
Operating Systems
Lecture overview and Q&A Session 7 – 28.2.2022

Michael Engel

Operating Systems Q&A 7 2

Lectures 11 and 12
Inter-process communication
• Message-based communication
• Unix signals, pipes and message queues
• Sockets
• Remote procedure calls (RPC)

Uniprocessor scheduling
• Dispatch states: short/medium/long-term scheduling
• Scheduling algorithms

• FCFS, RR, virtual RR, SPN, SRTF, HRRN
• Feedback scheduling and priorities

• Multi-level scheduling
• Scheduling in Unix and Windows

Operating Systems Q&A 7 3

IPC: Message-based communication
• Multiple processes can cooperate
• Communication using messages

• exchanged (copied) between processes, no shared memory
• operations: send and receive
• synchronous ("rendezvous") or asynchronous

• Communication using shared memory
• synchronisation is important

• Addressing: identifying communication partners
• direct (e.g. process IDs) or indirect (e.g. pipes)
• group addressing: multi/broadcast

• Also important
• message format and transmission parameters

Operating Systems Q&A 7 4

Unix signals, pipes and message queues
• Signals are interrupts implemented in software

• minimal form of IPC: transmits signal number only
• sent by kill(2) syscall or OS kernel, delivered asynch.
• receiving process can choose to ignore some signals
• or register a signal handler that called when signal arrives

• Pipes are channels between to communicating processes
• unidirectional, buffered, reliable, stream oriented
• operations: read and write (character order maintained)
• blocks when pipe is full (write) and empty (read)

• Unix message pipes: “key” (unique) used for identification
• undirected buffered M:N communication, typed msgs.
• blocking & non blocking ops to send/receive messages

Operating Systems Q&A 7 5

Sockets
• General communication endpoints in a computer network

• bidirectional and buffered
• Abstract from details of the communication system

• Socket "domains": Unix, Internet & more
• Domains determine protocol that can be used (e.g. TCP)
• Domains determine the address family (e.g. IP)

• Socket types:
• stream vs. connection vs. message oriented
• reliable vs. unreliable

• Socket operations:
• socket, bind, sendto, recvfrom, listen, accept

Operating Systems Q&A 7 6

Remote Procedure Calls
• RPC = function call between different processes

• high grade of abstraction, usually in user mode library
• One RPC call maps to multiple messages

• request: caller → callee
• contains function name and parameters

• response: callee → caller
• contains result(s) or error message

• Used in many context
• Network file system NFS (SunRPC)
• Linux D-Bus

Operating Systems Q&A 7 7

Dispatch states: short/medium/long-term scheduling

• logical state of process representing its dispatch state
• short-term scheduling (state change µs – ms)

• ready, running, blocked
• medium-term scheduling (ms – minutes)

• swapped and ready, swapped and blocked
• long-term scheduling (minutes – hours)

• created, terminated
• using fork/exec/wait syscalls

Operating Systems Q&A 7 8

Scheduling algorithms (1)
• First-Come First-Served – FCFS (non-preemptive)

• first process arriving is executed first until it terminates
• convoi effect: processes with short CPU bursts

disadvantaged
• Round Robin – RR (preemptive)

• processor time is split into time slices
• when a time slice is used up, a process switch can occur
• efficiency depends on chosen length of the time slice

• Virtual Round Robin – VRR (preemptive)
• proc’s are added to a preferred list when I/O burst ends
• avoids unequal distribution of CPU times with RR
• uses time slices of different lengths

Operating Systems Q&A 7 9

Scheduling algorithms (2)
• Shortest process next – SPN (non-preemptive)

• reduces disadvantage of short CPU bursts with FCFS
• requires knowledge about the process run times
• danger of starvation of CPU-intensive processes

• Shortest Remaining Time First – SRTF (SPN+preemption)
• running process preempted when expected CPU burst or

arriving process < remaining CPU burst of current one
• not based on timer interrupts, nevertheless preemptive
• processes can also starve using SRTF

• Highest Response Ratio Next – HRRN
• considers aging of processes (waiting time R)
• always selects the process with the highest value of R

Operating Systems Q&A 7 10

Feedback scheduling and priorities
• Short processes obtain an advantage without having to

estimate the relative lengths of processes (preemptive)
• penalization of long running processes

• Multiple ready lists according to number of priority levels
• priorities can decrease over time

• Short processes finish in a relatively short amount of time,
but long processes can starve

• Priorities can be static or dynamic
• static priorities are defined when a process is created
• dynamic priorities are updated while a process is running

Operating Systems Q&A 7 11

Multi-level scheduling
• Combine different scheduling strategies
• e.g. support of

• interactive and background processing or
• realtime and non-realtime processing

• interactive / real-time critical processes are preferred
• implementation typically uses multiple ready lists

• every ready list has its own scheduling strategy
• lists are typically processed using priority, FCFS or RR

• Usually very complex

Operating Systems Q&A 7 12

Scheduling in Unix and Windows
• Traditional Unix: two step preemptive approach

• high-level: mid term, using swapping
• low-level: short term preemptive, MLFB, dyn. proc. prio’s

• 4.3 BSD Unix
• Smoothing for processes that are woken up and were

blocked for more than 1 second
• Windows NT

• Preemptive, prio- & time slice-based thread scheduling
• Priority classes
• thread type determines time quantum available to the thread
• adaptive priorities

• dynamic boost temporarily increases prio of interactive
processes

Operating Systems Q&A 7 13

Overview Theoretical Exercise 5
All about scheduling

Why?

• Scheduling algorithms are central to the operation of a
multitasking OS

• Many different approaches
• No "golden solution" that is appropriate for all use cases

• Complex solution
• enable better adaptation e.g. to dynamically changing

requirements and operating conditions

Operating Systems Q&A 7 14

Overview Practical Exercise 2
Communication and multithreading: write a multithreaded web server

• Requires the combination of knowledge
• IPC using sockets (lecture 11)
• Multithreading (lecture 5)
• Implementing advanced synchronization using counting semaphores

and a variant of the producer/consumer problem (lecture 6/7)

• Available this evening: exercise sheet + header files with API definitions
• Three weeks time, no extensions given! Start early!

• We use pthreads as multithreading support library
• Many tutorials on pthreads are available
• This one is a short but useful one with code examples:

https://www.cs.cmu.edu/afs/cs/academic/class/15492-f07/www/
pthreads.html

https://www.cs.cmu.edu/afs/cs/academic/class/15492-f07/www/pthreads.html
https://www.cs.cmu.edu/afs/cs/academic/class/15492-f07/www/pthreads.html

