
Compiler Construction

Practical Exercise 2: Solutions and Discussion

Michael Engel

Compiler Construction PE2 2

2.1 Build a Unix tool using lex
The Unix tool wc (word count) outputs the following information about a
given text file:
• Number of lines in the file
• Number of words in the file
 (words are separated by whitespace or punctuation)
• Number of characters in the file
 (including whitespace, punctuation characters, etc.)
Implement a version of wc using a lex scanner that outputs these three
values for a given input.
• There were a number of details different to real wc on Unix that caused

some confusion…
• wc only uses whitespace as separators

• What exactly is whitespace?
• What about the last line of a file?

Compiler Construction PE2 3

2.1 Build a Unix tool using lex
• There were a number of details different to real wc on Unix that caused

some confusion…
• wc only uses whitespace as separators

• We accept solutions that use whitespace only and ones that also
use a sensible definition of punctuation
• This was especially problematic for test case a5
• This contained an apostrophe (ASCII single quote) in "don’t"

and dots as well as @ in the address "test.mail@domain.dom"
• …so wc gives a different result than a solution also considering

puncutation

mailto:test.mail@domain.dom

Compiler Construction PE2 4

2.1 Build a Unix tool using lex
• What exactly is whitespace?

• The wc man page on macOS states:
"White space characters are the set of characters for which the
iswspace(3) function returns true."

• However, iswspace(3) is described as a function for "wide
characters" (16-bit based Unicode character encoding), so that
cannot be correct [many macOS manpages are in bad shape and I
have complained about this already in 2003… :)]

• There is, however, a isspace(3) man page which states:
"The isspace() function tests for the white-space characters. For
any locale, this includes the following standard characters:
 ``\t'' ``\n'' ``\v'' ``\f'' ``\r'' `` ''
(tab, newline, vertical tab, form feed, carriage return and space)

• In the "C" locale, isspace() successful test is limited to these
characters only (this might be extended for different locales/
languages)

Compiler Construction PE2 5

2.1 Build a Unix tool using lex
• What about the last line of a file?
• The wc(1) manpage states:

"A line is defined as a string of characters delimited by a <newline>
character. Characters beyond the final <newline> character will not be
included in the line count."

• Some editors do not automatically add a newline character (\n, ASCII
0x0a) at the end of the last line (e.g. macOS TextEdit), some others do
(e.g. vim)

• To be consistent with wc, you only have to count the newline
characters, even if this would be inconsistent with your intuition if the
last line misses the terminating newline character…

Compiler Construction PE2 6

2.1 Build a Unix tool using lex
%{
#include <stdio.h>
int num_lines = 0, num_chars = 0, num_words = 0;
%}

%%

\n { ++num_lines; ++num_chars; }

[A-Za-z\-0-9]+ { num_chars += strlen(yytext); ++num_words; }

. { ++num_chars; }

%%

int main() {

 yylex();

 printf("%d %d %d\n",
 num_lines, num_words, num_chars);

}

matches newlines (\n) to
count the number of
lines in a file

tries to identify words as a
sequence of upper and lower
case characters, digits and
hyphens that does not contain
whitespace, punctuation marks
(commas, periods, semicolons
etc.) or any other characters.

counts the remaining characters

Compiler Construction PE2 7

2.1 Build a Unix tool using lex
%{
#include <stdio.h>
int num_lines = 0, num_chars = 0, num_words = 0;
%}

%%

\n { ++num_lines; ++num_chars; ++num_words; }

[\t\v\r\]+ { num_chars += strlen(yytext); ++num_words; }

. { ++num_chars; }

%%

int main() {

 yylex();

 printf("%d %d %d\n",
 num_lines, num_words, num_chars);

}

counts the remaining characters

Alternative using only whitespace as separator

Compiler Construction PE2 8

2.1 Build a Unix tool using lex
• Compiling and linking the program (by hand)

$ lex mywc.lex

$ ls

mywc.lex lex.yy.c

$ cc -o mywc lex.yy.c -ll

This links the lex library "libl". On
some Linux systems, there is only a
GNU flex library "libfl" provided
(which should be linked to libl, but
sometimes does not seem to be).

For these, using -lfl works

Compiler Construction PE2 9

2.1 Real-world wc strangeness
• The macOS wc man page gives some more historical information:

"Historically, the wc utility was documented to define a word as a
``maximal string of characters delimited by <space>, <tab> or
<newline> characters''.

The implementation, however, did not handle non-printing characters
correctly so that `` ^D^E '' counted as 6 spaces, while ``foo^D^Ebar''
counted as 8 characters. 4BSD systems after 4.3BSD modified the
implementation to be consistent with the documentation. This
implementation defines a ``word'' in terms of the iswspace(3) function,
as required by IEEE Std 1003.2 (``POSIX.2'').

• So it’s fine to be a bit confused about the wc behavior…

Compiler Construction PE2 10

2.2 Count the strings
• Extend your wc tool to also count the number of strings (delimited by

double quotes) in the file and output the average string length. You may
assume that a string never extends beyond the end of a line.

• Of course, one of our test cases (b1) had strings extending beyond the
end of the line (oops)

• So there are two options:
• Believe what we write and don’t count these as strings…

(so any line with an odd number of double quotes)
• Don’t trust us and count the strings nevertheless :)

Compiler Construction PE2 11

2.2 Count the strings
%{
#include <stdio.h>
int num_lines = 0, num_chars = 0, num_words = 0;
int num_strings = 0, stringlength = 0;
%}

%state STRING

%%

\n { ++num_lines; ++num_chars; }

<INITIAL>[A-Za-z\-0-9]+ { num_chars += strlen(yytext); ++num_words; }

<INITIAL>\" { ++num_chars; BEGIN(STRING); }

<STRING>\" { ++num_chars; ++num_strings; BEGIN(INITIAL); }

<STRING>. { ++num_chars; ++stringlength; }

. { ++num_chars; }

%%

// continued on next slide…

Compiler Construction PE2 12

2.2 Count the strings
// …

%%

int main() {

 yylex();
 printf("%d, %d, %d\n", num_lines, num_words, num_chars);

 printf("Number of strings: %d\n", num_strings);

 if (num_strings > 0) {
 printf("Average string length: %d\n", stringlength/num_strings);
 }
}

This solution does also work somewhat with strings that extend beyond the end
of a line. However, due to matching a newline without a state qualifiers, newline
characters are not included in string length calculations.

If you explicitly want to exclude the case of strings extending beyond the end of
a line, you would need to switch from the STRING back to the INITIAL state
when matching the newline character.

Compiler Construction PE2 13

2.3 Test cases
• Run your code from question 2.2 against the example test cases

provided on the course web site and submit your output in a text file
output.txt.

• You have seen that there are several cases of unclear behavior and
unclear/inconsistent formulations in the exercise text
• …unintended! :)

• Accordingly, it’s OK if some of the test cases don’t return the exactly
correct result for this exercise…

