
Compiler Construction
Problem Statement 4
Guideline Slides

NTNU

Symbol Tables

— The task is to organize identifiers and strings so that we can
resolve them to memory locations in the finished program

— Variable names and function names are text strings, so we’ll
need to index a table based on those

— For this purpose, ps4_skeleton comes with a hash table
implementation

2

Hash tables in C

— The hash table in the standard library is not really usable so a
separate hash table implementation has been provided for this
exercise.

— This is not a high performance solution but for this sake of this
exercise this is adequate.

3

Using the tlhash.h/c

— The interface has functions to handle tlhash_t structs, that is
• initialize
• finalize
• insert
• lookup
• remove
• obtain all keys
• obtain all values

— Keys and values are just void-pointers, managing what they point
to is for the caller program to take care of.

— There is the symbol_t struct which should be used for this

4

symbol_t struct

The struct which you have to make use of for the symbol table
located in ir.

typedef struct s {
char *name; <----(1)
symtype_t type; <----(2)
node_t *node; <----(3)
size_t seq; <----(4)
size_t nparms; <----(5)
tlhash_t *locals; <----(6)

}

5

symbol_t struct

The struct which you have to make use of for the symbol table
located in ir.
— (1)→Will be Text(name related to the particular symbol)
— (2)→Will be the enumeration (the type i.e. whether it is a

function or a global or a local variable or whether it is a
parameter

— (3)→ root node (of type function)
— (4)→ Sequencing number (for everything but global variables)
— (5)→ Parameter count (for functions)
— (6)→ Hash table of local names

6

What to do

Thing #1 to do
— Skeleton already initializes a global symbol table (global_names)
— Fill it with symbol structs for functions and global vars, i.e.

implement find_globals
— Functions will need their own name table in addition, it can

already be filled in with the parameter names
— Functions also link to their tree node (so that we can traverse a

function’s subtree when knowing its name)
— Number the parameters
— Number functions too

7

What to do

Thing #2 to do
— Traverse each function’s subtree, resolve names (and strings)

within its scope, i.e. implement bind_names
— This will be a mixture of entering declared names into its local

table, and linking used names to the symbol they represent.
— Number local variables
— Look up used identifiers first locally, then globally
— Create a global index of string literals

8

What to do

Thing #3 to do
— Destroy the whole structure that you have created i.e. to

implement the destroy symtab tree.
— This depends on your implementation

9

A global index of string literals

— Strings are only used onece and that happens in the node that
represents them

— The node presently contains a pointer to the string at the data
element.

— When the time comes to generate code, it would be nice to
display all the strings at once

— Therefore:
• Take the pointer and put it in the global string_list
• Keep a count of strings (stringc)
• Remember to size up and resize (grow) the table as appropriate
• Replace the node’s data element with the number of the string it

used to hold

10

1

3

For example:

print_statement

string_data

“foo”

string_data

“bar”

string_data

“baz”

1

4

Becomes:

print_statement

string_data

0

string_data

1

string_data

2

[0] “foo”

[1] “bar”

[2] “baz”

string_list

As usual, I recommend dynamically allocating everything

for regularity, but you're the author

1

5

Local name tables

• Houston, there will be a problem

• VSL admits
BEGIN

VAR x,y,z

z := 42

IF (foo=bar) THEN

BEGIN

VAR x, y

x := z

y := z

END

x := 1

y := 2

END

• There are outer x,y and inner x,y, these are not the same variables

• In the end, we want them in a single, local table for the function

1

6

In other words

FUNC whatever
block

Local #0: x

Local #1: y

Local #2: z

Local #3: x

Local #4: y

x := 1

y := 2

block

x := z

y := z

1

7
Avoiding name clashes

among local variables

FUNC something

locals:

Key Ptr

block

x := 1

y := 2

block

x := z y := z

First scope

Key Ptr

x := 1VAR x,y,z

VAR x,y

New scope!

1

8
Avoiding name clashes

among local variables

FUNC something

locals:

Key Ptr

<foo>

<bar>

<baz>

x := 1

y := 2

block

x := z y := z

First scope

Key Ptr

x

y

z

x := 1VAR x,y,z

VAR x,y

Local vars
block

Symbol y,

Local var #1

Symbol z,

Local var #2

Symbol x,

Local var #0

1

9
Avoiding name clashes

among local variables

FUNC something

locals:

Key Ptr

<foo>

<bar>

<baz>

x := 1

y := 2

block

x := z y := z

First scope

Key Ptr

x

y

z

x := 1

VAR x,y

block

Symbol y,

Local var #1

Symbol z,

Local var #2

Symbol x,

Local var #0

VAR x,y,z

Symbols stored over here,

to keep a function-wide table of them

Lookup x, attach symbol to the tree node

2

0
Avoiding name clashes

among local variables

FUNC something

locals:

Key Ptr

<foo>

<bar>

<baz>

x := 1

y := 2

block

x := z y := z

First scope

Key Ptr

x

y

z

x := 1

VAR x,y

block

Symbol y,

Local var #1

Symbol z,

Local var #2

Symbol x,

Local var #0

VAR x,y,z

Lookup y, attach symbol to the tree node

2

1
Avoiding name clashes

among local variables

FUNC something

locals:

Key Ptr

<foo>

<bar>

<baz>

x := 1

y := 2

block

x := z y := z

First scope

Key Ptr

x

y

z

x := 1

VAR x,y

block

Symbol y,

Local var #1

Symbol z,

Local var #2

Symbol x,

Local var #0

VAR x,y,z

Second scope

Key Ptr

New scope!

2

2
Avoiding name clashes

among local variables

FUNC something

locals:

Key Ptr

<foo>

<bar>

<baz>

<qux>

<norf>

x := 1

y := 2
x := z y := z

First scope

Key Ptr

x

y

z

x := 1

VAR x,y

block

Symbol y,

Local var #1

Symbol z,

Local var #2

Symbol x,

Local var #0

VAR x,y,z

Second scope

Key Ptr

x

y

Local vars..

block

Symbol y,

Local var #4

Symbol x,

Local var #3

2

3
Avoiding name clashes

among local variables

FUNC something

locals:

Key Ptr

<foo>

<bar>

<baz>

<qux>

<norf>

x := 1

y := 2
x := z y := z

First scope

Key Ptr

x

y

z

x := 1

VAR x,y

block

Symbol y,

Local var #1

Symbol z,

Local var #2

Symbol x,

Local var #0

VAR x,y,z

Second scope

Key Ptr

x

y block

Symbol y,

Local var #4

Symbol x,

Local var #3

Lookup x and attach

2

4
Avoiding name clashes

among local variables

FUNC something

locals:

Key Ptr

<foo>

<bar>

<baz>

<qux>

<norf>

x := 1

y := 2
x := z y := z

First scope

Key Ptr

x

y

z

x := 1

VAR x,y

block

Symbol y,

Local var #1

Symbol z,

Local var #2

Symbol x,

Local var #0

VAR x,y,z

Second scope

Key Ptr

x

y block

Symbol y,

Local var #4

Symbol x,

Local var #3

Lookup z and attach.

z isn't in inner scope,

must search down the

stack

2

5
Avoiding name clashes

among local variables

FUNC something

locals:

Key Ptr

<foo>

<bar>

<baz>

<qux>

<norf>

x := 1

y := 2
x := z y := z

First scope

Key Ptr

x

y

z

x := 1

VAR x,y

block

Symbol y,

Local var #1

Symbol z,

Local var #2

Symbol x,

Local var #0

VAR x,y,z

Second scope

Key Ptr

x

y block

Symbol y,

Local var #4

Symbol x,

Local var #3

When block is finished,

remove temporary scope

table from top of stack

2

6
Avoiding name clashes

among local variables

FUNC something

locals:

Key Ptr

<foo>

<bar>

<baz>

<qux>

<norf>

x := 1

y := 2
x := z y := z

First scope

Key Ptr

x

y

z

x := 1

VAR x,y

block

Symbol y,

Local var #1

Symbol z,

Local var #2

Symbol x,

Local var #0

VAR x,y,z

block

Symbol y,

Local var #4

Symbol x,

Local var #3

When block is finished,

remove temporary scope

table from top of stack

2

7
Avoiding name clashes

among local variables

FUNC something

locals:

Key Ptr

<foo>

<bar>

<baz>

<qux>

<norf>

x := 1

y := 2
x := z y := z

x := 1

VAR x,y

block

Symbol y,

Local var #1

Symbol z,

Local var #2

Symbol x,

Local var #0

VAR x,y,z

block

Symbol y,

Local var #4

Symbol x,

Local var #3

Situation under control:

- all the uses of local names are

 bound to their respective symbols,

 it is no longer necessary to look

them up by name

- keys in function name table just need

 to be unique to avoid collisions with

 other local vars and parameters,

 we have a complete collection to lay

 out a stack frame with

2

8

Semantic errors

• Looking up names, we can now tell whether they

were properly declared or not

• It can be helpful to put in an error message or two if

you like to test using your own programs

• What to do with incorrect programs isn't specified, it

is enough work to compile correct ones
– Whether your compiler exits gracefully or crashes and burns on an

incorrect program is up to you

2

9

Blocks need a name table

• But only temporarily:
– While traversing the inner block, looking up “x” should result in the symtab entry for local #3

– When it's finished, we go back to looking up “x” as the symtab entry for local #0

• We can use a stack (yay!) of temporary hash tables
– Push a new one when a block begins

– Put in locally declared names, make them point onwards to the real symtab entry

– Look up names in top-to-bottom order, to resolve closest defining scope

– Pop the temporary table off your stack when the block has ended

• After each node has been linked to the correct symtab entry, it no

longer matters what they are called, but

• Number local variables, so that we can tell inner and outer x-s and y-s

apart

3

0

The latest text dump

• print_symbols and print_bindings are already written,

they are meant to display
– the string table

– the names and indices of contents in global and local symbol tables

– the symtab entries linked from tree nodes

• It could happen that your text dump looks a little

different from the ones I've supplied as guideline
– Particularly, if you hash differently, elements might come out sorted in

different orders, I have not taken the trouble to sort them by

sequence numbers

3

1

However:

• Up to the order things appear in, the indices of functions,

parameters, local variables should match

• Those follow from the structure of the input program, so there's a

correct order to count them in, regardless of how you implement it

• These sequence indices are not arbitrary
– It's not enough that they are unique numbers, so it won't do to keep a single counter

and use it for everything

• In the next chapter, we will use them to calculate addresses in

machine-level code

• Please don't invent alternative numbering schemes

