about combining both DFAs?
 - Simply join the starting and accepting states of both:

Now we have a (small) problem

"Walking" the DFA does not work any more

- Starting at s_0 and reading 'a', the next state can be s_1 or s_2
- If we read an 'a', chose s_1 and then read an 'n' \Rightarrow wrong path
- We would need to go to states s_1 and s_2 at the same time
 - Otherwise, we would need some way to backtrack to s_0

An obvious solution

Combine states states s_1 and s_2 \Rightarrow postpone the decision which path to choose

- Walking the DFA works again!
- Need to determine which parts both words have in common *(can that be generalized?)*

Non-Deterministic Finite Automata

Idea:

admit multiple transitions from one state on the same character

- Alternative: allow transitions on the empty input ε (i.e., without reading a character)
- Both notations are equivalent:

Norwegian University of Science and Technology

NFAs and regular expressions

NFAs can easily be constructed from regular expressions

- For our example, the regexp would be: { all | and } (equivalent deterministic variant: a{ll | nd})
- The two sub-automata can easily be identified in the graph:

Constructing a scanner

What are the parts of a regexp again?

- 1. a (single) character: stands for itself (or ε that's not shown)
- 2. concatenation: R_1R_2
- 3. selection: $R_1 | R_2$
- 4. grouping: (R₁)
- 5. Kleene closure: R_1^*
- We can construct an NFA for each of these
 ...as long as R₁ and R₂ are regexps (⇒ recursive definition)
 - Note: each DFA is also an NFA (with zero ε-transitions)
 - Formal: the set of DFAs is a subset of the set of NFAs

Constructing a scanner: characters

Single characters (and epsilons) in a regexp become transitions between two states in an NFA

• For our example { all | and }, the transitions are thus:

Now we can combine these simple regexps...

Constructing a scanner: concatenation

Where R_1R_2 are concatenated, join the accepting state of R_1 with the start state of R_2

• In our example:

Norwegian University of Science and Technology

Constructing a scanner: selection

Introduce new start and accept states, attach them using ε-transitions (so as not to change the language):

• In our example:

Norwegian University of Science and Technology

Compiler Construction 03: Scanner generators

 R_1

Constructing a scanner: grouping

Parentheses just delimit which parts of an expression to treat as a (sub-)automaton

 they appear in the form of its structure, but not as nodes or edges

In our example, the automaton for (all | and) is identical to the one for ((a) (l) (l) | (a) (n) (d))

Constructing a scanner: Kleene clos.

 R_1^* means zero or more concatenations of R_1

- Introduce new start and accept states and add ϵ -transitions to
 - Accept a single walk through R1
 - Loop back to the start of R1 to allow any number of repetitions
 - Bypass R₁ entirely (zero walkthroughs, i.e. R₁ does not occur)

Norwegian University of Science and Technology

What have we achieved so far?

- We have shown (by construction) that we can construct an NFA for <u>any</u> regular expression
 - independent of the contents of that expression
- This is called the *McNaughton-Thompson-Yamada algorithm* [1][2]
- But what about the positive closure, R_1^+ ?
 - It can be made from concatenation and Kleene closure, try it yourself
 - It's handy to have as notation, but not necessary to prove what we wanted here

Some wise words and references

Jamie> Some people, when confronted with a problem, think "I know, Jamie> I'll use regular expressions." Now they have two problems.

Jamie Zawinksi, early Netscape engineer in a 1997 Usenet article <<u>33F0C496.370D7C45@netscape.com</u>>

[1] R. McNaughton, H. Yamada (Mar 1960):
 "Regular Expressions and State Graphs for Automata".
 IEEE Trans. on Electronic Computers. 9 (1): 39–47. doi:10.1109/TEC.1960.5221603

[2] Ken Thompson (Jun 1968):
 "Programming Techniques: Regular expression search algorithm".
 Communications of the ACM. 11 (6): 419–422. doi:10.1145/363347.363387

