
Compiler Construction
Lecture 1: Motivation and History

Michael Engel

Compiler Construction 01: Motivation and History !2

whoami?
• Michael Engel 

(michael.engel@ntnu.no, http://folk.ntnu.no/michaeng/)
• Studied computer engineering and  

applied mathematics (Univ. Siegen)
• PhD (Univ. Marburg) 2005
• Assist. Prof. TU Dortmund 2007–14
• Leeds Beckett U., Oracle Labs UK 2014–16
• Assoc. Prof. Coburg Univ. 2016–19
• Assoc. Prof. NTNU 2020–…

• Research Interests
Compilers, operating systems, 
parallelization, dependability,  
embedded systems

mailto:michael.engel@ntnu.no
http://folk.ntnu.no/michaeng/

Compiler Construction 01: Motivation and History !3

.org
Timetable

Day Time Location Type

Tue 14:15-15:00 Geologi G1 Lecture/Forelesning

Tue 15:15-16:45 Realfagbygget R8 Recitation/Øving

Fr 12:15-14:00 Sentralbygg 1 S4 Lecture/Forelesning

Literature
Authors Keith Cooper, Linda Torczon

Title Engineering a Compiler
(Second Edition)

ISBN 9780120884780 (hardcover)
9780080916613 (ebook)

+ additional papers, articles, … on my web page

http://use.mazemap.com/?v=1&campuses=ntnu&sharepoitype=identifier&sharepoi=306-S68
http://use.mazemap.com/?v=1&campuses=ntnu&sharepoitype=identifier&sharepoi=360-AU1-103
http://use.mazemap.com/?v=1&campuses=ntnu&sharepoitype=identifier&sharepoi=321-111

Compiler Construction 01: Motivation and History !4

Overview
• History: the evolution of programming

• from plugboards to compilers
• History of compilers
• The compilation process
• Semester overview

• Recitation (15:15–16:45): C crash course

Compiler Construction 01: Motivation and History !5

Evolution of programming
• Early "computers" were electric calculating machines
• "Programming" meant creating a machine configuration

using a plugboard
• Bugs/changes => rewire...

Compiler Construction 01: Motivation and History !6

Evolution of programming
• Early programmable computers:  

“make bits by hand”
– Zuse Z3 punched tape (1943): holes stamped in old cinema film rolls
– later: paper tape

– One word (set of bits) encoded  
per column

– “hole” = log. 1, “no hole” = 0
– e.g. 8 bits (one byte) per column

Compiler Construction 01: Motivation and History !7

What’s on the tape?
• “…it depends”
• Data (text, numbers, …)

• e.g. ASCII characters: 01010111 = 0x57 = “W”
• but also instructions

001 1 1110

Manual tape punch

transport holes
(don’t encode data)

Compiler Construction 01: Motivation and History !8

Instructions on tape
• Early computers (like the Z3) had  

no program storage
• The computer reads one instruction 

after the other from tape
• Later: load program from tape into memory
• Example: part of DEC PDP-11 boot loader on paper tape

(1975) 00011 101
11000 001
00000 000
00010 110
00010 101
11000 010
00000 000
11101 010

○○○●●⋮●○●
●●○○○⋮○○●  
○○○○○⋮○○○
○○○●○⋮●●○  
○○○●○⋮●○●
●●○○○⋮○●○  
○○○○○⋮○○○
●●●○●⋮○●○

Compiler Construction 01: Motivation and History

• Machine instruction on paper tape
• Columns (e.g. bytes) read one after the other

• PDP-11 puts bytes into consecutive memory locations
• Z3 reads and executes instructions 

from tape one after the other

• How can sequences of instructions 
be repeated?
• Simply tape the end of the paper  

tape to the start: create a loop
• How could one implement conditional 

execution of code (if/then/else)?

Building program structures

!9

Compiler Construction 01: Motivation and History !10

A manually created loop

Compiler Construction 01: Motivation and History !11

Programs in memory
• Running code from paper tape is inconvenient
• John von Neumann invented the stored  

program concept (late 1940s)
• Code and data share the same memory

• Until the 1970s, computers 
had front panels with 
switches and lights that 
enabled the operator to  
view and change every  
bit in the system

• Without boot ROM: boot 
loader had to be “toggled” 
in by hand…

DEC PDP11/70 front panel replica 
(3D printed) connected to a Raspberry Pi
running a PDP11 emulator

Compiler Construction 01: Motivation and History !12

Programs in memory
• PDP11 instruction words are always multiples of 16 bits 
 
 
 
 
 

• Would you want to program a computer this way?

016701 = 0 001 110 111 000 001
  
000026 = 0 000 000 000 010 110
 
012702 = 0 001 010 111 000 010
 
000352 = 0 000 000 011 101 010

00011101
11000001  
00000000
00010110  
00010101
11000010  
00000000
11101010

○○○●●●○●
●●○○○○○●  
○○○○○○○○
○○○●○●●○  
○○○●○●○●
●●○○○○●○  
○○○○○○○○
●●●○●○●○

octal binary (16 bit word)

Compiler Construction 01: Motivation and History !13

From machine code to assembly
• Assembler: human readable machine instructions
• Common: 1:1-equivalence of  

assembler instruction to binary machine instruction
• Some assemblers use “pseudo instructions” (ARM, MIPS, RISC-V)

016701  

000026
 
012702
 
000352

005211

○○○●●●○●
●●○○○○○●  
○○○○○○○○
○○○●○●●○  
○○○●○●○●
●●○○○○●○  
○○○○○○○○
●●●○●○●○
○○○○●○●○
●○○○●○○●

016701 000026 MOV 037776,R1

012702 000352 MOV #352,R2

005211 INC @R1

octal encoding 
of machine instr.

equivalent 
assembler instruction

Compiler Construction 01: Motivation and History !14

From binary to assembler
• Assembler instructions consist of  

instruction name (mnemonic) and optional parameters
• Parameters can be constants, register numbers, addresses

016701 000026 MOV 037776,R1
012702 000352 MOV #352,R2
005211 INC @R1
105711 TSTB @R1  
100376 BPL 037756
116162 000002  
037400 MOVB 2(R1),37400(R2)  
005267 177756 INC 037752
000765 BR 037750
177550 .WORD 177550

octal encoding  
of machine instr.

assembler instruction 
with numeric constants

MOV 037776,R1

Instruction
mnemonic:
“MOV”

Parameter 1:
Constant with  
value  
037776 (octal)

Parameter 2:
Register R1

Parameters,  
usually separated  
by commas

Compiler Construction 01: Motivation and History !15

Making assembler (better) readable
• Using “magic numbers” is still quite inconvenient
• Most assemblers support the use of symbolic names 

for constants and memory addresses (“labels”)
• In addition, comments are supported (and ignored 😉)

037744: 016701 000026 MOV 037776,R1
037750: 012702 000352 MOV #352,R2
037754: 005211 INC @R1
037756: 105711 TSTB @R1  
037760: 100376 BPL 037756
037762: 116162 000002  

 037400 MOVB 2(R1),37400(R2)  
037770: 005267 177756 INC 037752
037774: 000765 BR 037750
037776: 177550 .WORD 177550

machine 
instr.

assembler instr. 
using numbers

 mov device,r1@ // get csr address
loop: mov #352,r2 // get offset
offset: inc (r1) // read frame
wait: tstb (r1) // wait for ready
 bpl wait

movb 2(r1),bnk(r2) // store data
 inc loop+2 // bump address
 br loop
device: HSR // csr, or 177560 for teletype

labels symbolic namememory 
address

Compiler Construction 01: Motivation and History !16

From assembler to high-level languages
• Assembler helps (humans) to read machine-language programs
• What’s missing compared to higher-level languages?

• Constructs to enable program structure: 
loops (for, while, do) and conditions (if, switch)

• Variables
• Labels and symbolic names in assembler are just direct aliases for

memory addresses resp. constants
• Data types, structures and objects

• Assembler only knows about machine data types
• Functions/methods

• Declaring, passing and returning of parameters

• Classes and objects…
• Compilers can translate these constructs to machine language

Compiler Construction 01: Motivation and History !17

The compilation process black box

int main()
{
 . . .
 sum = num1 + num2;
 . . .
}

. . .
0xE59F1010
0xE59F0008
0xE0815000
0xE59F5008
. . .

Compiler Construction 01: Motivation and History !18

Example: from C to assembler
C program: convert upper case to
lower case letters
• implemented as C function

• Uses ASCII character encoding:
• ‘A’ = 0x41, ‘B’ = 0x42, ... 

‘a’ = 0x61, ‘b’ = 0x62, …

• If character in c is an upper case  
letter (c in [‘A’, ‘B’, … ‘Z’]), then the  
code adds the difference between  
lower case ‘a' and upper case ‘A’
to variable c

• otherwise, c is returned unchanged

char tolower(char c)
{
 if (c >= 'A' && c <= 'Z')
 c += 'a' - 'A';

 return c;
}

Compiler Construction 01: Motivation and History 19

C to assembler: control structures
Simplification of the C program
• Assembler does not support 

complex “if” instructions
• Only comparison of values 

and conditional jumps
• Compiler changes “and” (&&)

operator into consecutive “if”s
• Shown as simplified C code

• Complex expressions (“c += …”) 
are also broken down
• Three address code 

(two operands, one result)

char tolower(char c)
{
 char temp;

 if (c >= 'A') {
 if (c <= 'Z') { 
 temp = 'a’;
 temp = temp - 'A';
 c = c + temp;
 }
 }

 return c;
}

char tolower(char c)
{
 if (c >= 'A' && c <= 'Z')
 c += 'a' - 'A';

 return c;
}

Compiler Construction 01: Motivation and History 20

C to assembler transformation

Convert simplified C program to ARM (Thumb) assembler
• No variables in assembler: variables in C assigned to

processor registers
• c = r0, temp = r1 AREA text, CODE, READONLY

 EXPORT tolower

tolower
 CMP r0, #0x41
 BLT lowerCase
 CMP r0, #0x5a
 BGT lowerCase
 MOV r1, #0x61
 SUB r1, #0x41
 ADD r0, #r1
lowerCase
 BX lr

 END

char tolower(char c)
{
 char temp;

 if (c >= 'A') {
 if (c <= 'Z') { 
 temp = 'a’;
 temp = temp - 'A';
 c = c + temp;
 }
 }
 return c;
}

Compiler Construction 01: Motivation and History !21

Compilation process in detail

source code in 
high-level language (.c)

preprocessor

preprocessed code

compiler

assembler code (.s)

assembler

machine (“object”)
code (.o)

linker

executable code

loader

debugger

libraries

Compiler Construction 01: Motivation and History !22

Transpilers and other fun things
• Compilers do not always transform high-level languages to

low-level machine code
• Source-to-source-compiler ("transpiler")

• C-to-C, f2c (Fortran to C)
• emscripten: C/C++ to Javascript

• Static binary transformation [3]
• Dynamo optimization

• Just-in-time (JIT) compilation
• Java VM, Android Dalvik/ART JIT
• Transmeta Crusoe

Compiler Construction 01: Motivation and History !23

Example: emscripten
• Source-to-source compiler [1]

• Can transform languages with LLVM compiler frontend (C, C++, ...)
• Runs as LLVM back end, produces JavaScript subset (wasm)

• Example use case: run Doom / Quake (written in C) in browser
#include <stdio.h>
int main() {
 float fact = 1.0;
 int c;
 for (c=1; c<13; ++c) {
 fact *= c;
 }
 printf("%f\n", fact);
}

 (loop $label$2
 (block $label$3
 (local.set $4
 (local.get $3)
)
 (local.set $5
 (i32.lt_s
 (local.get $4)
 (i32.const 13)
)
)
 (if
 (i32.eqz
 (local.get $5)
)
 (br $label$3)

...

⇒ Emscripten ⇒

Compiler Construction 01: Motivation and History !24

A different view of code
• Compilers can also be used in very different domains [5]
• Current research: "matter compiler"

• Map high-level description (design) of a physical thing to
instructions for machines manufacturing the thing

• Check impossible requirements and optimization during
compilation

• Example: 3D printing [5]
• Compiler-generated 3D-printed  

bridge [6]
• Output:  

"G code"  
to control  
3D printer

Compiler Construction 01: Motivation and History !25

Example: carpentry compiler
• Convert design of thing as 3D view to manufacturing code [4]

Material cost: 2.95
Fabrication time: 5

Compiler Construction 01: Motivation and History !26

Semester overview (tentative)
• Structure of a typical compiler
• Frontend

• Scanning
• Parsing and grammars

• Intermediate representations
• Abstract syntax trees (ASTs) and SSA form

• Backend
• Code generation
• Code optimization
• Linking

• Static code analysis

Compiler Construction 01: Motivation and History !27

Design your own language?
20 years of
development 
[2]

Which  
languages
are still
widely used?

• FORTRAN
• COBOL
• LISP
• BASIC

Compiler Construction 01: Motivation and History !28

Design your own language?

xkcd by Randall Munroe: https://imgs.xkcd.com/comics/standards.png
Creative Commons Attribution-NonCommercial 2.5 License

https://imgs.xkcd.com/comics/standards.png
https://creativecommons.org/licenses/by-nc/2.5/

Compiler Construction 01: Motivation and History !29

References
1. Alon Zakai, Emscripten: an LLVM-to-JavaScript compiler, Proceedings of OOPSLA'11
2. Jean E. Sammet, Programming languages: history and future,  

Communications of the ACM, July 1972, https://doi.org/10.1145/361454.361485
3. C. Cifuentes and V. Malhotra, Binary translation: static, dynamic, retargetable?, 

Proceedings of the International Conference on Software Maintenance 1996
4. Chenming Wu, Haisen Zhao, Chandrakana Nandi, Jeffrey I. Lipton, Zachary Tatlock and

Adriana Schulz, Carpentry Compiler, ACM Transactions on Graphics 38(6), 2019
5. Hod Lipson and Melba Kurman, Fabricated: The New World of 3D Printing, Wiley

2013, ISBN: 978-1-118-35063-8, p.
6. "3D Printing And The Complexity Of Compiling Matter" https://www.forbes.com/sites/

valleyvoices/2015/09/02/3d-printing-and-the-complexity-of-compiling-matter/

