
Compiler Construction

Theoretical Exercise 5: x86-64 assembler

Michael Engel

Compiler Construction TE5

Consider the following x86-64 assembler code function, compiled from C:
a. How many parameters does the function take?
 Which instructions indicate this (give the instruction address)?

Values are passed to functions in
registers (in that order):
rdi, rsi, rdx, rcx, r8, and r9
(or edi, esi… for 32-bit values)

The function uses the value in esi
(address 0) as well as edi and edx
(addresses 6 and 0xc)

So we can assume that the function
uses 3 parameters

2

TE5.1 x86-64 code analysis

Department of Computer Science – IDI TDT4205 Compiler Construction

https://folk.ntnu.no/michaeng/tdt4205_21/
michael.engel@ntnu.no

Theoretical exercises
Spring 2021

Theoretical Exercises 5
Assembler

Please submit solutions on Blackboard by Friday, 26.03.2021 14:00h

Hint: You can use the x86-64 cheat sheet (https://www.cs.tufts.edu/comp/40/docs/x64_cheatsheet.pdf)
to look up assembler instruction details.

5.1 x86-64 code analysis (4 points)

Consider the following x86-64 assembler code function, compiled from C:

Disassembly of section .text:

0000000000000000 <foo>:
0: 89 f0 mov %esi,%eax
2: 85 f6 test %esi,%esi
4: 7e 0f jle 15 <foo+0x15>
6: 85 d2 test %edx,%edx
8: 74 0c je 16 <foo+0x16>
a: 31 d2 xor %edx,%edx
c: 01 f8 add %edi,%eax
e: 83 c2 01 add $0x1,%edx

11: 39 d0 cmp %edx,%eax
13: 7f f7 jg c <foo+0xc>
15: c3 retq
16: 29 f8 sub %edi,%eax
18: 83 c2 01 add $0x1,%edx
1b: 39 d0 cmp %edx,%eax
1d: 7f f7 jg 16 <foo+0x16>
1f: c3 retq

a. How many parameters does the function take? Which instructions indicate this (give the instruction address)?

b. Does the code of the function include an if statement? How did you find this out?

c. Does the code of the function include a loop? How did you find this out?

d. Does the function return a value?

Compiler Construction TE5

Consider the following x86-64 assembler code function, compiled from C:
b. Does the code of the function include an if statement?
 How did you find this out?

The instructions test %esi,%esi
and test %edx,%edx look
a bit strange:

"The TEST instruction performs a
bitwise AND on two operands. The
flags SF, ZF, PF are modified while
the result of the AND is discarded"

When both operands are identical,
it works as a test for zero and sign
of the operand => if instructions
use conditional jumps to check the
zero and sign flags (here: jle/je)

3

TE5.1 x86-64 code analysis

Department of Computer Science – IDI TDT4205 Compiler Construction

https://folk.ntnu.no/michaeng/tdt4205_21/
michael.engel@ntnu.no

Theoretical exercises
Spring 2021

Theoretical Exercises 5
Assembler

Please submit solutions on Blackboard by Friday, 26.03.2021 14:00h

Hint: You can use the x86-64 cheat sheet (https://www.cs.tufts.edu/comp/40/docs/x64_cheatsheet.pdf)
to look up assembler instruction details.

5.1 x86-64 code analysis (4 points)

Consider the following x86-64 assembler code function, compiled from C:

Disassembly of section .text:

0000000000000000 <foo>:
0: 89 f0 mov %esi,%eax
2: 85 f6 test %esi,%esi
4: 7e 0f jle 15 <foo+0x15>
6: 85 d2 test %edx,%edx
8: 74 0c je 16 <foo+0x16>
a: 31 d2 xor %edx,%edx
c: 01 f8 add %edi,%eax
e: 83 c2 01 add $0x1,%edx

11: 39 d0 cmp %edx,%eax
13: 7f f7 jg c <foo+0xc>
15: c3 retq
16: 29 f8 sub %edi,%eax
18: 83 c2 01 add $0x1,%edx
1b: 39 d0 cmp %edx,%eax
1d: 7f f7 jg 16 <foo+0x16>
1f: c3 retq

a. How many parameters does the function take? Which instructions indicate this (give the instruction address)?

b. Does the code of the function include an if statement? How did you find this out?

c. Does the code of the function include a loop? How did you find this out?

d. Does the function return a value?

Compiler Construction TE5

Consider the following x86-64 assembler code function, compiled from C:
c. Does the code of the function include a loop?
 How did you find this out?

Loops in the code usually jump
backwards with a conditional jump,
so there are two loops here:
at addresses 0xc-0x14 and at
0x16-0x1e

We cannot find out which loop this
was originally (do–while or for),
since the compiler can transform
loops to other forms

4

TE5.1 x86-64 code analysis

Department of Computer Science – IDI TDT4205 Compiler Construction

https://folk.ntnu.no/michaeng/tdt4205_21/
michael.engel@ntnu.no

Theoretical exercises
Spring 2021

Theoretical Exercises 5
Assembler

Please submit solutions on Blackboard by Friday, 26.03.2021 14:00h

Hint: You can use the x86-64 cheat sheet (https://www.cs.tufts.edu/comp/40/docs/x64_cheatsheet.pdf)
to look up assembler instruction details.

5.1 x86-64 code analysis (4 points)

Consider the following x86-64 assembler code function, compiled from C:

Disassembly of section .text:

0000000000000000 <foo>:
0: 89 f0 mov %esi,%eax
2: 85 f6 test %esi,%esi
4: 7e 0f jle 15 <foo+0x15>
6: 85 d2 test %edx,%edx
8: 74 0c je 16 <foo+0x16>
a: 31 d2 xor %edx,%edx
c: 01 f8 add %edi,%eax
e: 83 c2 01 add $0x1,%edx

11: 39 d0 cmp %edx,%eax
13: 7f f7 jg c <foo+0xc>
15: c3 retq
16: 29 f8 sub %edi,%eax
18: 83 c2 01 add $0x1,%edx
1b: 39 d0 cmp %edx,%eax
1d: 7f f7 jg 16 <foo+0x16>
1f: c3 retq

a. How many parameters does the function take? Which instructions indicate this (give the instruction address)?

b. Does the code of the function include an if statement? How did you find this out?

c. Does the code of the function include a loop? How did you find this out?

d. Does the function return a value?

Compiler Construction TE5

Consider the following x86-64 assembler code function, compiled from C:
d. Does the function return a value?

The x86-64 ABI (System V, used in
Linux) requires the return value of
a function to be passed in the %eax
register.

The value of %eax is modified, so
we can assume this is a return
value.

We can only be sure about this if
we see the code calling the function

5

TE5.1 x86-64 code analysis

Department of Computer Science – IDI TDT4205 Compiler Construction

https://folk.ntnu.no/michaeng/tdt4205_21/
michael.engel@ntnu.no

Theoretical exercises
Spring 2021

Theoretical Exercises 5
Assembler

Please submit solutions on Blackboard by Friday, 26.03.2021 14:00h

Hint: You can use the x86-64 cheat sheet (https://www.cs.tufts.edu/comp/40/docs/x64_cheatsheet.pdf)
to look up assembler instruction details.

5.1 x86-64 code analysis (4 points)

Consider the following x86-64 assembler code function, compiled from C:

Disassembly of section .text:

0000000000000000 <foo>:
0: 89 f0 mov %esi,%eax
2: 85 f6 test %esi,%esi
4: 7e 0f jle 15 <foo+0x15>
6: 85 d2 test %edx,%edx
8: 74 0c je 16 <foo+0x16>
a: 31 d2 xor %edx,%edx
c: 01 f8 add %edi,%eax
e: 83 c2 01 add $0x1,%edx

11: 39 d0 cmp %edx,%eax
13: 7f f7 jg c <foo+0xc>
15: c3 retq
16: 29 f8 sub %edi,%eax
18: 83 c2 01 add $0x1,%edx
1b: 39 d0 cmp %edx,%eax
1d: 7f f7 jg 16 <foo+0x16>
1f: c3 retq

a. How many parameters does the function take? Which instructions indicate this (give the instruction address)?

b. Does the code of the function include an if statement? How did you find this out?

c. Does the code of the function include a loop? How did you find this out?

d. Does the function return a value?

Compiler Construction TE5

(this was not a question, but it helps…) What would the corresponding C
code look like?

6

TE5.1 x86-64 code analysis

Department of Computer Science – IDI TDT4205 Compiler Construction

https://folk.ntnu.no/michaeng/tdt4205_21/
michael.engel@ntnu.no

Theoretical exercises
Spring 2021

Theoretical Exercises 5
Assembler

Please submit solutions on Blackboard by Friday, 26.03.2021 14:00h

Hint: You can use the x86-64 cheat sheet (https://www.cs.tufts.edu/comp/40/docs/x64_cheatsheet.pdf)
to look up assembler instruction details.

5.1 x86-64 code analysis (4 points)

Consider the following x86-64 assembler code function, compiled from C:

Disassembly of section .text:

0000000000000000 <foo>:
0: 89 f0 mov %esi,%eax
2: 85 f6 test %esi,%esi
4: 7e 0f jle 15 <foo+0x15>
6: 85 d2 test %edx,%edx
8: 74 0c je 16 <foo+0x16>
a: 31 d2 xor %edx,%edx
c: 01 f8 add %edi,%eax
e: 83 c2 01 add $0x1,%edx

11: 39 d0 cmp %edx,%eax
13: 7f f7 jg c <foo+0xc>
15: c3 retq
16: 29 f8 sub %edi,%eax
18: 83 c2 01 add $0x1,%edx
1b: 39 d0 cmp %edx,%eax
1d: 7f f7 jg 16 <foo+0x16>
1f: c3 retq

a. How many parameters does the function take? Which instructions indicate this (give the instruction address)?

b. Does the code of the function include an if statement? How did you find this out?

c. Does the code of the function include a loop? How did you find this out?

d. Does the function return a value?

int foo(int a, int b, int c) {
 if (b <= 0) return b;

 if (c != 0) {
 do {
 b = b - a;
 c++;
 } while(c > b);
 } else {
 c = 0;
 do {
 b = b + a;
 c++;
 } while (c > b);
 }
 return b;
}

int a: %edi, int b: %esi, int c: %edx

Compiler Construction TE5

The following x86-64 assembly code is given:
a. Give equivalent valid C code that would compile without warnings to this
assembler code function. Assume the declaration extern unsigned a, b;

7

TE5.2 Disassemble!
Department of Computer Science – IDI TDT4205 Compiler Construction

5.2 Decompile! (2 points)

The following x86-64 assembly code is given:

f:
movl a, %eax
movl b, %edx
andl $255, %edx
subl %edx, %eax
movl %eax, a
retq

a. Give equivalent valid C code that would compile without warnings to this assembler code function. Assume the
declaration extern unsigned a, b;. Don’t run a C compiler to obtain the result.

b. Find two different versions of C code that compile to the above code. One of these should have a different
function signature than the ones you described already.

5.3 Data types (5 points)

For each of the following x86-64 assembler instructions, give the type of the data object that is most likely to be
accessed by this code. Indicate the reason for your answer.

• movzbl %al, %eax

• movl -28(%rbp), %edx

• movsbl -32(%rbp), %eax

• movl (%rdx,%rax,4), %eax

• movzbl 4(%rax), %eax ; movsbl %al, %eax

void f() {
 a -= b & 255;
}

Compiler Construction TE5

The following x86-64 assembly code is given:
b. Find two different versions of C code that compile to the above code.
One of these should have a different function signature than the ones you
described already.

8

TE5.2 Disassemble! Department of Computer Science – IDI TDT4205 Compiler Construction

5.2 Decompile! (2 points)

The following x86-64 assembly code is given:

f:
movl a, %eax
movl b, %edx
andl $255, %edx
subl %edx, %eax
movl %eax, a
retq

a. Give equivalent valid C code that would compile without warnings to this assembler code function. Assume the
declaration extern unsigned a, b;. Don’t run a C compiler to obtain the result.

b. Find two different versions of C code that compile to the above code. One of these should have a different
function signature than the ones you described already.

5.3 Data types (5 points)

For each of the following x86-64 assembler instructions, give the type of the data object that is most likely to be
accessed by this code. Indicate the reason for your answer.

• movzbl %al, %eax

• movl -28(%rbp), %edx

• movsbl -32(%rbp), %eax

• movl (%rdx,%rax,4), %eax

• movzbl 4(%rax), %eax ; movsbl %al, %eax

void f() {
 a += -(b % 256);
}

unsigned f() {
 a = a - b % 0x100;
 return a;
}

unsigned f() {
 a -= (unsigned char) b;
 return a;
}

char* f(int x, int y, int z[1000]) {
 a -= (unsigned char) b;
 return (char*) a;
}

Compiler Construction TE5

For each of the following x86-64 assembler instructions, give the type of
the data object that is most likely to be accessed by this code. Indicate the
reason for your answer.

• movzbl %al, %eax
unsigned char: movzbl instructs the cpu to fetch a byte from memory, and
zero extend it to 32 bits.

• movl -28(%rbp), %edx
int or unsigned: movl copies a 32 bit value, here from the stack frame to edx

• movsbl -32(%rbp), %eax
[signed] char: movsbl means "move with sign extend from byte to longword"

• movl (%rdx,%rax,4), %eax
Array of ints or unsigned ints: offset in rax multiplied by 4 (=sizeof(int)),
base address in rdx

• movzbl 4(%rax), %eax ; movsbl %al, %eax
char field from a structure; or the 4th character in a string.

9

TE5.3 Data types

