
Compiler Construction
Lecture 11: Type systems and attribute grammars

2020-02-14
Michael Engel

Includes material by Cooper & Torczon which is

Copyright 2010, Keith D. Cooper & Linda Torczon,  

all rights reserved. Used with permission.

Compiler Construction 11: Types & attribute grammars !2

Overview
• Type systems

• Type checking
• Syntax-directed translation

• Attribute grammars

Compiler Construction 11: Types & attribute grammars !3

Types and type systems
• Type systems can specify program behavior at a more

precise level than is possible in a context-free grammar
• Type systems create a second vocabulary for describing

both the form and behavior of valid programs
• Type systems yield information that cannot be obtained

using the techniques of scanning and parsing

• Three distinct purposes:
• safety
• expressiveness
• runtime efficiency

Semantic
analysis

Compiler Construction 11: Types & attribute grammars !4

Type safety
• Ensure that the results/parts of assignments and expressions are

compatible with each other
• Providing types for data objects and rules for type inference

help the compiler with this
• (Bad?) alternatives:

• untyped (assembly, BCPL) and weakly typed languages
• there are ideas for a typed assembly language [1]

• Compiler performs type checking
• compiler must analyze the program and assign a type to each

name and each expression
• it must check these types to ensure that they are used in

contexts where they are legal
• unfortunate misnomer, it lumps together the separate activities

of type inference and identifying type-related errors

Semantic
analysis+ = ?

Compiler Construction 11: Types & attribute grammars !5

Drawbacks of type safety
• Wirth's Pascal programming language has a (quite) strict

type system [2]
• The size of an array is part of its type

• If one declares
var arr10 : array [1..10] of integer;
 arr20 : array [1..20] of integer;

• then arr10 and arr20 are arrays of 10 and 20 integers
respectively

• Suppose we want to write a procedure 'sort' to sort an
integer array

• Because arr10 and arr20 have different types, it is  
not possible to write a single procedure that will sort
them both!

Semantic
analysis

Compiler Construction 11: Types & attribute grammars !6

Drawbacks of type safety (2)
• Even worse, strings in Pascal are arrays of char
• Consider writing a function index(s,c) that will return the

position in the string s where the character c first occurs, or
zero if it does not
• The problem is how to handle the string argument of index
• The calls index('hello',c) and index('goodbye',c)

cannot both be legal, since the strings have different lengths
• Idea: use

 var temp : array [1..10] of char;
 temp := 'hello';
 n := index(temp,c);

• but the assignment to 'temp' is illegal because 'hello' and 'temp'
are of different lengths!

Semantic
analysis

Compiler Construction 11: Types & attribute grammars !7

Drawbacks of safety (3)
• Practical (?!?) solutions:

• define family of routines with a member for each possible string size!
• or define all strings (including constant strings like 'define') to have the

same length → used in practice!
type string = array [1..MAXSTR] of char;

• This wastes a lot of memory (especially on the small machines
Pascal was developed on)

• Wirth himself uses this in his compilers, e.g. in Pascal-S [3]:

Semantic
analysis

 word[beginsym]:= 'begin '; word[endsym]:= 'end ';
 word[ifsym]:= 'if '; word[thensym]:= 'then ';
 word[elsesym]:= 'else '; word[whilesym]:= 'while ';
 word[dosym]:= 'do '; word[casesym]:= 'case ';
 word[repeatsym]:= 'repeat '; word[untilsym]:= 'until ';
 word[forsym]:= 'for '; word[tosym]:= 'to ';
 word[downtosym]:= 'downto '; word[notsym]:= 'not ';

Compiler Construction 11: Types & attribute grammars !8

Expressiveness
• Types allow to specify behavior more precisely than is

possible with context-free rules
• Example: operator overloading

• gives context-dependent meanings to an operator
• example: operator "+" for int, float, double, string, …  
 
 
 
 

• An untyped language might have to provide  
lexically different operators for each case
• e.g. BCPL: "+" for ints, "#+" for floats

Semantic
analysis

int x = 1,  
 y = 2, z;
z = x + y;  
// z = 3

double x = 1.2,
 y = 2.3, z;
z = x + y;  
// z = 3.5

string x = "Hello";
string y = "World";
z = x + y;  
// z = "HelloWorld"

That doesn’t work in C,
of course…

Compiler Construction 11: Types & attribute grammars !9

Generating Better Code
• Defining types provides detailed information about every

expression in the program
• Example:

• runtime type analysis and conversion for untyped languages
• static generation of correct assembly statements

• Runtime type checking requires a runtime representation for type
• each variable has a value field and a tag field => overhead!

• Knowing types at compile time allows generation of efficient code

Semantic
analysis

Type of (Pseudo)  
assembler codea b a+b

int int int add ra, rb => ra+b

int float float i2f fa => ra_f 
fadd ra_f, rb => ra_f+b

int double double i2d fa => ra_d  
dadd ra_d, rb => ra_f+d

Compiler Construction 11: Types & attribute grammars !10

Generating Better Code
If types are known at runtime only, the compiler has to insert
runtime type conversions into the generated code

Semantic
analysis

// partial code for "a+b => c"
if (tag(a) = integer) then
 if (tag(b) = integer) then 
 value(c) = value(a) + value(b);
 tag(c) = integer;
 else if (tag(b) = real) then
 temp = ConvertToReal(a);
 value(c) = temp + value(b);
 tag(c) = real;
 else if (tag(b) = …) then
 // handle all other types…
else
 signal runtime type fault
…

else if (tag(a) = real) then
 if (tag(b) = integer) then
 temp = ConvertToReal(b);
 value(c) = value(a) + temp;
 tag(c) = real;
 else if (tag(b) = real) then
 value(c) = value(a) + value(b);
 tag(c) = real;
 else if (tag(b) = …) then
 // handle all other types…
else
 signal runtime type fault
else if (tag(a) = …) then
 // handle all other types…
else
 signal illegal tag value;

Compiler Construction 11: Types & attribute grammars !11

Components of a type system
Base types: directly supported by most processors
• Numbers: limited-range integers (e.g., -2-31…231-1) 

 approximate real-numbers (floating point)
• Often, underlying hardware implementation influences

availability of number types (e.g. "int" in C)
• Characters: traditionally, support for 7 or 8 bit ASCII characters 

 more recently, UTF16 (Windows), UTF8 (common)
• Booleans: values TRUE and FALSE + logic operators (and, xor, …)

Other possible base types (examples)
• Lisp provides a recursive basic type for lists (=> Lisp machines)
• Complex numbers (DSP compilers) or vectors of numbers

Semantic
analysis

Compiler Construction 11: Types & attribute grammars !12

Compound and constructed types
Combinations of elements of the base type
• Arrays: groups together multiple elements of the same type 

 (base or compound), e.g. array with 10 integers int a[10]
• many languages support multi-dimensional arrays: int a[10]

• Strings: some languages treat strings as compound types
• most common: character strings, sometimes bit strings

• A true string differs from an array type in several important ways
• can have operations like concatenation, translation, and

computing the length
• can be compared, e.g. in lexicographic order: "bar" < "foo"

• Enumerated types: giving (successive) numbers to named
elements, e.g. weekdays, months or colors 
enum weekday {Mon, Tue, Wed, Thu, Fri, Sat, Sun} // Mon < Wed

Semantic
analysis

Compiler Construction 11: Types & attribute grammars !13

Compound and constructed types
• Structures (records): group together multiple objects of arbitrary type

• elements (members) of the structure are typically given explicit names,
e.g. in structures for a parse tree for a compiler:

• The type of a structure is the ordered product of the types of the individual
elements that it contains
• Type of a Node1: (Node1 *) × unsigned × int
• Type of a Node2: (Node2 *) × (Node2 *) × unsigned × int

• These new types should have the same essential properties that a base
type has

Semantic
analysis

struct Node1 { 
 struct Node1 *left;
 unsigned Operator;
 int Value
}

struct Node2 { 
 struct Node2 *left;
 struct Node2 *right;
 unsigned Operator; 
 int Value
}

Compiler Construction 11: Types & attribute grammars !14

Compound and constructed types
• Pointers: abstract memory addresses that let the programmer

manipulate arbitrary data structures
• save an address and later examine the object that it addresses
• often created when objects are created (new or malloc)

• Some languages provide an operator that returns the address of
an object (& operator in C)

• Some languages restrict pointer assignment to “equivalent” types
• protect from using a pointer to type t to reference a type s

• Some languages allow direct manipulation of pointers
• arithmetic on pointers, including autoincrement and autodecrement,

allow the program to construct new pointers
• Useful, but dangerous (especially with unexperienced programmers)

• arbitrary pointers make reasoning about programs harder

Semantic
analysis

Compiler Construction 11: Types & attribute grammars !15

Type equivalence
When does a language allow assignments/operations between
different types? Two general approaches exist:
• name equivalence: that two types are  

equivalent if and only if they have the  
same name
• programmer can select any name for a type
• if the programmer chooses different names,  

the language and its implementation should honor that deliberate act
• structural equivalence asserts that two  

types are equivalent if and only if they  
have the same structure
• two objects are interchangeable if they  

consist of the same set of fields, in the  
same order, and those fields all have  
equivalent types

Semantic
analysis

typedef int length;
typedef int height;
length l;
height h = 42;
l = h; // not allowed

struct {  
 int x; int y;  
} pixel;
struct {  
 int temp; int humidity;  
} weather;
weather = pixel; // OK

Compiler Construction 11: Types & attribute grammars !16

Inference rules
Inference rules specify, for each operator, the mapping between
the operand types and the result type
• For some cases, the mapping is simple:

• e.g., an assignment has one operand and one result: 
result (LHS) must have type compatible with RHS

• Often, relationship between operand types and result types is
specified as recursive function on the type of the expression tree
• the result type of an operation is a function of the types of its

operands, e.g. specified using a table
• compilers often recognize certain  

combinations of mixed-type  
expressions and automatically  
insert appropriate conversions

Semantic
analysis

+ int float double
int int float double

float float float double
double double double double

Compiler Construction 11: Types & attribute grammars !17

Attribute grammars
• Context-free grammar augmented with a set of rules
• Each symbol in the derivation (or parse tree) has a set of

named values, or attributes
• The rules specify how to compute a value for each attribute

• Attribution rules are functional; they uniquely define the value

1 Number → Sign List  
2 Sign → + 
3 | -
4 List → List Bit  
5 | Bit
6 Bit → 0
7 | 1

This grammar describes signed
binary numbers

We will augment it with rules that
compute the decimal value of each
valid input string

Example grammar:

Semantic
analysis

Compiler Construction 11: Types & attribute grammars !18

Examples

-

For "-1":

Number → Sign List  
 → Sign Bit 
 → Sign 1
 → - 1

Number

Sign List

Bit

1

For "-101":

Number → Sign List  
 → Sign Bit 
 → Sign List 1
 → Sign List Bit 1 
 → Sign List 0 1 
 → Sign Bit 0 1 
 → Sign 1 0 1 
 → - 1 0 1

-

Number

Sign

Bit

1

List

Bit

0Bit

1

List

List

Semantic
analysis

Compiler Construction 11: Types & attribute grammars !19

Building attribute grammars
Add rules to compute the decimal value of a signed binary number

Semantic
analysis

Symbol Attributes

Number val

Sign neg

List pos, val

Bit pos, val

Production Attribution rules
Number → Sign List List.pos ← 0  

if Sign.neg
 then Number.val ← - List.val
 else Number.val ← List.val

Sign → + 
 | -

Sign.neg ← false  
Sign.neg ← true

List0 → List1 Bit  
 
 
 | Bit

List1.pos ← List0.pos + 1  
Bit.pos ← List0.pos
List1.val ← List1.val + Bit.val 
Bit.pos ← List.pos
List.val ← Bit.val

Bit → 0
 | 1

Bit.val ← 0  
Bit.val ← 2Bit.pos

Compiler Construction 11: Types & attribute grammars !20

Attribute grammar for example 1

-

For "-1":

Number

Sign List

Bit

1

Semantic
analysis

neg ← true

Number.val  
 ← - List.val ≡ - 1

List.pos ← 0 
List.val  
 ← Bit.val ≡ - 1

Bit.pos ← 0 
Bit.val  
 ← 2Bit.pos ≡ 1

One possible evaluation order:

1. List.pos
2. Sign.neg
3. Bit.pos
4. Bit.val
5. List.val
6. Number.val
 
Other orders are possible

Knuth suggested a data-flow model for evaluation [4]:
• Independent attributes first
• Others in order as input values become available

Evaluation order must be  
consistent with the

attribute dependence graph

Compiler Construction 11: Types & attribute grammars !21

Attribute grammar for example 2
For "-101":

Semantic
analysis

This is the complete
attribute dependence
graph for "–101"

It shows the flow of all
attribute values in the
example

Some flow downward
→ inherited attributes

Some flow upward
→ synthesized attributes

A rule may use attributes in
the parent, children, or
siblings of a node

-

Number

Sign

Bit

1

List

Bit

0Bit

1

List

List

neg:true pos:0
val:5

pos:0
val:1

pos:1
val:4

pos:2
val:4

pos:2
val:4

pos:1
val:0

val:-5

Compiler Construction 11: Types & attribute grammars !22

Applying the rules
• Attributes associated with nodes in parse tree
• Rules are value assignments associated with productions
• Attribute is defined once, using local information
• Label identical terms in production for uniqueness
• Rules & parse tree define an attribute dependence graph

• Graph must be non-circular
 
This produces a high-level, functional specification

Synthesized attribute
• Depends on values from children

Inherited attribute
• Depends on values from siblings & parent

Semantic
analysis

The attribute dependence
graph is a specification for

the computation,  
not an algorithm

Compiler Construction 11: Types & attribute grammars !23

Using attribute grammars
Attribute grammars can specify context-sensitive actions
• Take values from syntax
• Perform computations with values
• Insert tests, logic, …

Semantic
analysis

Synthesized attributes

• Use values from children & constants
• S-attributed grammars
• Evaluate in a single bottom-up pass

Good match to LR parsing

Inherited attributes

• Use values from parent, constants &
siblings

• Directly express context
• Can rewrite to avoid them
• Thought to be more natural

Not easily done at parse timeWe want to use both kinds
of attributes

Compiler Construction 11: Types & attribute grammars !24

Evaluation methods
Dynamic, dependence-based methods
• Build the parse tree
• Build the dependence graph
• Topological sort the dependence graph
• Define attributes in topological order
Rule-based methods (treewalk)
• Analyze rules at compiler-generation time
• Determine a fixed (static) ordering
• Evaluate nodes in that order
Oblivious methods (passes, dataflow)
• Ignore rules & parse tree
• Pick a convenient order (at design time) & use it

Semantic
analysis

Compiler Construction 11: Types & attribute grammars !25

Back to the example
For "-101":

Semantic
analysis

-

Number

Sign

Bit

1

List

Bit

0Bit

1

List

List

Syntax tree

Compiler Construction 11: Types & attribute grammars !26

Back to the example
For "-101":

Semantic
analysis

-

Number

Sign

Bit

1

List

Bit

0Bit

1

List

List

Attributed syntax tree

neg:true pos:0
val:5

pos:0
val:1

pos:1
val:4

pos:2
val:4

pos:2
val:4

pos:1
val:0

val:-5

Compiler Construction 11: Types & attribute grammars !27

Back to the example
For "-101":

Semantic
analysis

-

Number

Sign

Bit

1

List

Bit

0Bit

1

List

List

neg:true pos:0
val:5

pos:0
val:1

pos:1
val:4

pos:2
val:4

pos:2
val:4

pos:1
val:0

val:-5
Inherited attributes

Compiler Construction 11: Types & attribute grammars !28

Back to the example
For "-101":

Semantic
analysis

-

Number

Sign

Bit

1

List

Bit

0Bit

1

List

List

neg:true pos:0
val:5

pos:0
val:1

pos:1
val:4

pos:2
val:4

pos:2
val:4

pos:1
val:0

val:-5
Synthesized attributes

val obtains values 
from children  
and the same node

Compiler Construction 11: Types & attribute grammars !29

Back to the example
For "-101":

Semantic
analysis

-

Number

Sign

Bit

1

List

Bit

0Bit

1

List

List

neg:true pos:0
val:5

pos:0
val:1

pos:1
val:4

pos:2
val:4

pos:2
val:4

pos:1
val:0

val:-5
More synthesized  
attributes

Compiler Construction 11: Types & attribute grammars !30

Back to the example
For "-101":

Semantic
analysis

-

Number

Sign

Bit

1

List

Bit

0Bit

1

List

List

neg:true pos:0
val:5

pos:0
val:1

pos:1
val:4

pos:2
val:4

pos:2
val:4

pos:1
val:0

val:-5
Let’s show the  
computation…

and remove the
syntax tree

Compiler Construction 11: Types & attribute grammars !31

Back to the example
For "-101":

Semantic
analysis

-

1

0

1

neg:true pos:0
val:5

pos:0
val:1

pos:1
val:4

pos:2
val:4

pos:2
val:4

pos:1
val:0

val:-5
All that is left is the
attribute dependence
graph  
This succinctly represents
the flow of values in the
problem instance 
The dynamic methods sort
this graph to find
independent values, then
work along graph edges 
The rule-based methods try
to discover “good” orders
by analyzing the rules

The oblivious methods
ignore the structure of this
graphThe dependence graph

must be acyclic!

Compiler Construction 11: Types & attribute grammars !32

Circularity

• We can only evaluate acyclic instances
• General circularity testing problem is inherently exponential!
• We can prove that some grammars can only generate instances

with acyclic dependence graphs
• Largest such class is “strongly non-circular” grammars (SNC)

[5]
• SNC grammars can be tested in polynomial time
• Failing the SNC test is not conclusive 

• Many evaluation methods discover circularity dynamically 
⇒ Bad property for a compiler to have

Semantic
analysis

Compiler Construction 11: Types & attribute grammars !33

A circular attribute grammar Semantic
analysis

Production Attribution rules
Number → Sign List List.a ← 0  

List0 → List1 Bit  
 
 
 | Bit

List1.a ← List0.a + 1
List0.b ← List1.b 
List1.c ← List1.b + Bit.val 
List0.b ← List0.a + List0.c + Bit.val

Bit → 0
 | 1

Bit.val ← 0  
Bit.val ← 1

The circularity is in the attribution rules,
not the underlying CFG

Compiler Construction 11: Types & attribute grammars !34

Circular grammar example
For "-101":

Semantic
analysis

-

Number

Sign

Bit

1

List

Bit

0Bit

1

List

List

a:0
b: 
c:

val:

Production Attribution rules

Number → Sign List List.a ← 0  

List0 → List1 Bit  
 
 
 
 | Bit

List1.a ← List0.a + 1
List0.b ← List1.b 
List1.c ← List1.b +  
 Bit.val  
List0.b ← List0.a +  
 List0.c + Bit.val

Bit → 0
 | 1

Bit.val ← 0  
Bit.val ← 1

val:

val:
a:
b: 
c:

a:
b: 
c:

Compiler Construction 11: Types & attribute grammars !35

Circular grammar example
For "-101":

Semantic
analysis

-

Number

Sign

Bit

1

List

Bit

0Bit

1

List

List

a:0
b: 
c:

val:

Production Attribution rules

Number → Sign List List.a ← 0  

List0 → List1 Bit  
 
 
 
 | Bit

List1.a ← List0.a + 1
List0.b ← List1.b 
List1.c ← List1.b +  
 Bit.val  
List0.b ← List0.a +  
 List0.c + Bit.val

Bit → 0
 | 1

Bit.val ← 0  
Bit.val ← 1

val:

val:
a:
b: 
c:

a:
b: 
c:

Compiler Construction 11: Types & attribute grammars !36

Circular grammar example
For "-101":

Semantic
analysis

-

Number

Sign

Bit

1

List

Bit

0Bit

1

List

List

a:0
b: 
c:

val:

Production Attribution rules

Number → Sign List List.a ← 0  

List0 → List1 Bit  
 
 
 
 | Bit

List1.a ← List0.a + 1
List0.b ← List1.b 
List1.c ← List1.b +  
 Bit.val  
List0.b ← List0.a +  
 List0.c + Bit.val

Bit → 0
 | 1

Bit.val ← 0  
Bit.val ← 1

val:

val:
a:
b: 
c:

a:
b: 
c:

Compiler Construction 11: Types & attribute grammars !37

Circular grammar example
For "-101":

Semantic
analysis

-

Number

Sign

Bit

1

List

Bit

0Bit

1

List

List

a:0
b: 
c:

val:

Production Attribution rules

Number → Sign List List.a ← 0  

List0 → List1 Bit  
 
 
 
 | Bit

List1.a ← List0.a + 1
List0.b ← List1.b 
List1.c ← List1.b +  
 Bit.val  
List0.b ← List0.a +  
 List0.c + Bit.val

Bit → 0
 | 1

Bit.val ← 0  
Bit.val ← 1

val:

val:
a:
b: 
c:

a:
b: 
c:

Compiler Construction 11: Types & attribute grammars !38

Circular grammar example
For "-101":

Semantic
analysis

-

Number

Sign

Bit

1

List

Bit

0Bit

1

List

List

a:0
b: 
c:

val:

Production Attribution rules

Number → Sign List List.a ← 0  

List0 → List1 Bit  
 
 
 
 | Bit

List1.a ← List0.a + 1
List0.b ← List1.b 
List1.c ← List1.b +  
 Bit.val  
List0.b ← List0.a +  
 List0.c + Bit.val

Bit → 0
 | 1

Bit.val ← 0  
Bit.val ← 1

val:

val:
a:
b: 
c:

a:
b: 
c:

Here is the
circularity!

Compiler Construction 11: Types & attribute grammars !39

Circular grammar example
For "-101":

Semantic
analysis

-

Number

Sign

Bit

1

List

Bit

0Bit

1

List

List

a:0
b: 
c:

val:

Production Attribution rules

Number → Sign List List.a ← 0  

List0 → List1 Bit  
 
 
 
 | Bit

List1.a ← List0.a + 1
List0.b ← List1.b 
List1.c ← List1.b +  
 Bit.val  
List0.b ← List0.a +  
 List0.c + Bit.val

Bit → 0
 | 1

Bit.val ← 0  
Bit.val ← 1

val:

val:
a:
b: 
c:

a:
b: 
c: Here is the

circularity!

Compiler Construction 11: Types & attribute grammars !40

Circularity – the point

• Circular grammars have indeterminate values
• Algorithmic evaluators will fail

• Noncircular grammars evaluate to a unique set of values
• Circular grammar might give rise to noncircular instance

• Probably shouldn’t bet the compiler on it…
⇒ Should (undoubtedly) use provably noncircular grammars

Remember, we are studying AGs to gain insight
• We should avoid circular, indeterminate computations
• If we stick to provably noncircular schemes, evaluation should be

easier

Semantic
analysis

Compiler Construction 11: Types & attribute grammars !41

An extended attribute grammar ex.

Grammar for a basic block

Semantic
analysis

 1 Block0 → Block1 Assign 
 2 | Assign 
 3 Assign → Ident = Expr ; 
 4 Expr0 → Expr1 + Term 
 5 | Expr1 - Term 
 6 | Term
 7 Term0 → Term1 * Factor 
 8 | Term1 / Factor 
 9 | Factor
10 Factor → (Expr)  
11 | Number
12 | Ident

Let’s estimate cycle counts (again) 

• Each operation has a COST
• Add them, bottom up
• Assume a load per value
• Assume no reuse

Simple problem for an attribute  
grammar

Compiler Construction 11: Types & attribute grammars !42

A quick look at basic blocks

Code in a basic block
• has one entry point (at its

start), so no code inside the
block is the destination of a
jump instruction anywhere in
the program

• has one exit point, so only the
last instruction can cause the
program to begin executing
code in a different basic block

• This implies: 
whenever the first instruction in a
basic block is executed, the rest of
the instructions are necessarily
executed exactly once, in order

Semantic
analysis

The code may be source code,
assembly code or some other

sequence of instructions

i = 1;
j = 1;
k = 0;

while (k < 100) {
 if (j < 20) {
 j = i;
 k = k+1;
 } else {
 j = k;
 k = k+2;
 }
}
return j;

i = 1;
j = 1;
k = 0;

 if (j < 20) {

 j = i;
 k = k+1;

 j = k;
 k = k+2;

return j;

while (k < 100) {

B1

B2

B3

B4

B5

B6

Source code

Basic Blocks B1–B6

Compiler Construction 11: Types & attribute grammars !43

An extended example
Grammar for a basic block

Semantic
analysis

 1 Block0 → Block1 Assign  
 2 | Assign  
 3 Assign → Ident = Expr ;  
 4 Expr0 → Expr1 + Term  
  
 5 | Expr1 - Term  
  
 6 | Term
 7 Term0 → Term1 * Factor
 
 8 | Term1 / Factor 

 9 | Factor
10 Factor → (Expr)  
11 | Number
12 | Ident

Block0.cost ← Block1.cost + Assign.cost 
Block0.cost ← Assign.cost 
Assign.cost ← COST(store) + Expr.cost 
Expr0.cost ← Expr1.cost  
 + COST(add) + Term.cost 
Expr0.cost ← Expr1.cost  
 + COST(sub) + Term.cost
Expr0.cost ← Term.cost
Term0.cost ← Term1.cost  
 + COST(mul) + Factor.cost 
Term0.cost ← Expr1.cost  
 + COST(div) + Factor.cost
Term0.cost ← Factor.cost
Factor.cost ← Expr.cost
Factor.cost ← COST(LoadImm)
Factor.cost ← COST(Load)

Compiler Construction 11: Types & attribute grammars !44

An extended example (contd.)

Properties of the example grammar
• All attributes are synthesized ⇒ so-called S-attributed grammar

• Rules can be evaluated bottom-up in a single pass
• Good fit to bottom-up, shift/reduce parser

• Easily understood solution
• Seems to fit the problem well

What about an improvement?
• Values are loaded only once per block (not at each use)
• Need to track which values have been already loaded

Semantic
analysis

Compiler Construction 11: Types & attribute grammars !45

A better execution model

Load tracking adds complexity
• But, most of it is in the “copy rules”
• Every production needs rules to copy Before & After

Semantic
analysis

10 Factor → (Expr)  
 
 
11 | Number
 
12 | Ident  
 
 
 
 

Factor.cost ← Expr.cost 
Expr.before ← Factor.before 
Factor.after ← Expr.after
Factor.cost ← COST(LoadImm) 
Factor.after ← Factor.before
If (Ident.name ∉ Factor.before) 
 then Factor.cost ← COST(Load)
 Factor.after ← Factor.before 
 ∪ {Ident.name}
 else Factor.cost ← 0
 Factor.after ← Factor.before

Compiler Construction 11: Types & attribute grammars !46

A better execution model

Adding load tracking
• This needs sets Before and After for each production
• Must be initialized, updated, and passed around the tree

An example production:

Semantic
analysis

 4 Expr0 → Expr1 + Term  

Expr0 ← Expr1.cost
 + COST(add) + Term.cost 
Expr1.before ← Expr0.before 
Term.before ← Expr1.before
Expr1.after ← Term.after

• These copy rules multiply rapidly
• Each creates an instance of the set
• Lots of work, lots of space, lots of rules to write

Compiler Construction 11: Types & attribute grammars !47

An even better model

What about accounting for finite register sets?
• Before & After must be of limited size
• Adds complexity to Factor → Identifier
• Requires more complex initialization

Jump from tracking loads to tracking registers is small
• Copy rules are already in place
• Some local code to perform the allocation

Semantic
analysis

Compiler Construction 11: Types & attribute grammars !48

…and its extensions

Tracking loads
• Introduced Before and After sets to record loads
• Added ≥ 2 copy rules per production
• Serialized evaluation into execution order
• Made the whole attribute grammar large & cumbersome

Finite register set
• Complicated one production (Factor → Identifier)
• Needed a little fancier initialization
• Changes were quite limited

Why is one change hard and the other easy?

Semantic
analysis

Compiler Construction 11: Types & attribute grammars !49

Summing it up

• Non-local computation needed lots of supporting rules
• Complex local computation was relatively easy

The problems
• Copy rules increase cognitive overhead
• Copy rules increase space requirements

• Need copies of attributes
• Can use pointers, for even more cognitive overhead

• Result is an attributed tree
• Must build the parse tree
• Either search tree for answers or copy them to the root

⇒ in practice, ad-hoc solutions are used (see previous lecture)

Semantic
analysis

Compiler Construction 11: Types & attribute grammars !50

What’s next?

• Three-address code and intermediate representations 

References
[1] Crary, K., et al. (1999) 
 TALx86: A realistic typed assembly language. 
 ACM SIGPLAN Workshop on Compiler Support for System Software Atlanta, GA, USA. 
[2] Kernighan, Brian W. (1984) 
 Why Pascal is not my favorite programming language.  
 Computer Science Technical Report 100, Bell Laboratories, Murray Hill, NJ, USA, July 1981.  
 Available online at http://cm.bell-labs.com/cm/cs/cstr. 
[3] Wirth, Niklaus (1981) 
 Pascal-S: A Subset and its Implementation.  
 In Pascal - The Language and its Implementation 1981: 199-259 
[4] Knuth, D.E. (1990)  
 The genesis of attribute grammars.  
 In: Deransart P., Jourdan M. (eds) Attribute Grammars and their Applications.  
 Lecture Notes in Computer Science, vol 461. Springer, Berlin, Heidelberg 
[5] Kennedy, K., Warren, S.K. (1976)  
 Automatic generation of efficient evaluators for attribute grammars.  
 In: Proceedings of the 3rd ACM SIGACT-SIGPLAN Symposium on Principles on Programming  
 Languages, POPL 1976, pp. 32–49. ACM, New York

Semantic
analysis

