
Operating Systems
Lecture overview and Q&A Session 4 – 7.2.2022

Michael Engel

Operating Systems Q&A 4 2

Lectures 5 and 6
Threads
• Overhead of process creation
• Lightweight processes – threads and fibers
• Threads in Linux and Windows
• Duff’s Device

Concurrency: Mutual Exclusion and Synchronization
• Synchronization problems – race conditions
• Critical sections
• Locks – examples: bakery algorithm, atomic operations
• Semaphores
• Monitors

Operating Systems Q&A 4 3

Threads – Overhead of process creation
• Copying the address space when forking takes a lot of time

• Fast process creation when immediately calling exec
• Modern solution: copy on write

• Other approach to implement parallel activities: Threads
• Difference processes ↔ threads

• Processes have separate address spaces
• Ensured by copy on write (read-only pages can be

shared)
• Threads of a process share a single address space

• Threads have separate execution paths
• Each thread still needs a separate stack

Operating Systems Q&A 4 4

Threads in Linux and Windows
• Windows:

• Process: provides environment and address space for
threads
• But has no execution context in itself!

• A Win32 process always contains at least one thread
• Thread: unit executing code

• Linux:
• processes without threads are the traditional Unix model
• Linux implements POSIX threads using the pthreads

library
• all threads and processes are internally managed as tasks

• scheduler does not differentiate between those

Operating Systems Q&A 4 5

Lightweight processes – threads vs. fibers
• user-level threads, green threads or featherweight processes
• Implemented on application level only

• operating system doesn’t know about them
• thus, scheduling affects the whole process

• Advantages:
• Extremely fast context switch – No switch to kernel mode
• Every application can choose best suited library

• Disadvantages:
• Blocking a single fiber leads to blocking the whole

process (since the OS doesn’t know about fibers)
• No speed advantage from multiprocessor systems

Operating Systems Q&A 4 6

Duff’s Device
• A bad hack that was used in production (in the 1970s…)
• Basic idea (code fixed to compile on modern Unix):

• reduce loop overhead by unrolling
• abuse the C compiler by

jumping into the middle
of a loop

• This worked because
the compiler (used to)
generate a jump back
to the start of the loop
when compiling the
while instruction

• Please don’t write code
like this…

send(short *to, short *from, int count)
{
 int n = (count + 7) / 8;
 switch (count % 8) {
 case 0: do { *to = *from++;
 case 7: *to = *from++;
 case 6: *to = *from++;
 case 5: *to = *from++;
 case 4: *to = *from++;
 case 3: *to = *from++;
 case 2: *to = *from++;
 case 1: *to = *from++;
 } while (--n > 0); 
 }
}

first iteration jumps
here for
count = 3,11,19,…

jumps to
start of loop
at end of do-loop

number of unrolled
do-loop iterations

Operating Systems Q&A 4 7

Concurrency – Synchronization problems – race conditions

• Remember – threads share code and data
• Access to shared data by two or more threads is error-

prone
• Race condition

• multiple processes access shared data concurrently and
at least one of the processes manipulates the data

• the resulting value of the shared data is dependent on
the order of access by the processes

• result is therefore not predictable and can also be
incorrect in case of overlapping accesses!

• Synchronization required to ensure safe concurrent access
• creates an order for the activities of concurrent processes

Operating Systems Q&A 4 8

Critical sections
• In the case of a race condition, N processes compete for the access to

shared data
• The code fragments accessing these critical data are called critical

sections
• Problem

• We need to ensure that only a single process can be in the critical
section at the same time

• Solution: Lock variables with operations wait and signal

Semaphore lock; /* = 1: use semaphore as lock variable */
void enqueue (struct list *list, struct element *item) {
 item->next = NULL;
 wait (&lock); // try to obtain the lock

 *list->tail = item; // this is the
 list->tail = &item->next; // critical section!

 signal (&lock); // release the lock
}

Operating Systems Q&A 4 9

Locks
Different approaches to implement locks:
• Bakery algorithm

• Assign waiting number to process that wants to enter a
critical section

• Admission to critical section in order of waiting numbers
• Slow, problematic for multicore systems

• Atomic operations
• read/modify/write a memory location in a single cycle
• cannot be interrupted by other processes or cores
• requires hardware support – special machine instruction

• Interrupt control
• Disable interrupt before, enable after critical section
• Large overhead, not useful on multicores

Operating Systems Q&A 4 10

Semaphores
Semaphore:
“a non-negative integer number” with two atomic operations
• acquire using "p"/"down"/"wait" (different names)

• if the semaphore has the value 0, the process calling p is
blocked

• otherwise, the semaphore value is decremented and the critical
section can be entered

• release using "v"/"up"/"signal"
• if a process waiting for the semaphore (due to a previous call to

p), it is unblocked
• otherwise, the semaphore is incremented by 1

• Semaphores are an operating system abstraction to exchange
synchronization signals between concurrent processes

• Complex use patterns, e.g. different reader/writer problems

Operating Systems Q&A 4 11

Monitors
• A monitor is an abstract data type with implicit

synchronization properties
• multilateral synchronization at the interface to the monitor

• mutual exclusion of the execution of all monitor
methods

• unilateral synchronization inside of the monitors using
condition variables
• wait blocks a process until a signal or condition

occurs and implicitly releases the monitor again
• signal indicates that a signal or condition has

occurred and unblocks (exactly one or all) processes
blocking on this event

• Monitors require support by the programming language

Operating Systems Q&A 4 12

Q&As – Processes
• Why is it important that a parent process needs to check upon (with

wait()) a child process that has terminated?
From the Linux wait(2) manpage:
• In the case of a terminated child, performing a wait allows the system to

release the resources associated with the child; if a wait is not
performed, then the terminated child remains in a "zombie" state.

• A child that terminates, but has not been waited for becomes a "zombie".
The kernel maintains a minimal set of information about the zombie
process (PID, termination status, resource usage information) in order to
allow the parent to later perform a wait to obtain information about the
child.

• As long as a zombie is not removed from the system via a wait, it will
consume a slot in the kernel process table, and if this table fills, it will not
be possible to create further processes. If a parent process terminates,
then its "zombie" children (if any) are adopted by init(1), […];
init(1) automatically performs a wait to remove the zombies.

Operating Systems Q&A 4 13

Q&As – Processes
• What is an exit status for a process?

• The exit status is an integer number. 0 exit status means the command
was successful without any errors. A non-zero (1-255 values) exit status
means command was a failure.

A program doesn’t start at main!
…instead, there is startup code in
crt0 that is automatically linked
and which calls main, which has
an int return type.
See lecture 8 for some details on crt0 (C runtime zero) and program startup.

int main(int argc, char **argv) {
 …
 exit(42);
}

int main(int argc, char **argv) {
 …
 return 42;
}

explicit call to exit (➛ syscall)
never returns

implicit call to exit when main
returns (startup code in crt0)

Operating Systems Q&A 4 14

Q&As – Processes
• How can I use the exit status?

• If a program is started from the shell, the shell variable $? contains the
exit status value of the last executed command:

$ ls
foo.c
$ rm farg.c; echo $?
1
$ touch farg.c; rm farg.c; echo $?
0

farg.c does not exist, trying
to delete it fails ➛ $? = 1

We create farg.c first, then try
to delete it ➛ works ➛ $? = 0

Operating Systems Q&A 4 15

Q&As – Processes
• How can I use the exit status?
• If a child process is created using fork (the shell also does this, of

course), the exit value can be obtained using wait(2):
int status;
if (fork() > 0) {
 pid = wait(&status);
 printf("End of proc %d\n", pid);
 if (WIFEXITED(status)) {
 printf("Process exit(%d).\n",
 WEXITSTATUS(status));
 }
}

parent process waits for
termination of child, passes
pointer to status variable

If process exited normally
(other reason could be killed
by a signal – WIFSIGNALED)

Extract the exit code from
the status variable using
WEXITSTATUS

#define __WEXITSTATUS(status) (((status) & 0xff00) >> 8)
#define __WTERMSIG(status) ((status) & 0x7f)
#define __WIFEXITED(status) (__WTERMSIG(status) == 0)

/usr/include/x86_64-linux-gnu/bits/waitstatus.h

See example code qa4_wait.c on the web page

https://folk.ntnu.no/michaeng/tdt4186_22/sources/qa4_wait.c

Operating Systems Q&A 4 16

Q&As – Threads
• Hva er forskjellen mellom kernel level og user level threads, og når bruker man

hva?
• Kernel threads are scheduled by the kernel (D’oh!), i.e. each thread has an entry

in a kernel table and can thus be scheduled. Linux implements kernel threads as
processes that share an address space. In tools like htop, the threads show up
with separate process ids:

• User mode threads have a lower switching overhead since it’s just a "goto" (jump)
• Multi-threaded (User-level) applications cannot take advantage of

multiprocessing. Why?
• The OS does not know multiple threads exist inside of a process. A process is

(without kernel threads) always assigned to a single core, switching between user
threads is an operation like any other process operation

See example code qa4_pthreads.c linked on the course web page

https://folk.ntnu.no/michaeng/tdt4186_22/sources/qa4_pthreads.c

Operating Systems Q&A 4 17

Q&As – Threads
• Let's say I have an app (a process) with two threads, where one has the

responsibility to upload real time data to a server and the other for something
else. As a gamer, will we need to implement user level threads? Or how is it
done?

• There are libraries for user mode as well as kernel mode threads in Linux/Unix.
The commonly used library is called pthreads (POSIX threads, see the
previous example)

• Pthreads could be implemented as user-mode threads – it’s just a portable
specification how to use OS-specific threads. However, all implementations I
have seen use kernel threads

• We will supply a pthreads tutorial later this week!
• The original threading library in Java, GreenThreads, was a user-level threading

implementation
• You could create user-level threads (see the protothreads example from

lecture 5), e.g. using the setjmp/longjmp calls
• Linux has additional support, see setcontext(2) and makecontext(3)

Operating Systems Q&A 4 18

Q&As – Windows?
• How to compile and run code if you have a Windows machine?
• The Windows Subsystem

for Linux (WSL) is a
virtual machine* that allows
to run a Linux system
from within Windows 10/11

• Different Linux distributions
• If you are new to Linux,

try Ubuntu
• You can use your preferred

Windows editor
• See details at

https://docs.microsoft.com/en-us/windows/wsl/install

* This is true for the current version WSL2,
the previous WSL1 used a Linux system call
emulation on top of the Windows kernel.

https://docs.microsoft.com/en-us/windows/wsl/install

Operating Systems Q&A 4 19

Q&As – Compiling code?
• How to compile and run code on Linux/macOS/WSL?
• Simply on the command line (shell):

• What if you have multiple source code files?

• On (Ubuntu) Linux (also in WSL) you need the build-essentials package:
sudo apt install build-essential

• On macOS, install Xcode from the App Store or from Terminal.app:
xcode-select --install

• For more complex programs use Makefiles – https://makefiletutorial.com

$ gcc -o prog prog.c
$./prog # run it!

The prompt "$" is
printed by the shell

Call the gcc compiler to
compile "prog.c" and
link an executable "prog"

$ gcc -o prog file1.c file2.c # or
$ gcc -c file1.c # create object file file1.o
$ gcc -c file2.c # create object file file2.o
$ gcc -o prog file1.o file2.o # link executable

https://makefiletutorial.com

Operating Systems Q&A 4 20

Overview Theoretical Exercise 2
It’s all about parallel execution, semaphores and deadlocks

Why?

• parallel programming is hard and error-prone
• we do not teach it in the first semesters

• …but almost all computers have multiple cores today
• operating systems implement and require parallel activities

• e.g. to share data between an interrupt handler and the
OS kernel

Operating Systems Q&A 4 21

The forum question
• We are currently discussing setting up a Discourse server

• open source solution
(https://github.com/discourse/discourse)

• the maths department seems to use it as well as
TDT4120…

• Still work in progress – sorry…

https://github.com/discourse/discourse

