
Operating Systems
Lecture overview and Q&A Session 3 – 31.01.2022

Michael Engel

Operating Systems Q&A 3 2

Lectures 3 and 4
Challenges and tasks of an operating system
• Operating system abstractions
• Tasks
• Problems
• Challenges

Processes
• Unix process hierarchy
• Shells and I/O redirection
• Unix philosophy
• Process creation and related syscalls
• Details of Unix processes

Operating Systems Q&A 3 3

Operating system abstractions
• Processes as an abstraction – different definitions

• "A process is a program in execution" – precise enough?
• Process context in PCB (process control block):

CPU state, memory, files, meta info (owner, mode, …)
• Different process models

• multiprogramming
• concurrent processes
• CPU multiplexing

• Process states and transition diagram
• Basic model: Running, Ready, Blocked
• Which transitions are permitted and which are not?

Operating Systems Q&A 3 4

Operating system abstractions
• CPU scheduling

• process synchronisation
• Inter-process communication (IPC)

• Memory hierarchy
• from fast and small to large and slow:

registers → cache → RAM → disk
• Main memory management

• Virtual memory
• Disk management

• disk organisation
• file systems
• access control

Operating Systems Q&A 3 5

Challenges
• Modern computer architecture

• No longer the simple machines from the 1980s…
• Multi- and manycore computers

• How to enable load distribution and good utilisation?
• NUMA – non unified memory access

• Main memory with different access latencies and
throughputs

• Hardware virtualization
• Share a computer between different operating systems, not

only different processes
• Cloud computing

• Use virtualization to provide highly available, adaptive
services

Operating Systems Q&A 3 6

The Unix process hierarchy
• Simple process state diagram revisited
• The Unix process hierarchy

• process IDs
• process inheritance: parent/child processes
• the init process and its role

• Unix shells and process management (job control)
• shell commands
• I/O channels of processes

• stdin, stdout, stderr
• I/O redirection and shell pipelines

Operating Systems Q&A 3 7

Unix philosophy
• "do one thing and do it well"

• small programs designed to do a single task
• Is this still the case today? Check the ls command…

• "work together"
• processes can use the output of other processes as

input without any specific considerations
• Pipelines avoid the creation of temporary files

• "handle text streams"
• a simple, but universal interface for exchanging data

between processes
• Is this good enough for today’s requirements?

Operating Systems Q&A 3 8

Process creation and related syscalls
• The concept of system calls

• they look like regular function calls…
• System modes: user and kernel

• syscalls are controlled transitions

• Syscalls for process control
• create, destroy, wait, terminate,

check status

• Creating the process hierarchy: fork(2)
• one process calls, but fork returns twice!
• sharing of code and data between parent and child process
• copy-on-write mechanism for efficiency

When Unix functionality is mentioned,
the number in brackets gives the section

of the man pages the functionality is
described in, here section 2 (syscalls)

Operating Systems Q&A 3 9

Details of Unix processes
• Process termination

• exit, the function that never returns…
• Process termination and orphaned child processes

• The role of the init process
• Process interaction

• wait syscalls
• zombie processes

• Executing another program: the exec family
• Different variants for different use cases
• All use the same exec syscall, variants handled by libc

• Discussion about combining fork and exec syscalls
• More realistic Unix process state diagram

Operating Systems Q&A 3 10

Further organisation
• First theoretical exercise

• Handout: last Friday (28.1.)
• Submission deadline: this Friday (4.2.)

• First practical exercise
• Mandatory
• Handout: today (31.1.)
• Submission deadline: + 3 weeks: 21.2.

• Hints and questions for the first practical exercise also in
the live session next Monday

Operating Systems Q&A 3 11

Overview Theoretical Exercise 1
1.1 Unix processes and the shell
• Revisiting the init process and its role
• Man page reading – finding relevant information
• Shell command behaviour

1.2 fork
• Unrestricted resource access can be problematic
• Behaviour of fork and its return values

1.3 Process execution order
• Parent-child process relation

Operating Systems Q&A 3 12

Overview Practical Exercise 1
• Build an alarm clock!

• …using the Unix system
calls you know from the
lectures, e.g. fork, exec, wait…

• Learn about time in Unix
• It’s not quite simple

• Write a complex and (somewhat)
useful C program for Unix
• Do it in some smaller steps

• This is a complex task – you have three weeks time (and
are supposed to work in a team), so please use the time!

Creative Commons Attribution 2.0 Generic
by shixart1985

Operating Systems Q&A 3 13

The forum question
• We are currently discussing setting up a Discourse server

• open source solution
(https://github.com/discourse/discourse)

• the maths department seems to use it…

• More on this later this week – sorry for the further delay

https://github.com/discourse/discourse

