
Department of Computer Science – IDI
TDT4205

Compiler Design

Assignments for Compiler Construction
Spring 2020

Assignment 2

Please submit solutions on Blackboard by Monday, 17.02.2020 23:59h

2.1 Theory Assignment: Top-down parsing

LL(1) form
Rewrite the following grammar into LL(1) form, by left factoring and eliminate left recursion
The following grammar has been given:
S→ a B T | a B T w K
B→ b
T→ t | ε

K→ K s | s

a. Modify it so that it becomes suitable for LL(1) parsing (Just remove left recursion).

b. Tabulate the FIRST and FOLLOW sets for all nonterminals of the modified grammar, including which n ontermi-
nals are nullable (i.e. can derive the empty string).

c. Construct the LL(1) parsing table of the modified grammar if it is suitable for LL(1) parsing, else show why this
is not suitable for LL(1) parsing.

2.2 Practical Assignment: VSL Specification

The directory in the code archive ps2_skeleton.zip begins a compiler for a slightly modified 64-bit version of VSL (“Very
Simple Language”), defined by Bennett (Introduction to Compiling Techniques, McGraw-Hill, 1990).
Its lexical structure is defined as follows:

• Whitespace consists of the characters ’\t’, ’\n’, ’\r’, ’\v’ and ’ ’. It is ignored after lexical analysis.

• Comments begin with the sequence ’//’, and last until the next ’\n’ char- acter. They are ignored after lexical
analysis.

• Reserved words are as follows:

– def - Function definition

– begin - function beginning

– end - end of function

– return - exit from function

– print - Print to console

– if then else - keywords for conditions

– while do - after the while keyword the condition to be evaluated is written and then the do keyword

– var - for variables

• Basic operators are assignment (:=), the basic arithmetic operators ’+’, ’-’, ’*’, ’/’, and relational operators ’=’, ’<’,
’>’. In addition are the following bitwise operators : ’»’ (rightshift), ’«’ (leftshift), ’∼’ (NOT), ’&’ (AND), ’ ^’ (XOR)
and ’|’ (OR).

Department of Computer Science – IDI
TDT4205

Compiler Design

• Numbers are sequences of one or more decimal digits (’0’ through ’9’).

• Strings are sequences of arbitrary characters other than ’\n’, enclosed in double quote characters ’”’.

• Identifiers are sequences of at least one letter followed by an arbitrary se- quence of letters and digits. Letters
are the upper- and lower-case English alphabet (’A’ through ’Z’ and ’a’ through ’z’), as well as underscore (’_’).
Digits are the decimal digits, as above.

The syntactic structure is given in the context-free grammar on the last page of this document.
Building the program supplied in the archive ps2_skeleton.zip combines the contents of the src/ subdirectory into a
binary src/vslc which reads standard input, and produces a parse tree.
The structure in the vslc directory will be similar throughout subsequent problem sets, as the compiler takes shape. See
the notes set from the PS2 recitation for an explanation of its construction, and notes on writing Lex/Yacc specifications.

2.2.1 Scanner

Complete the Lex scanner specification in src/scanner.l, so that it properly tokenizes VSL programs.

2.2.2 Tree construction

A node_t structure is defined in include/ir.h. Complete the auxiliary functions node_init, and node_finalize so that they
can initialize/free node_t-sized memory areas passed to them by their first argument. The function destroy_subtree
should recursively remove the subtree below a given node, while node_finalize should only remove the memory asso-
ciated with a single node.

2.2.3 Parser

Complete the Yacc parser specification to include the VSL grammar, with se- mantic actions to construct the program’s
parse tree using the functions im- plemented above. The top-level production should assign the root node to the
globally accessible node_t pointer ’root’ (declared in src/vslc.c).

Department of Computer Science – IDI
TDT4205

Compiler Design

program→ global_list
global_list → global | global_list global
global→ f unction | declaration
statement_list → statement | statement_list statement
print_list → print_item | print_list ′,′ print_item
expression_list → expression | expression_list ′,′ expression
variable_list → identi f ier | variable_list ′,′ identi f ier
argument_list → expression_list | ε

parameter_list → variable_list | ε

declaration_list → declaration | declaration_list declaration
f unction→ def identi f ier ′(′ parameter_list ′)′ statement
statement→ assignment_statement | return_statement
statement→ print_statement | i f _statement
statement→ while_statement | null_statement | block
block→ begin declaration_list statement_list end
block→ begin statement_list end
assignment_statement→ identi f ier ′ :′ ′ =′ expression
return_statement→ return expression
print_statement→ print print_list
null_statement→ continue
i f _statement→ if relation then statement
i f _statement→ if relation then statement ELSE statement
whilestatement→ while relation do statement
relation → expression ′ =′ expression
relation → expression ′ <′ expression
relation → expression ′ >′ expression
expression→ expression ′|′ expression
expression→ expression ′∧′ expression
expression→ expression ′&′ expression
expression→ expression ′ >>′ expression
expression→ expression ′ <<′ expression
expression→ expression ′+′ expression
expression→ expression ′−′ expression
expression→ expression ′ ∗′ expression
expression→ expression ′/′ expression
expression→ ′−′ expression
expression→ ′ ˜ ′ expression
expression→ ′(′ expression ′)′

expression→ number | identi f ier | identi f ier ′(′ argument_list ′)′

declaration→ var variable_list
printitem→ expression | string
identi f ier → IDENT IFIER
number→ NUMBER
string→ ST RING

	Theory Assignment: Top-down parsing
	Practical Assignment: VSL Specification
	Scanner
	Tree construction
	Parser

