
Operating Systems
Lecture overview and Q&A Session 8 – 7.3.2022

Michael Engel

Operating Systems Q&A 8 2

Lectures 13 and 14
Real-time scheduling (not relevant for the exam!)
• Real-time problems, deadlines and scheduling
• Rate-monotonic (RM) scheduling
• Earliest deadline first (EDF) scheduling

I/O management and disk scheduling
• I/O device interfacing: buses, interrupts, DMA, addresses
• Polling vs. interrupt-driven I/O
• Device drivers and I/O system layers
• Unix device abstractions and device classes
• Buffering and I/O scheduling

Operating Systems Q&A 8 3

Real-time problems, deadlines and scheduling

• Deadline classification:
• soft: the obtained result (the reaction of the system) is useful

even if it was obtained after the deadline has passed
• firm: the result is useless after the deadline has passed
• hard: if the deadline passes without a system reaction,

damage can occur
• Analysis: Worst-Case Execution Time (WCET)

--
--

20
20

-0
8-

17
--

--
238 5 Evaluation and Validation

compilers exist. This method can be more precise than the previous one, but may
be significantly (and sometimes prohibitively) more time consuming.

In order to obtain su�ciently precise information, communication needs to be con-
sidered as well. Unfortunately, it is typically di�cult to compute communication
cost already during early design phases.

Formal performance evaluation techniques have been proposed by many re-
searchers. For embedded systems, the work of Thiele et al., Henia and Ernst et
al., and Wilhelm et al. is particularly relevant (see, for example, [537, 212] and
[587]). These techniques require some knowledge of architectures. They are less
appropriate for early design phases, but some of them can be used without knowing
all details about target architectures. These approaches model real, physical time.

5.2.2 WCET Estimation

Scheduling of tasks requires knowledge about the duration of task executions, espe-
cially if meeting time constraints has to be guaranteed, as in real-time (RT) systems.
The worst case execution time (WCET) is the basis for most scheduling algorithms.
Some definitions related to the WCET are shown in Fig. 5.4.

Fig. 5.4 WCET-related terms

ESTEST

WCETBCET

WCETBCET

execution times

t

Distribution of

Definition 5.9: The worst case execution time (WCET) is the largest execution time
of a program for any input and any initial execution state.

Unfortunately, the WCET is extremely di�cult to compute. In general, it is un-
decidable whether or not the WCET is finite. This is obvious from the fact that it
is undecidable whether or not a program terminates. Hence, the WCET can only
be computed for certain programs/tasks. For example, for programs without recur-
sion, without while loops and with loops having statically known iteration counts,
decidability is not an issue. But even with such restrictions, it is usually practically
impossible to compute the WCET exactly. The e�ect of modern processor architec-
tures’ pipelines with their di�erent kinds of hazards and memory hierarchies with
limited predictability of hit rates is di�cult to precisely predict at design time. Com-
puting the WCET for systems containing interrupts, virtual memory, and multiple
processors is an even greater challenge. As a result, we must be happy if we are able
to compute good upper bounds on the WCET.

The estimated WCETEST
has to be guaranteed
larger or equal to the real
WCET.

However, the difference
between the two should be
as small as possible ("tight
bounds")

Operating Systems Q&A 8 4

Rate-monotonic (RM) scheduling
A1. All tasks are preemptible at any time
A2. Only compute time is a relevant resource
A3. All tasks are independent
A4. All tasks are periodic
A5. The relative deadline of a task is equal to its period
• Necessary condition for schedulability: the utilization U of the

system is less than or equal to 1:

• no deadline violations if the following condition holds:

 for m → ∞: U <= 0.7

U: system load
m: number of tasks

Assumption: Uniprocessor

Operating Systems Q&A 8 5

Earliest deadline first (EDF) scheduling
• Tasks which are ready are sorted in order of their absolute

deadlines (specified as relative times)
• If the first task in the list has an earlier deadline than the currently

running task, the running task is preempted immediately!
• If a schedule exists which is able to keep all deadlines, then EDF

also keeps all deadlines → EDF is optimal
• …for independent tasks with dynamic priorities!

• Especially for periodic tasks the following holds:
If U ≤ 1, then EDF always finds a valid schedule
(without missing deadlines!)

Operating Systems Q&A 8 6

I/O device interfacing

Keyboard
controller

Video
controller

CPU
main memory

(RAM)

Bus

Disk
controller

Ethernet
controller

6

⚡ ⚡ ⚡
Interrupt

Direct Memory Access
(DMA)

address
0x6000.0000

address
0x8000.0000

address
0xC000.0000 …

address
0x0000.0000-0x3FFF.FFFF

Operating Systems Q&A 8 7

Polling vs. interrupt-driven I/O
Polling:
active waiting
in a loop

Interrupts:
asynchronous
notification
Interrupt handler
communicates with
I/O device

/* Copy character into kernel buffer p */
copy_from_user (buffer, p, count);
/* Loop over all characters */
for (i=0; i<count; i++) {
 /* Wait “actively” until printer is ready */
 while (*printer_status_reg != READY);
 /* Print one character */
 *printer_data_reg = p[i];
}
return_to_user ();

if (count > 0) {
 *printer_data_reg = p[i];
 count--;
 i++;
} else {
 unblock_user ();
}
acknowledge_interrupt ();
return_from_interrupt ();

Operating Systems Q&A 8 8

Device drivers and I/O system layers
Drivers
• Part of the OS that serves as a unified interface for classes

of devices
• Allow applications to be written independent of specific

devices

I/O system layers
• I/O requests travel "down" from user

mode via kernel (device driver)
to the hardware

• Responses (e.g. read data) travel "up"
in the other direction

Operating Systems Q&A 8 9

Unix device abstractions
Unix devices
• Peripheral devices are realized as special files

• Devices can be accessed using read and write operations in
the same way as regular files

• Opening special files creates a connection to the respective
device provided by the device driver

• Direct access to the driver by the user
Classes
• Block oriented special files (block devices)

• Disk drives, tape drives, floppy disks, CD-ROMs
• Character oriented special files (character devices)

• Serial interfaces, printers, audio channels etc.

Operating Systems Q&A 8 10

Buffering and I/O scheduling
Buffering
• Single/double/ring buffering

I/O scheduling
• Consider mechanical properties of devices (e.g. hard disks)

• seek and rotational delay
• Optimization criterium: positioning time
• Examples: FIFO, SSTF, Elevator

I/O
device

operating system user process

moveread

Operating Systems Q&A 8 11

Overview Theoretical Exercise 6
All about real-time scheduling and I/O

Why?

• Real-time is important if you want to work with embedded
systems

• I/O performance is highly relevant for all computer use
cases
• scheduling is not only for processes, but also for I/O

