
Embedded & Real-time Operating Systems

Peter Marwedel

TU Dortmund, Informatik 12

Germany

2013年 11 月 26 日 These slides use Microsoft clip arts. Microsoft copyright restrictions apply.

©
 S

p
ri
n
g
e
r,

 2
0
1
0

 - 2 -
 p. marwedel,

informatik 12, 2013

Structure of this course

2:

Specification

3:

ES-hardware

4: system

software (RTOS,

middleware, …)

8:

Test

5: Evaluation &

validation (energy, cost,

performance, …)

7: Optimization

6: Application

mapping

A
p
p
lic

a
ti
o
n
 K

n
o
w

le
d
g
e

 Design

repository
Design

Numbers denote sequence of chapters

 - 3 -
 p. marwedel,

informatik 12, 2013

Increasing design complexity + Stringent time-to-

market requirements Reuse of components

Reuse requires knowledge from previous designs

to be made available in the form of

intellectual property (IP, for SW & HW).

 HW

 Operating systems

 Middleware (Communication, data bases, …)

 ….

 - 4 -
 p. marwedel,

informatik 12, 2013

Embedded operating systems

- Characteristics: Configurability -

Configurability

No overhead for unused functions tolerated,

no single OS fits all needs,  configurability needed.

 Object-orientation could lead to a of derivation

subclasses.

 Aspect-oriented programming

 Conditional compilation (using #if and #ifdef commands).

 Advanced compile-time evaluation useful.

 Linker-time optimization (removal of unused functions)

Dynamic data might be replaced by static data.

 - 5 -
 p. marwedel,

informatik 12, 2013

Example: Configuration of VxWorks

© Windriver

h
tt

p
:/

/w
w

w
.w

in
d

ri
v
e

r.
c
o

m
/p

ro
d

u
c
ts

/d
e
v
e

lo
p
m

e
n

t_
to

o
ls

/i
d
e
/t

o
rn

a
d
o
2

/t
o

rn
a

d
o

_
2
_
d
s
.p

d
f

 - 6 -
 p. marwedel,

informatik 12, 2013

Verification of derived OS?

Verification a potential problem of systems

with a large number of derived OSs:

 Each derived OS must be tested thoroughly;

 Potential problem for eCos

(open source RTOS from Red Hat),

including 100 to 200 configuration points

[Takada, 2001].

 - 7 -
 p. marwedel,

informatik 12, 2013

Embedded operating systems

 - Characteristics: Disk and network handled by tasks -

 Effectively no device needs to be supported by all

variants of the OS, except maybe the system timer.

 Many ES without disk, a keyboard, a screen or a mouse.

 Disk & network handled by tasks instead of integrated

drivers.

Embedded OS Standard OS

kernel

 - 8 -
 p. marwedel,

informatik 12, 2013

Example: WindRiver Platform Industrial Automation

© Windriver

 - 9 -
 p. marwedel,

informatik 12, 2013

Embedded operating systems

- Characteristics: Protection is optional-

Protection mechanisms not always necessary:

ES typically designed for a single purpose,

untested programs rarely loaded, SW considered reliable.

Privileged I/O instructions not necessary and

tasks can do their own I/O.

Example: Let switch be the address of some switch

Simply use

 load register,switch

instead of OS call.

However, protection mechanisms may be needed for safety

and security reasons.

 - 10 -
 p. marwedel,

informatik 12, 2013

Embedded operating systems

- Characteristics: Interrupts not restricted to OS -

Interrupts can be employed by any process

For standard OS: serious source of unreliability.

Since

 embedded programs can be considered to be tested,

 since protection is not always necessary and

 since efficient control over a variety of devices is required,

 it is possible to let interrupts directly start or stop SW

(by storing the start address in the interrupt table).

 More efficient than going through OS services.

 Reduced composability: if SW is connected to an interrupt,

it may be difficult to add more SW which also needs to be

started by an event.

 - 11 -
 p. marwedel,

informatik 12, 2013

Embedded operating systems

- Characteristics: Real-time capability-

Many embedded systems are real-time (RT) systems and,

hence, the OSs used in these systems must be real-time

operating systems (RTOSs).

 - 12 -
 p. marwedel,

informatik 12, 2013

RT operating systems - Definition and

requirement 1: predictability -

Def.: (A) real-time operating system is an operating system

that supports the construction of real-time systems.

The following are the three key requirements

1. The timing behavior of the OS must be predictable.

 services of the OS: Upper bound on the execution time!

RTOSs must be timing-predictable:

 short times during which interrupts are disabled,

 (for hard disks:) contiguous files to avoid

unpredictable head movements.

 [Takada, 2001]

 - 13 -
 p. marwedel,

informatik 12, 2013

Real-time operating systems requirement 2:

Managing timing

2. OS should manage the timing and scheduling

 OS possibly has to be aware of task deadlines;

(unless scheduling is done off-line).

 Frequently, the OS should provide precise time services

with high resolution.

[Takada, 2001]

 - 14 -
 p. marwedel,

informatik 12, 2013

Time

Time plays a central role in “real-time” systems

Physical time: real numbers

Computers: mostly discrete time

 Relative time: clock ticks in some resolution

 Absolute time: wall clock time

• International atomic time TAI

(french: temps atomic internationale)

Free of any artifacts.

• Universal Time Coordinated (UTC)

UTC is defined by astronomical standards

 TAI and UTC identical on Jan. 1st, 1958.

 30 seconds had to be added since then.

 Not without problems: New Year may start twice per night.

 - 15 -
 p. marwedel,

informatik 12, 2013

Internal synchronization

 Synchronization with one master clock

• Typically used in startup-phases

 Distributed synchronization:

1. Collect information from neighbors

2. Compute correction value

3. Set correction value.

Precision of step 1 depends on how information is

collected:

• Application level: ~500 µs to 5 ms

• Operation system kernel: 10 µs to 100 µs

• Communication hardware: < 10 µs

 - 16 -
 p. marwedel,

informatik 12, 2013

External synchronization

External synchronization guarantees consistency

with actual physical time.

Trend is to use GPS for ext. synchronization

GPS offers TAI and UTC time information.

Resolution is about 100 ns.

© Dell

GPS mouse

 - 17 -
 p. marwedel,

informatik 12, 2013

Problems with external synchronization

Problematic from the perspective of fault tolerance:

Erroneous values are copied to all stations.

Consequence: Accepting only small changes to local time.

Many time formats too restricted;

e.g.: NTP protocol includes only years up to 2036

For time services and global synchronization of clocks see

Kopetz, 1997.

 - 18 -
 p. marwedel,

informatik 12, 2013

Real-time operating systems requirement 3:

Speed

3. The OS must be fast

Practically important.

[Takada, 2001]

 - 19 -
 p. marwedel,

informatik 12, 2013

RTOS-Kernels

Distinction between

 real-time kernels and modified kernels of standard OSes.

Distinction between

 general RTOSs and RTOSs for specific domains,

 standard APIs (e.g. POSIX RT-Extension of Unix,

ITRON, OSEK) or proprietary APIs.

Source: R. Gupta, UCSD

 - 20 -
 p. marwedel,

informatik 12, 2013

Functionality of RTOS-Kernels

Includes

 processor management,

 memory management,

 and timer management;

 task management (resume, wait etc),

 inter-task communication and synchronization.

resource management

 - 21 -
 p. marwedel,

informatik 12, 2013

Classes of RTOSes:

1. Fast proprietary kernels

For complex systems, these kernels are inadequate,

because they are designed to be fast, rather than to be

predictable in every respect

[R. Gupta, UCI/UCSD]

Examples include

 QNX, PDOS, VCOS, VTRX32, VxWORKS.

Source: R. Gupta, UCSD

 - 22 -
 p. marwedel,

informatik 12, 2013

Classes of RTOSs:

2. RT extensions to standard OSs

Attempt to exploit comfortable main stream OS.

RT-kernel running all RT-tasks.

Standard-OS executed as one task.

+ Crash of standard-OS does not affect RT-tasks;

- RT-tasks cannot use Standard-OS services;

 less comfortable than expected

Source: R. Gupta, UCSD

 - 23 -
 p. marwedel,

informatik 12, 2013

Example: RT-Linux

RT-tasks

cannot use standard OS calls.

Commercially available from

fsmlabs (www.fsmlabs.com)

Hardware

RT-Task RT-Task

RT-Linux
RT-Scheduler

Linux-Kernel

driver

scheduler

Init Bash Mozilla

interrupts

interrupts

interrupts

I/O

 - 24 -
 p. marwedel,

informatik 12, 2013

Example (2):

RTAI – Real Time Application Interface

https://www.rtai.org/

Fixes to many of the sources for unpredictability in Linux

Hardware abstraction layer in between hardware and Linux

 - 25 -
 p. marwedel,

informatik 12, 2013

Evaluation

According to Gupta, trying to use a version of a standard

OS:

not the correct approach because too many basic and

inappropriate underlying assumptions still exist such as

optimizing for the average case (rather than the worst case),

... ignoring most if not all semantic information, and

independent CPU scheduling and resource allocation.

Dependences between tasks not frequent for most

applications of std. OSs & therefore frequently ignored.

Situation different for ES since dependences between tasks

are quite common.

Source: R. Gupta, UCSD

 - 26 -
 p. marwedel,

informatik 12, 2013

Classes of RTOSs:

3. Research trying to avoid limitations

Research systems trying to avoid limitations.

Include MARS, Spring, MARUTI, Arts, Hartos, DARK, and

Melody

Research issues [Takada, 2001]:

 low overhead memory protection,

 temporal protection of computing resources

 RTOSes for on-chip multiprocessors

 support for continuous media

 quality of service (QoS) control.

Source: R. Gupta, UCSD

Resource Access Protocols

Peter Marwedel

Informatik 12

TU Dortmund

Germany

These slides use Microsoft clip arts. Microsoft copyright restrictions apply.

©
 S

p
ri
n
g
e
r,

 2
0
1
0

 - 28 -
 p. marwedel,

informatik 12, 2013

Resource access protocols

Critical sections: sections of code at which exclusive access

to some resource must be guaranteed.

Can be guaranteed with semaphores S or “mutexes”*.

P(S)

V(S)

P(S)

V(S)

P(S) checks semaphore to see

if resource is available

and if yes, sets S to “used“.

Uninterruptible operations!

If no, calling task has to wait.

V(S): sets S to “unused“ and

starts sleeping task (if any).

Mutually

exclusive

access

to resource

guarded by

S

Task 1 Task 2

* Note the differences in ownership: http://roshansingh.

wordpress.com/ 2010/11/17/mutex-vs-semaphore/

 - 29 -
 p. marwedel,

informatik 12, 2013

Blocking due to mutual exclusion

Priority T1 assumed to be > than priority of T2.

If T2 requests exclusive access first (at t0),

T1 has to wait until T2 releases the resource (at time t3):

For 2 tasks:

blocking is bounded by the length of the critical section

 - 30 -
 p. marwedel,

informatik 12, 2013

Blocking with >2 tasks can exceed

the length of any critical section

Priority of T1 > priority of T2 > priority of T3.

T2 preempts T3: T2 can prevent T3 from releasing the resource.

Priority inversion!

 - 31 -
 p. marwedel,

informatik 12, 2013

The MARS Pathfinder problem (1)

“But a few days into the mission,

not long after Pathfinder started

gathering meteorological data, the

spacecraft began experiencing

total system resets, each resulting

in losses of data. The press

reported these failures in terms

such as "software glitches" and

"the computer was trying to do too

many things at once".” …

http://research.microsoft.com/~mbj/

Mars_Pathfinder/Mars_Pathfinder.html

mars.jpl.nasa.gov

 - 32 -
 p. marwedel,

informatik 12, 2013

The MARS Pathfinder problem (2)

“VxWorks provides preemptive priority scheduling of threads.

Tasks on the Pathfinder spacecraft were executed as threads

with priorities that were assigned in the usual manner reflecting

the relative urgency of these tasks.”

“Pathfinder contained an "information bus", which you can

think of as a shared memory area used for passing information

between different components of the spacecraft.”

 A bus management task ran frequently with high priority

to move certain kinds of data in and out of the

information bus. Access to the bus was synchronized

with mutual exclusion locks (mutexes).”

http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html

 - 33 -
 p. marwedel,

informatik 12, 2013

The MARS Pathfinder problem (3)

 The meteorological data gathering task ran as an

infrequent, low priority thread, … When publishing its data,

it would acquire a mutex, do writes to the bus, and release

the mutex. ..

 The spacecraft also contained a communications task that

ran with medium priority.”



High priority: retrieval of data from shared memory

Medium priority: communications task

Low priority: thread collecting meteorological data

http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html

 - 34 -
 p. marwedel,

informatik 12, 2013

The MARS Pathfinder problem (4)

“… However, very infrequently it was possible for an interrupt to occur

that caused the (medium priority) communications task to be scheduled

during the short interval while the (high priority) information bus thread

was blocked waiting for the (low priority) meteorological data thread.

In this case, the long-running communications task, having higher priority

than the meteorological task, would prevent it from running, consequently

preventing the blocked information bus task from running.

After some time had passed, a watchdog timer would go off, notice that

the data bus task had not been executed for some time, conclude that

something had gone drastically wrong, and initiate a total system reset.”

http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html

 - 35 -
 p. marwedel,

informatik 12, 2013

Solutions

Disallow preemption during the execution of all critical

sections. Simple, but creates unnecessary blocking as

unrelated tasks may be blocked.

T
1

T
1

blocked

normal execution critical section

T
2

P(S) V(S)

T
3

t

P(S) V(S)

Source: Thiele, Buttazzo

 - 36 -
 p. marwedel,

informatik 12, 2013

Coping with priority inversion:

the priority inheritance protocol

 Tasks are scheduled according to their active priorities.

Tasks with the same priorities are scheduled FCFS.

 If task T1 executes P(S) & exclusive access granted to T2:

T1 will become blocked.

If priority(T2) < priority(T1): T2 inherits the priority of T1.

 T2 resumes.

Rule: tasks inherit the highest priority of tasks blocked by it.

 When T2 executes V(S), its priority is decreased to the

highest priority of the tasks blocked by it.

If no other task blocked by T2: priority(T2):= original value.

Highest priority task so far blocked on S is resumed.

 Transitive: if T2 blocks T1 and T1 blocks T0,

then T2 inherits the priority of T0.

 - 37 -
 p. marwedel,

informatik 12, 2013

Example

T3 inherits the

priority of T1

and T3

resumes.

How would priority inheritance affect our example with 3 tasks?

leviRTS animation

 - 38 -
 p. marwedel,

informatik 12, 2013

Nested critical sections

 - 39 -
 p. marwedel,

informatik 12, 2013

Transitiveness of priority inheritance

Source: Buttazzo, Thiele

[P/V added@TU Do]

 - 40 -
 p. marwedel,

informatik 12, 2013

Deadlock is possible

Problem exists also when no priority inheritance is used

T
1

blocked on b

normal execution critical section

T
2

b t

P(Sb)

a

b

Source: Thiele, Buttazzo

P(Sa)

P(Sb)

V(Sb)

V(Sa)

…
P(Sb)

P(Sa)

V(Sa)

V(Sb)

…
T

1
T

2 P(Sa) P(Sb)

P(Sa)

blocked on a

 - 41 -
 p. marwedel,

informatik 12, 2013

Priority inversion on Mars

Priority inheritance also solved the Mars Pathfinder problem:

the VxWorks operating system used in the pathfinder

implements a flag for the calls to mutex primitives. This flag

allows priority inheritance to be set to “on”. When the software

was shipped, it was set to “off”.

The problem on Mars was

corrected by using the

debugging facilities of VxWorks

to change the flag to “on”, while

the Pathfinder was already on

the Mars [Jones, 1997].
mars.jpl.nasa.gov

 - 42 -
 p. marwedel,

informatik 12, 2013

Remarks on priority inheritance protocol

Possibly large number of tasks with high priority.

Possible deadlocks.

Ongoing debate about problems with the protocol:

Victor Yodaiken: Against Priority Inheritance, Sept. 2004,
http://www.fsmlabs.com/resources/white_papers/priority-inheritance/

Finds application in ADA: During rendez-vous,

task priority is set to the maximum.

Protocol for fixed set of tasks: priority ceiling protocol.

 - 43 -
 p. marwedel,

informatik 12, 2013

Summary

 General requirements for embedded

operating systems

• Configurability

• I/O

• Interrupts

 General properties of real-time operating systems
• Predictability

• Time services

• Synchronization

• Classes of RTOSs,

• Device driver embedding

 Priority inversion
• The problem

• Priority inheritance

 - 44 -
 p. marwedel,

informatik 12, 2013

SPARES

 - 45 -
 p. marwedel,

informatik 12, 2013

Byzantine Error

Erroneous local clocks can have an impact on the computed

local time.

Advanced algorithms are fault-tolerant with respect to

Byzantine errors. Excluding k erroneous clocks is possible

with 3k+1 clocks (largest and smallest values will be

excluded.

Many publications in this area.

t

k=1

 - 46 -
 p. marwedel,

informatik 12, 2013

Virtual machines

 Emulate several processors on a single real processor

 Running

• As Single process (Java virtual machine)

• On bare hardware

• Allows several operating systems to be executed on top

• Very good shielding between applications

 Temporal behavior?

