
Compiler Construction
Lecture 3: Scanner Generators 

Michael Engel

Includes material by 

Jan Christian Meyer



Compiler Construction 03: Scanner generators 2

Overview
• DFAs and regular expressions 
• Nondeterministic finite automata (NFA) 
• From regular expressions to NFAs



Compiler Construction 03: Scanner generators 3

The DFA, again

s1 s2 s3

This DFA from the previous lecture…

[0-9]

[0-9]

'.'

[0-9]

Lexical
analysis

…was able to tell you whether a character sequence is a  
valid decimal number (integer + optional fractional part) or not 
• Start with the initial state s1, then follow the edges



Compiler Construction 03: Scanner generators 4

More about lexemes
Common patterns in lexemes 
• Sequences of specific parts 

• chains of states in the graph 
 

• Repetition 
• loops in the graph 

• Alternatives 
• different paths in the graph

Lexical
analysis

• Lexeme 
• Lexemes are units of 

lexical analysis, words 
• Like dictionary entries

sn
'a'

sn+1
'b’

sn+2

sn

'q'

Sequence “ab”

Any number  
(>=0) of 'q’s

sn

sn+1

sn+2

'a'

'b’

Either  
'a' or 'b'



Compiler Construction 03: Scanner generators 5

DFA formal notation
Formal definition: DFA = 5-tuple (Q, Σ, δ, q0, F) 
Q is a finite set called the states, 
Σ is a finite set called the alphabet, 
δ: Q×Σ → Q is the transition function, 
q0 ∈ Q is the start state, and 
F ⊆ Q is the set of accepting states

s1 s2 s3

[0-9]

[0-9]

'.'

[0-9]

Q = {s1, s2, s3} 
Σ = {0,1,2,3,4,5,6,7,8,9,.} 
q0 = s1 
F = {s2, s3} 
δ = 
 
 

Lexical
analysis

s2

δ 0 1 2 3 4 5 6 7 8 9 .
s1 s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 er
s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 s3

s3 s3 s3 s3 s3 s3 s3 s3 s3 s3 s3 er



Compiler Construction 03: Scanner generators 6

Alphabets in DFAs
• Alphabet: finite set of symbols (characters) 

• {0,1} is the alphabet of binary strings 
• [A-Za-z0-9] is the alphabet of alphanumeric strings 

• A language is a set of valid strings (sequences of symbols) 
over an alphabet 
• L = {000, 010, 100, 110} is the language of  

“even, positive binary numbers less than 8” 

• A finite automaton accepts a language 
• it decides whether or not a given string belongs to the 

language described by it



Compiler Construction 03: Scanner generators 7

Operations on languages
• Union of languages: s ∈ L1 ∪ L2 if s ∈ L1 or s ∈ L2 

• Concatenation: L1L2 = { s1s2 | s1 ∈ L1 and s2 ∈ L2 } 

• Concatenation of a language with itself: “multiplication” 
(Cartesian product):  
LLL = { s1s2s3 | s1 ∈ L and s2 ∈ L and s3 ∈ L } 

• Closures 
• L* = ∪i=0,1,2,… Li : “Kleene closure”: 0 or more strings from L 

• L+ = ∪i=1,2,… Li : “Positive closure”: 1 or more strings from L



Compiler Construction 03: Scanner generators 8

Operations on languages: examples
• Union of languages: s ∈ L1 ∪ L2 if s ∈ L1 or s ∈ L2 

• L1 = {000, 010, 100, 110}, L2 = {001, 011, 101, 111} 
⇒ L1 ∪ L2 = {000, 001, 010, 011, 100, 101, 110, 111} 

• Concatenation: L1L2 = { s1s2 | s1 ∈ L1 and s2 ∈ L2 } 
• L1 = {“ab”, “c”}, L2 = {“x”} 
⇒ L1L2 = {“abx”, “cx”} 

• Concatenation of a language with itself: “multiplication” 
(Cartesian product):  
LLL = { s1s2s3 | s1 ∈ L and s2 ∈ L and s3 ∈ L } 
• L = {“a”, “b”} 
⇒ LLL =  
        { “aaa”, “aab”, “aba”, “abb”, “baa”, “bab”, “bba”, “bbb"  }



Compiler Construction 03: Scanner generators 9

Operations on languages: examples
• Closures 

• L* = ∪i=0,1,2,… Li : “Kleene closure”: 0 or more strings from L 
 
 
 
{"ab","c"}* = { ε, "ab", "c", "abab", "abc", "cab", "cc", "ababab", 
"ababc", "abcab", "abcc", "cabab", "cabc", "ccab", "ccc", ...} 

• L+ = ∪i=1,2,… Li : “Positive closure”: 1 or more strings from L 
 
{"a", "b", “c”}+ = { "a", "b", "c", "aa", "ab", "ac", "ba", "bb", "bc", 
"ca", "cb", "cc", "aaa", "aab", …} 

• L*  = {ε} ∪ L+ 

0 strings = empty word ε (“epsilon”)



Compiler Construction 03: Scanner generators 10

Regular expressions (“regexp”)
Given: Empty string ε (epsilon),  Alphabet 𝝨 (sigma) 
Recursive definition of regular expressions: 
Basis  
• ε is a regular expression, L(ε) is the language with only ε in it  
• If a is in Σ, then a is also a regular expression, L(a) is the language 

with only a in it  
Induction  
• If r1 and r2 are regexps ⇒ r1 | r2 is regexp for L(r1) ∪ L(r2) (selection)  

• If r1 and r2 are regexps ⇒ r1r2 is regexp for L(r1)L(r2) (concatenation) 

• If r is a regular expression ⇒ r* denotes L(r)* (Kleene closure)  

• (r) is a regular expression denoting L(r)  
(We can add parentheses to group parts of the regexp) 



Compiler Construction 03: Scanner generators 11

DFAs and regular expressions

s1 s2 s3

Again, the DFA which accepts decimal numbers:

[0-9]

[0-9]

'.'

[0-9]

Lexical
analysis

This DFA corresponds to the following regular expression: 
 
[0-9] [0-9]* ( . [0-9]* )? Abbreviated notation used for regexps: 

.        – any character ∈ 𝝨 
[abc] – either 'a' or 'b' or 'c' 
[a-d]  – characters from 'a' to 'd' inclusive 
?       – either zero or one repetition

optional, since 
state s2 accepts

This dot “.” here stands for the  
character “.” (ASCII 0x2E),  

not for any arbitrary character!



Compiler Construction 03: Scanner generators 12

Three ways to describe a language
• Graphs 

• provide a quick overview of the structure 

• Tables 
• help writing programs to implement the DFA 

• Regular expressions 
• help generating accepting automata automatically



Compiler Construction 03: Scanner generators 13

Regular languages
• All three representations are equivalent 

• We have not shown a formal way to transform one 
representations into the other and did not prove this 

• Maybe you can still see it? 

• The family of languages that can be recognized by 
automata/regexps is called regular languages 

• They are an important and powerful class of languages 
• However, they do not cover all use cases 
• e.g., recursion cannot be specified using regexps 
• more on this later…



Compiler Construction 03: Scanner generators 14

Combining automata
Wanted: language that includes the words {“all”, “and”} 

• Simple DFAs to detect each of the words separately:

a l l

a n d

We omit the numbering of 
states if the specific number 
is not relevant for an example



Compiler Construction 03: Scanner generators 15

Combining automata
Wanted: language that includes the words {“all”, “and”} 
• Can we build an automaton to detect both words? 

• How about combining both DFAs? 
• Simply join the starting and accepting states of both:

a
l

l

a
n

d



Compiler Construction 03: Scanner generators 16

Now we have a (small) problem
“Walking” the DFA does not work any more 
• Starting at s0 and reading 'a', the next state can be s1 or s2 

• If we read an 'a', chose s1 and then read an ’n' ⇒ wrong path 

• We would need to go to states s1 and s2 at the same time 
• Otherwise, we would need some way to backtrack to s0

s0

s1a
l

l

s2
a

n
d



Compiler Construction 03: Scanner generators 17

An obvious solution
Combine states states s1 and s2  
⇒ postpone the decision which path to choose 

• Walking the DFA works again! 
• Need to determine which parts both words have in common 

(can that be generalized?)

a

l l

n d



Compiler Construction 03: Scanner generators 18

Non-Deterministic Finite Automata
Idea:  
admit multiple transitions from one state on the same character 

• Alternative: allow transitions on the empty input ε 
(i.e., without reading a character) 

• Both notations are equivalent:

a

a

l
l

n
d

ε

ε

l l

d

a

a n
ε

ε



Compiler Construction 03: Scanner generators 19

NFAs and regular expressions
NFAs can easily be constructed from regular expressions 
• For our example, the regexp would be: { all | and } 

(equivalent deterministic variant: a{ll | nd}) 

• The two sub-automata can easily be identified in the graph:

ε

ε

l l

d

a

a n
ε

ε

sub-automaton (“machine”) 1

sub-automaton (“machine”) 2



Compiler Construction 03: Scanner generators 20

Constructing a scanner
What are the parts of a regexp again? 

1. a (single) character:     stands for itself (or ε – that’s not shown) 
2. concatenation:              R1R2 
3. selection:                      R1 | R2 
4. grouping:                      (R1) 
5. Kleene closure:            R1* 

• We can construct an NFA for each of these  
…as long as R1 and R2 are regexps (⇒ recursive definition) 

• Note: each DFA is also an NFA (with zero ε-transitions) 
• Formal: the set of DFAs is a subset of the set of NFAs 



Compiler Construction 03: Scanner generators 21

Constructing a scanner: characters
Single characters (and epsilons) in a regexp become 
transitions between two states in an NFA 

• For our example { all | and }, the transitions are thus:

a

a

l l

n d

Now we can combine these simple regexps…



Compiler Construction 03: Scanner generators 22

Constructing a scanner: concatenation
Where R1R2 are concatenated, join the accepting state of R1 
with the start state of R2 

a

• In our example:

R1 R2 R1 R2

l l

a n d



Compiler Construction 03: Scanner generators 23

Constructing a scanner: selection
Introduce new start and accept states, attach them using  
ε-transitions (so as not to change the language): 

• In our example:

R1 R2

R1

R2

ε

ε

l l

d

a

a n
ε

ε

R1

R2



Compiler Construction 03: Scanner generators 24

Constructing a scanner: grouping
Parentheses just delimit which parts of an expression to treat 
as a (sub-)automaton 
• they appear in the form of its structure, but not as nodes or 

edges  

In our example, the automaton for ( all | and ) is identical to the 
one for ( (a) (l) (l) | (a) (n) (d) ) 



Compiler Construction 03: Scanner generators 25

Constructing a scanner: Kleene clos.
R1* means zero or more concatenations of R1 

• Introduce new start and accept states and add ε-transitions to 
• Accept a single walk through R1 

• Loop back to the start of R1 to allow any number of repetitions 
• Bypass R1 entirely (zero walkthroughs, i.e. R1 does not occur)

R1

R1

ε

ε

ε

ε



Compiler Construction 03: Scanner generators 26

What have we achieved so far?
• We have shown (by construction) that we can construct an 

NFA for any regular expression 
• independent of the contents of that expression 

• This is called the McNaughton-Thompson-Yamada algorithm  
[1][2] 

• But what about the positive closure, R1+?  
• It can be made from concatenation and Kleene closure, try it 

yourself  
• It’s handy to have as notation, but not necessary to prove what 

we wanted here 



Compiler Construction 03: Scanner generators 27

Some wise words and references

Jamie Zawinksi, early Netscape engineer 
 in a 1997 Usenet article 
<33F0C496.370D7C45@netscape.com>  

[1] R. McNaughton, H. Yamada (Mar 1960): 
"Regular Expressions and State Graphs for Automata".  
IEEE Trans. on Electronic Computers. 9 (1): 39–47. doi:10.1109/TEC.1960.5221603 

[2] Ken Thompson (Jun 1968):  
"Programming Techniques: Regular expression search algorithm".  
Communications of the ACM. 11 (6): 419–422. doi:10.1145/363347.363387

mailto:33F0C496.370D7C45@netscape.com

