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2.1 Build a Unix tool using lex 
The Unix tool wc (word count) outputs the following information about a 
given text file:  
• Number of lines in the file 
• Number of words in the file  
   (words are separated by whitespace or punctuation) 
• Number of characters in the file  
   (including whitespace, punctuation characters, etc.)  
Implement a version of wc using a lex scanner that outputs these three 
values for a given input.  
• There were a number of details different to real wc on Unix that caused 

some confusion… 
• wc only uses whitespace as separators 

• What exactly is whitespace? 
• What about the last line of a file?
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2.1 Build a Unix tool using lex 
• There were a number of details different to real wc on Unix that caused 

some confusion… 
• wc only uses whitespace as separators 

• We accept solutions that use whitespace only and ones that also 
use a sensible definition of punctuation 
• This was especially problematic for test case a5 
• This contained an apostrophe (ASCII single quote) in "don’t" 

and dots as well as @ in the address "test.mail@domain.dom" 
• …so wc gives a different result than a solution also considering 

puncutation

mailto:test.mail@domain.dom
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2.1 Build a Unix tool using lex 
• What exactly is whitespace? 

• The wc man page on macOS states:  
"White space characters are the set of characters for which the 
iswspace(3) function returns true." 

• However, iswspace(3) is described as a function for "wide 
characters" (16-bit based Unicode character encoding), so that 
cannot be correct [many macOS manpages are in bad shape and I 
have complained about this already in 2003… :)] 

• There is, however, a isspace(3) man page which states: 
"The isspace() function tests for the white-space characters.  For 
any locale, this includes the following standard characters: 
    ``\t''   ``\n''    ``\v''    ``\f''    ``\r''    `` '' 
(tab, newline, vertical tab, form feed, carriage return and space) 

• In the "C" locale, isspace() successful test is limited to these 
characters only (this might be extended for different locales/
languages)  
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2.1 Build a Unix tool using lex 
• What about the last line of a file? 
• The wc(1) manpage states: 

"A line is defined as a string of characters delimited by a <newline> 
character.  Characters beyond the final <newline> character will not be 
included in the line count." 

• Some editors do not automatically add a newline character (\n, ASCII 
0x0a) at the end of the last line (e.g. macOS TextEdit), some others do 
(e.g. vim) 

• To be consistent with wc, you only have to count the newline 
characters, even if this would be inconsistent with your intuition if the 
last line misses the terminating newline character…
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2.1 Build a Unix tool using lex 
%{ 
#include <stdio.h> 
int num_lines = 0, num_chars = 0, num_words = 0;  
%}  

%%  

\n               { ++num_lines; ++num_chars; } 
 

[A-Za-z\-0-9]+   { num_chars += strlen(yytext); ++num_words; } 
 

.                { ++num_chars; } 

%%  

int main() {  

     yylex(); 

     printf( "%d %d %d\n", 
              num_lines, num_words, num_chars ); 

} 

matches newlines (\n) to 
count the number of 
lines in a file 

tries to identify words as a 
sequence of upper and lower 
case characters, digits and 
hyphens that does not contain 
whitespace, punctuation marks 
(commas, periods, semicolons 
etc.) or any other characters.

counts the remaining characters
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2.1 Build a Unix tool using lex 
%{ 
#include <stdio.h> 
int num_lines = 0, num_chars = 0, num_words = 0;  
%}  

%%  

\n             { ++num_lines; ++num_chars; ++num_words; } 
 

[\t\v\r\ ]+    { num_chars += strlen(yytext); ++num_words; } 

 
 
.              { ++num_chars; } 

%%  

int main() {  

     yylex(); 

     printf( "%d %d %d\n", 
              num_lines, num_words, num_chars ); 

} 

counts the remaining characters

Alternative using only whitespace as separator
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2.1 Build a Unix tool using lex 
• Compiling and linking the program (by hand)

$ lex mywc.lex  

$ ls 

mywc.lex lex.yy.c 

$ cc -o mywc lex.yy.c -ll

This links the lex library "libl". On 
some Linux systems, there is only a 
GNU flex library "libfl" provided 
(which should be linked to libl, but 
sometimes does not seem to be). 

For these, using -lfl works
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2.1 Real-world wc strangeness
• The macOS wc man page gives some more historical information: 

 
"Historically, the wc utility was documented to define a word as a 
``maximal string of characters delimited by <space>, <tab> or 
<newline> characters''. 
 
The implementation, however, did not handle non-printing characters 
correctly so that ``  ^D^E  '' counted as 6 spaces, while ``foo^D^Ebar'' 
counted as 8 characters.  4BSD systems after 4.3BSD modified the 
implementation to be consistent with the documentation.  This 
implementation defines a ``word'' in terms of the iswspace(3) function, 
as required by IEEE Std 1003.2 (``POSIX.2''). 

• So it’s fine to be a bit confused about the wc behavior…
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2.2 Count the strings
• Extend your wc tool to also count the number of strings (delimited by 

double quotes) in the file and output the average string length. You may 
assume that a string never extends beyond the end of a line.  

• Of course, one of our test cases (b1) had strings extending beyond the 
end of the line (oops) 

• So there are two options: 
• Believe what we write and don’t count these as strings… 

(so any line with an odd number of double quotes) 
• Don’t trust us and count the strings nevertheless :)
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2.2 Count the strings
%{ 
#include <stdio.h> 
int num_lines = 0, num_chars = 0, num_words = 0;  
int num_strings = 0, stringlength = 0; 
%}  
 
%state STRING 
 
%% 

\n           { ++num_lines; ++num_chars; } 

<INITIAL>[A-Za-z\-0-9]+   { num_chars += strlen(yytext); ++num_words; } 

<INITIAL>\"  { ++num_chars;  BEGIN(STRING); } 

<STRING>\"   { ++num_chars; ++num_strings; BEGIN(INITIAL); } 

<STRING>.    { ++num_chars; ++stringlength; } 

.            { ++num_chars; } 

%%  

// continued on next slide…
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2.2 Count the strings
// … 

%%  

int main() {  
 
  yylex(); 
  printf( "%d, %d, %d\n", num_lines, num_words, num_chars ); 
 
  printf( "Number of strings: %d\n", num_strings); 
 
  if (num_strings > 0) { 
        printf( "Average string length: %d\n", stringlength/num_strings); 
  } 
} 

This solution does also work somewhat with strings that extend beyond the end 
of a line. However, due to matching a newline without a state qualifiers, newline 
characters are not included in string length calculations.  

If you explicitly want to exclude the case of strings extending beyond the end of 
a line, you would need to switch from the STRING back to the INITIAL state 
when matching the newline character. 
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2.3 Test cases
• Run your code from question 2.2 against the example test cases 

provided on the course web site and submit your output in a text file 
output.txt.  

• You have seen that there are several cases of unclear behavior and 
unclear/inconsistent formulations in the exercise text 
• …unintended! :) 

• Accordingly, it’s OK if some of the test cases don’t return the exactly 
correct result for this exercise…


