
Compiler Construction
Lecture 5: Introduction to Parsing

2020-01-21
Michael Engel

Compiler Construction 05: Introduction to Parsing !2

Overview
• Compiler structure revisited

• Interaction of scanner and parser
• Context-free languages
• Ambiguity of grammars
• BNF grammars
• Language classes and Chomsky hierarchy

Compiler Construction 05: Introduction to Parsing !3

Stages of a compiler (1)

Lexical analysis (scanning):

– Split source code into lexical units

– Recognize tokens (using regular expressions/automata)

– Token: character sequence relevant to source language grammar 
 

Lexical
analysis

Syntax
analysis

Semantic
analysis

Code
generation

Code
optimization

Source code

character stream

token sequence

machine-level program

x = y + 42 id(x) op(=) id(y) op(+) number(42)

character stream token sequence

Compiler Construction 05: Introduction to Parsing !4

Stages of a compiler (2)

Syntax analysis (parsing)
– Uses grammar of the source language
– Decides if input token sequence can be  

derived from the grammar 
id(x)

op(=)

id(y)

op(+)

number(42)

Lexical
analysis

Semantic
analysis

Code
generation

Code
optimization

Source code

token sequence

machine-level program

Syntax
analysis

syntax tree

Compiler Construction 05: Introduction to Parsing !5

Interaction of scanner and parser

Often, interaction between parser and
scanner takes place
• e.g., parser requests next tokens from

scanner

Lexical
analysis

token

Syntax
analysis

syntax tree

request

id(x)

op(=)

id(y)

op(+)

number(42)

token
sequence

id(x)

op(=)

id(y)

op(+)

number(42)

syntax tree

source code

grammar

[0-9]+ { return(NUMBER); }
[A-Za-z][A-Za-z0-9]* { return(ID); }
= { return(OP); }
\+ { return(OP); }

regular expressions/automaton

scanner parser

Compiler Construction 05: Introduction to Parsing !6

Parsing
• Parsing is the second stage of the compiler’s front end

• it works with program as transformed by the scanner
• it sees a stream of words

• each word is annotated with a syntactic category

• Parser derives a syntactic structure for the program
• it fits the words into a grammatical model of the source

programming language
• Two possible outcomes:

• ✔ input is valid program: builds a concrete model of the
program for use by the later phases of compilation

• ✘ input is not a valid program: report problem and diagnosis

Syntax
analysis

number(42) word (yytext)syntactic category  
(returned token type)

Compiler Construction 05: Introduction to Parsing !7

Definition of parsing
• Task of the parser:

• determining if the program being compiled is a valid sentence
in the syntactic model of the programming language

• A bit more formal:
• the syntactic model is expressed as formal grammar G
• some string of words s is in the language defined by G we

say that G derives s
• for a stream of words s and a grammar G, the parser tries to

build a constructive proof that s can be derived in G
— this is called parsing.

• It’s not as bad as it sounds…
• we let the computer do (most of) the work!

Syntax
analysis

Compiler Construction 05: Introduction to Parsing !8

Specifying language syntax
• We need…

• a formal mechanism for specifying the syntax of the source
language (grammar)

• a systematic method of determining membership in this
formally specified language (parsing)

• Let’s make our lives a bit easier
• we restrict the form of the source language to a set of

languages called context-free languages
• typical parsers can efficiently answer the membership

question for those
• Many different parsing algorithms exist, we will look at

• top-down parsing: recursive descent and LL(1) parsers
• bottom-up parsing: LR(1) parsers

Syntax
analysis

Compiler Construction 05: Introduction to Parsing !9

Parsing approaches in general
• Top-down parsing: recursive descent and LL(1) parsers

• Top-down parsers try to match the input stream against the
productions of the grammar by predicting the next word (at
each point)

• For a limited class of grammars, such prediction can be both
accurate and efficient

• Bottom-up parsing: LR(1) parsers
• Bottom-up parsers work from low-level detail—the actual

sequence of words—and accumulate context until the
derivation is apparent

• Again, there exists a restricted class of grammars for which we
can generate efficient bottom-up parsers

• In practice, these restricted sets of grammars are large enough to
encompass most features of interest in programming languages

Syntax
analysis

Compiler Construction 05: Introduction to Parsing

• We already know a way to express syntax: regular expressions
• Why are regexps not suitable for describing language syntax?

Example: recognizing  
algebraic expressions over variables and the operators +, -, ×, ÷ 
 
 

• This regexp matches e.g. "a+b×c" and "dee÷daa×doo"
• However, there is no way to express operator precedence

• should + or × be executed first in "a+b×c"?
• standard rule from algebra suggests:  

"× and ÷ have precedence over + and -"

!10

Expressing syntax Syntax
analysis

variable = [a…z]([a…z] | [0…9])*
expression = [a…z]([a…z] | [0…9])* ((+|-|×|÷) [a…z]([a…z] | [0…9])*)*

Compiler Construction 05: Introduction to Parsing

• There is no way to express operator precedence
• to enforce evaluation order, algebraic notation uses

parentheses
• Adding parentheses in regexps is tricky…

• an expression can start with a "(", so we need the option for
an initial "(". Similarly, we need the option for a final ")":  
 
 

• This regexp can produce an expression enclosed in parentheses,
but not one with internal parentheses to denote precedence

!11

Expressing syntax: regexps? Syntax
analysis

variable = [a…z]([a…z] | [0…9])*
expression = [a…z]([a…z] | [0…9])* ((+|-|×|÷) [a…z]([a…z] | [0…9])*)*

("("|ε) [a…z]([a…z]|[0…9])* ((+|-|×|÷) [a…z] ([a…z]|[0…9])*)* (")"|ε)

Literal parentheses are printed  

in red and enclosed in "": "("

Compiler Construction 05: Introduction to Parsing

• This regexp can produce an expression enclosed in parentheses, but not
one with internal parentheses to denote precedence

• Internal instances of "(" all occur before a variable
• similarly, the internal instances of ")" all occur after a variable
• so let’s move the closing parenthesis inside the final *: 
 

• This regexp matches both “a+b×c” and “(a+b)×c.”
• it will match any correctly parenthesized expression over variables and

the four operators in the regexp
• Unfortunately, it also matches many syntactically incorrect expressions

• such as “a+(b×c” and “a+b)×c).”
• We cannot write a regexp matching all expressions  

with balanced parentheses: "DFAs cannot count"

!12

Expressing syntax: regexps? Syntax
analysis

("("|ε) [a…z]([a…z]|[0…9])* ((+|-|×|÷) [a…z] ([a…z]|[0…9])*)* (")"|ε)

("("|ε) [a…z]([a…z]|[0…9])* ((+|-|×|÷) [a…z] ([a…z]|[0…9])* (")"|ε))*

Compiler Construction 05: Introduction to Parsing

• We need a more powerful notation than regular expressions
• …that still leads to efficient recognizers

• Traditional solution: use a context-free grammar (CFG)
• grammar G:  

set of rules that describe how to form sentences
• language L(G) defined by G:  

collection of sentences that can be derived from G
• Example: consider the following grammar SN 
 
 

• each line describes a rule or production of the grammar

!13

Context-Free Grammars Syntax
analysis

SheepNoise → baa SheepNoise  
 | baa 🐑

Compiler Construction 05: Introduction to Parsing

• The first rule SheepNoise → baa SheepNoise reads: 
"SheepNoise can derive the word baa followed by more SheepNoise"

• SheepNoise is a syntactic variable representing the set of strings
that can be derived from the grammar
• We call these syntactic variables "nonterminal symbols" NT 

Each word in the language defined by the grammar (baa) is a
"terminal symbol"

• The second rule reads:  
“SheepNoise can also (|) derive the string baa”
• The "|"-notation is a shorthand to avoid writing two separate rules: 

!14

Context-Free Grammars Syntax
analysis

SheepNoise → baa SheepNoise  
 | baa

"|" can be read as "OR": 

the parser can choose either  

the first or the second rule

SheepNoise → baa SheepNoise  
SheepNoise → baa

written in italics

written in bold letters

Compiler Construction 05: Introduction to Parsing !15

Grammars and languages

• Can we figure out which sentences can be derived from a
grammar G?
• i.e., what are valid sentences in the language L(G)?

• First, identify the goal symbol or start symbol of G
• represents the set of all strings in L(G)
• thus, it cannot be one of the words in the language

• Instead, it must be one of the nonterminal symbols introduced
to add structure and abstraction to the language
• Since our grammar SN has only one nonterminal,

SheepNoise must be the start symbol
•

Syntax
analysis

SheepNoise → baa SheepNoise  
 | baa

Compiler Construction 05: Introduction to Parsing !16

Grammars and languages

• Deriving a sentence:
• start with a prototype string that contains just the start symbol,

SheepNoise
• pick a nonterminal symbol, α, in the prototype string
• choose a grammar rule, α → β
• and rewrite (replace) α with β

• Repeat until the prototype string contains no more nonterminals
• the string then consists entirely of words (terminal symbols)

 ⇒ it is a sentence in the language

• every version of the prototype string that can be derived is
called a sentential form

Syntax
analysis

SheepNoise → baa SheepNoise  
 | baa start here

Compiler Construction 05: Introduction to Parsing !17

Grammars and languages

• Examples:

Syntax
analysis

SheepNoise → baa SheepNoise  
 | baa start here

Rule Sentential form
SheepNoise

2 baa

Rewrite with rule 2

Rule Sentential form
SheepNoise

1 baa SheepNoise
2 baa

Rewrite with rule 1, then rule 2

• Rule 1 lengthens the string while rule 2 eliminates the NT SheepNoise
• The string can never contain more than one instance of SheepNoise
• All valid strings are derived by >= 0 applications of rule 1, followed by rule 2
• Applying rule 1 k times followed by rule 2 generates a string with k+1 baas.

Compiler Construction 05: Introduction to Parsing !18

A more useful example… Syntax
analysis

1 Expr → "(" Expr ")"  
2 | Expr Op name
3 | name
4 Op → + 
5 | -
6 | ×
7 | ÷

Rule Sentential form
Expr

2 Expr Op name
6 Expr × name
1 "(" Expr ")" × name
2 "(" Expr Op name ")" × name
4 "(" Expr + name ")" × name
3 "(" name + name ")" × name
Rightmost derivation of "(a + b) × c"

we added rule numbers, these
are not part of the grammar

Expr

OpExpr

Expr

Expr Op

"(" ")"

name(b)

name(c)

×

name(a) + Equivalent  
parse tree

Compiler Construction 05: Introduction to Parsing !19

A more useful example… Syntax
analysis

1 Expr → "(" Expr ")"  
2 | Expr Op name
3 | name
4 Op → + 
5 | -
6 | ×
7 | ÷

Expr

OpExpr

Expr

Expr Op

"(" ")"

name(b)

name(c)

×

name(a) + parse tree

• This simple context-free grammar for
expressions cannot generate a
sentence with unbalanced or
improperly nested parentheses
• Only rule 1 can generate an open

parenthesis; it also generates the
matching close parenthesis

• Thus, it cannot generate strings such
as “a+(b×c” or “a+b)×c)”
• a parser built from the grammar will

not accept such strings
• Context-free grammars allow to specify

constructs that regexps do not

Compiler Construction 05: Introduction to Parsing !20

Order of derivations Syntax
analysis

Rule Sentential form
Expr

2 Expr Op name

6 Expr × name
1 "(" Expr ")" × name
2 "(" Expr Op name ")" × name
4 "(" Expr + name ")" × name
3 "(" name + name ")" × name

Rightmost:  
rewrite, at each step, the rightmost nonterminal

1 Expr → "(" Expr ")"  
2 | Expr Op name
3 | name
4 Op → + 
5 | -
6 | ×
7 | ÷

Expr

OpExpr

Expr

Expr Op

"(" ")"

name(b)

name(c)

×

name(a) +
parse tree  
identical for both!

Rule Sentential form
Expr

2 Expr Op name

1 "(" Expr ")" Op name

2 "(" Expr Op name ")" Op name

3 "(" name Op name ")" Op name

4 "(" name + name ")" Op name

6 "(" name + name ")" × name

Leftmost: rewrite, at each step, the leftmost nonterminal

Compiler Construction 05: Introduction to Parsing !21

Ambiguity of grammars Syntax
analysis

• For the compiler, it is important that each sentence in the
language defined by a context-free grammar has a unique
rightmost (or leftmost) derivation

• A grammar in which multiple rightmost (or leftmost) derivations
exist for a sentence is called an ambiguous grammar
• it can produce multiple derivations and multiple parse trees

• Multiple parse trees imply multiple possible meanings for a
single program! ⚡

Compiler Construction 05: Introduction to Parsing !22

Ambiguity of grammars: example Syntax
analysis

1 Statement → if Expr then Statement else Statement 
2 | if Expr then Statement
3 | Assignment
4 | …other statements…

"dangling else"-
problem in
ALGOL-like
languages 
(e.g. PASCAL)

if Expr1 then if Expr2 then Assignment1 else Assignment2

This statement

has two distinct rightmost derivations with different behaviors:

"else" part is optional

“06-ch03-083-160-9780120884780” — 2011/1/13 — 15:21 — page 91 — #9

3.2 Expressing Syntax 91

The classic example of an ambiguous construct in the grammar for a pro-
gramming language is the if-then-else construct of many Algol-like
languages. The straightforward grammar for if-then-else might be

1 Statement ! if Expr then Statement else Statement

2 | if Expr then Statement

3 | Assignment

4 | . . . other statements . . .

This fragment shows that the else is optional. Unfortunately, the code
fragment

if Expr1 then if Expr2 then Assignment1 else Assignment2

has two distinct rightmost derivations. The difference between them is
simple. The first derivation has Assignment2 controlled by the inner
if, so Assignment2 executes when Expr1 is true and Expr2 is false:

Statement

Expr2 elsethenif Statement

Assignment1

Statement

Assignment2

thenExpr1if

Statement

The second derivation associates the else clause with the first if, so that
Assignment2 executes when Expr1 is false, independent of the value of
Expr2:

else Statement

Assignment2

thenExpr1if

Statement

Expr2 thenif Statement

Assignment1

Statement

Clearly, these two derivations produce different behaviors in the compiled
code.

“06-ch03-083-160-9780120884780” — 2011/1/13 — 15:21 — page 91 — #9

3.2 Expressing Syntax 91

The classic example of an ambiguous construct in the grammar for a pro-
gramming language is the if-then-else construct of many Algol-like
languages. The straightforward grammar for if-then-else might be

1 Statement ! if Expr then Statement else Statement

2 | if Expr then Statement

3 | Assignment

4 | . . . other statements . . .

This fragment shows that the else is optional. Unfortunately, the code
fragment

if Expr1 then if Expr2 then Assignment1 else Assignment2

has two distinct rightmost derivations. The difference between them is
simple. The first derivation has Assignment2 controlled by the inner
if, so Assignment2 executes when Expr1 is true and Expr2 is false:

Statement

Expr2 elsethenif Statement

Assignment1

Statement

Assignment2

thenExpr1if

Statement

The second derivation associates the else clause with the first if, so that
Assignment2 executes when Expr1 is false, independent of the value of
Expr2:

else Statement

Assignment2

thenExpr1if

Statement

Expr2 thenif Statement

Assignment1

Statement

Clearly, these two derivations produce different behaviors in the compiled
code.

Compiler Construction 05: Introduction to Parsing !23

Removing ambiguity Syntax
analysis

1 Statement → if Expr then Statement 
2 | if Expr then WithElse else Statement
3 | Assignment
4 WithElse → if Expr then WithElse else WithElse
5 | Assignment

We can modify the grammar to include a rule that determined which
if controls an else:

This solution restricts the set of statements that can occur in the
then part of an if-then-else construct
• It accepts the same set of sentences as the original grammar
• but ensures that each else has an unambiguous match to a

specific if

Compiler Construction 05: Introduction to Parsing !24

Removing ambiguity: example Syntax
analysis

1 Statement → if Expr then Statement 
2 | if Expr then WithElse else Statement
3 | Assignment
4 WithElse → if Expr then WithElse else WithElse
5 | Assignment

The modified grammar  
has only one rightmost  
derivation for the example

Rule Sentential form
Statement

1 if Expr then Statement

2 if Expr then if Expr then WithElse else Statement

3 if Expr then if Expr then WithElse else Assignment

5 if Expr then if Expr then Assignment else Assignment

if Expr1 then if Expr2 then Assignment1 else Assignment2

Compiler Construction 05: Introduction to Parsing !25

Addendum: Backus-Naur-Form
• The traditional notation to represent a context-free grammar

is called Backus-Naur form (BNF) [1]
• BNF denotes nonterminal symbols by wrapping them in angle

brackets, like ⟨SheepNoise⟩
• Terminal symbols are underlined.
• The symbol ::= means "derives,"  

and the symbol | means "also derives"
• In BNF, the sheep noise grammar becomes:

• This is equivalent to our grammar SN
• …and was easier to typeset in the 1950’s 😉

Syntax
analysis

⟨SheepNoise⟩ ::= baa ⟨SheepNoise⟩
 | baa

Compiler Construction 05: Introduction to Parsing !26

Addendum: Types of languages
• Noam Chomsky (*1928): 

American linguist, philosopher, cognitive scientist,  
historian, social critic, and political activist

• The Chomsky hierarchy is a containment hierarchy  
of classes of formal grammars [2]

• Defines four types (0–3) of  
languages with increasing 
complexity from regular 
languages to recursively 
enumerable

• Accordingly, recognizing the 
language requires a succes- 
sively more complex method

Syntax
analysis

regular languages
(type 3)

context-free
(type 2)

context-sensitive 
(type 1)

recursively enumerable 
(type 0)

Compiler Construction 05: Introduction to Parsing !27

References
[1] P. Naur (Ed.), J.W. Backus, F.L. Bauer, J. Green, C. Katz, J. McCarthy, et al.: 
 Revised report on the algorithmic language Algol 60,  
 Commun. ACM 6 (1) (1963) 1–17
[2] Noam Chomsky, Marcel P. Schützenberger: 
 The algebraic theory of context free languages,  
 In Braffort, P.; Hirschberg, D. (eds.). Computer Programming and Formal Languages  
 Amsterdam: North Holland. pp. 118–161, 1963

