
Compiler Construction
Lecture 19–5: Very busy expressions
and summary of data flow analyses

Week of 2020-03-30
Michael Engel

Compiler Construction 19–5: Very busy expressions !2

Overview
• Data-flow analyses

• Very busy expressions
• May- and must-analyses
• Common features and categorization

Compiler Construction 19–5: Very busy expressions !3

Busy expressions
• An expression e is busy at a program point if and only if

• an evaluation of e exists along some path wi,…,wj

starting at program point wi

• no operation of any operand of e exists before its
evaluation along the path (e.g., the operands are
unchanged)

• If an expression is found to be busy at some program point,
it is definitely going to be used in some path following that
point

Compiler Construction 19–5: Very busy expressions !4

Very busy expressions
• An expression is very busy at some program point if it will

definitely be evaluated before its value changes
• At a program point wi, an expression is very busy if it is

busy along all paths starting at wi

• Dataflow analysis can approximate the set of very busy
expressions for all program points

• The result of that analysis can then be used to perform
code hoisting:  
the computation of a very busy expression can be
performed at the earliest point where it is busy
• this optimization doesn’t (necessarily) reduce time, but

code space

Compiler Construction 19–5: Very busy expressions !5

Busy expressions example
b+c is not very busy at loop entrance

a=b+c a=d+c

t=b+c

a>b+c

t=b+c

b+c is very busy at loop entrance
t=b+c;
for (…) {
 if (…) a=b+c;
 else a=d+c;
}

t=b+c;
for (…) {
 if (a>b+c) x=1;
 else x=0;
}

Compiler Construction 19–5: Very busy expressions !6

Optimization: code hoisting
• Dataflow analysis can approximate the set of very busy

expressions for all program points
• If an expression is found to be very busy at wi, we can move

its evaluation to that node
• The result of that analysis can then be used to perform an

optimization called code hoisting:
• the computation of a very busy expression can be

performed at the earliest point where it is busy
• it doesn’t (necessarily) reduce time, but code space

• Useful for loop invariant code motion
• If an expression is invariant in a loop and is also very busy,

we know it must be used in the future
• Hence evaluation outside the loop must be worthwhile

Compiler Construction 19–5: Very busy expressions !7

Optimization example

a>b+c

t=b+c

b+c is very busy at loop entrance
t=b+c;
for (…) {
 if (a>b+c) x=1;
 else x=0;
}

t=b+c;
for (…) {
 if (a>t) x=1;
 else x=0;
}

Evaluate b+c once before loop:

a>t

t=b+c

Compiler Construction 19–5: Very busy expressions !8

Very busy expressions: flow equations
• We can derive the following data flow equations:
 ø if n is final block

 ∩ Inp otherwise

 Inn = (Outn−Killn) ∪ Genn
• Example:

Outn=
p∈succ(n)

x=b-a y=b-a

y=a-b x=a-b

a>b
1

2

3

4

5

Killn Genn
1 ø ø
2 ø {b-a}
3 ø {a-b}
4 ø {b-a}
5 ø {a-b}

In1 = Out1
In2 = Out2 ∪ {b-a}
In3 = {a-b}
In4 = Out4 ∪ {b-a}
In5 = {a-b}

Out1 = In2 ∩ In4
Out2 = In3
Out3 = ø
Out4 = In5
Out5 = ø

Inn Outn
1 {a-b,b-a} {a-b,b-a}
2 {a-b,b-a} {b-a}
3 {a-b} ø
4 {a-b,b-a} {b-a}
5 {a-b} ø

Compiler Construction 19–5: Very busy expressions !9

A common analysis pattern
• Common pattern for the data-flow analyses we discussed:

 n = (n − Killn) ∪ Genn

 n = n’, n’∈ (n)

• Two choices exist:
• perform a forward or backward analysis? and
• whether the analysis computes ∪ or ∩ sets

= IN or OUT
= ∪ or ∩
= pred or succ

Compiler Construction 19–5: Very busy expressions !10

May and must analyses
• An analysis is said to compute “may” facts if those facts

hold along some path in the control-flow graph
• In contrast, an analysis is said to compute “must” facts if

those facts hold along all paths
• Accordingly, the use of the join operation is ∪ is called

"may" analysis and ∩ is a "must"-analysis

• We can now categorize our data-flow analyses according to
the data-flow equations used:

may must

forward reaching
definitions

available
expressions

backward live
variables

very busy
expressions

