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Structure of this course 

2: 
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3:  

ES-hardware 

4: system 

software (RTOS, 

middleware, …) 

8: 
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5: Evaluation & 
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Numbers denote sequence of chapters 
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Increasing design complexity + Stringent time-to- 

market requirements Reuse of components 

Reuse requires knowledge from previous designs 

to be made available in the form of 

intellectual property (IP, for SW & HW). 

 

 HW 

 Operating systems 

 Middleware (Communication, data bases, …) 

 …. 
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Embedded operating systems 

- Characteristics: Configurability - 

Configurability 

No overhead for unused functions tolerated, 

no single OS fits all needs,  configurability needed. 

 Object-orientation could lead to a of derivation 

subclasses. 

 Aspect-oriented programming 

 Conditional compilation (using #if and #ifdef commands). 

 Advanced compile-time evaluation useful. 

 Linker-time optimization (removal of unused functions) 

Dynamic data might be replaced by static data. 
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Example: Configuration of VxWorks 

© Windriver 
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Verification of derived OS?  

Verification a potential problem of systems 

with a large number of derived OSs: 

 Each derived OS must be tested thoroughly; 

 Potential problem for eCos 

(open source RTOS from Red Hat), 

including 100 to 200 configuration points 

[Takada, 2001]. 
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Embedded operating systems  

 - Characteristics: Disk and network handled by tasks - 

 Effectively no device needs to be supported by all 

variants of the OS, except maybe the system timer.  

 Many ES without disk, a keyboard, a screen or a mouse. 

 Disk & network handled by tasks instead of integrated 

drivers.  

Embedded OS Standard OS 

kernel 
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Example: WindRiver Platform Industrial Automation 

© Windriver 
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Embedded operating systems  

- Characteristics: Protection is optional- 

Protection mechanisms not always necessary: 

ES typically designed for a single purpose, 

untested programs rarely loaded, SW considered reliable. 

Privileged I/O instructions not necessary and 

tasks can do their own I/O. 

Example: Let switch be the address of some switch 

Simply use 

      load register,switch 

instead of OS call. 

However, protection mechanisms may be needed for safety 

and security reasons. 
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Embedded operating systems  

- Characteristics: Interrupts not restricted to OS - 

Interrupts can be employed by any process 

For standard OS: serious source of unreliability. 

Since  

 embedded programs can be considered to be tested,  

 since protection is not always necessary and 

 since efficient control over a variety of devices is required, 

 it is possible to let interrupts directly start or stop SW 

(by storing the start address in the interrupt table). 

 More efficient than going through OS services. 

 Reduced composability: if SW is connected to an interrupt, 

it may be difficult to add more SW which also needs to be 

started by an event. 



 -  11 - 
 p. marwedel,  

informatik 12,  2013 

Embedded operating systems 

- Characteristics: Real-time capability- 

Many embedded systems are real-time (RT) systems and, 

hence, the OSs used in these systems must be real-time 

operating systems (RTOSs).  
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RT operating systems - Definition and 

requirement 1: predictability - 

Def.: (A) real-time operating system is an operating system 

that supports the construction of real-time systems. 

The following are the three key requirements 

1. The timing behavior of the OS must be predictable. 

 services of the OS: Upper bound on the execution time! 

RTOSs must be timing-predictable: 

 short times during which interrupts are disabled, 

 (for hard disks:) contiguous files  to avoid 

unpredictable head movements. 

     [Takada, 2001] 
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Real-time operating systems requirement 2: 

Managing timing 

2. OS should manage the timing and scheduling 

 OS possibly has to be aware of task deadlines; 

(unless scheduling is done off-line). 

 Frequently, the OS should provide precise time services 

with high resolution. 

[Takada, 2001] 
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Time 

Time plays a central role in “real-time” systems 

Physical time: real numbers 

Computers: mostly discrete time 

 Relative time: clock ticks in some resolution 

 Absolute time: wall clock time 

• International atomic time TAI 

(french: temps atomic internationale) 

Free of any artifacts. 

• Universal Time Coordinated (UTC) 

UTC is defined by astronomical standards 

     TAI and UTC identical on Jan. 1st, 1958. 

       30 seconds had to be added since then. 

       Not without problems: New Year may start twice per night. 
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Internal synchronization 

 Synchronization with one master clock 

• Typically used in startup-phases 

 Distributed synchronization: 

1. Collect information from neighbors 

2. Compute correction value 

3. Set correction value. 

Precision of step 1 depends on how information is 

collected: 

• Application level:                 ~500 µs to 5 ms 

• Operation system kernel:   10 µs to 100 µs 

• Communication hardware: < 10 µs 
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External synchronization 

External synchronization guarantees consistency 

with actual physical time. 

Trend is to use GPS for ext. synchronization 

GPS offers TAI and UTC time information. 

Resolution is about 100 ns. 

© Dell 

GPS mouse 
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Problems with external synchronization 

Problematic from the perspective of fault tolerance: 

Erroneous values are copied to all stations. 

Consequence: Accepting only small changes to local time. 

Many time formats too restricted; 

e.g.: NTP protocol includes only years up to 2036  

For time services and global synchronization of clocks see 

Kopetz, 1997. 
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Real-time operating systems requirement 3: 

Speed 

3. The OS must be fast 

Practically important. 

[Takada, 2001] 
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RTOS-Kernels 

Distinction between 

 real-time kernels and modified kernels of standard OSes. 

Distinction between 

 general RTOSs and RTOSs for specific domains, 

 standard APIs (e.g. POSIX RT-Extension of Unix, 

ITRON, OSEK) or proprietary APIs. 

Source: R. Gupta, UCSD 



 -  20 - 
 p. marwedel,  

informatik 12,  2013 

Functionality of RTOS-Kernels 

Includes 

 processor management,  

 memory management, 

 and timer management; 

 task management (resume, wait etc), 

 inter-task communication and synchronization. 

resource management 
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Classes of RTOSes: 

1. Fast proprietary kernels 

For complex systems, these kernels are inadequate, 

because they are designed to be fast, rather than to be 

predictable in every respect 

[R. Gupta, UCI/UCSD] 

Examples include 

 QNX, PDOS, VCOS, VTRX32, VxWORKS.  

Source: R. Gupta, UCSD 
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Classes of RTOSs: 

2. RT extensions to standard OSs 

Attempt to exploit comfortable main stream OS.  

RT-kernel running all RT-tasks. 

Standard-OS executed as one task.  

+ Crash of standard-OS does not affect RT-tasks; 

-  RT-tasks cannot use Standard-OS services; 

   less comfortable than expected  

Source: R. Gupta, UCSD 
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Example: RT-Linux 

RT-tasks 

cannot use standard OS calls. 

Commercially available from 

fsmlabs (www.fsmlabs.com) 

Hardware 

RT-Task RT-Task 

RT-Linux 
RT-Scheduler 

Linux-Kernel 

driver 

scheduler 

Init Bash Mozilla 

interrupts 

interrupts 

interrupts 

I/O 



 -  24 - 
 p. marwedel,  

informatik 12,  2013 

Example (2):  

RTAI – Real Time Application Interface 

https://www.rtai.org/ 

 

Fixes to many of the sources for unpredictability in Linux 

 

Hardware abstraction layer in between hardware and Linux 
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Evaluation 

According to Gupta, trying to use a version of a standard 

OS: 

not the correct approach because too many basic and 

inappropriate underlying assumptions still exist such as 

optimizing for the average case (rather than the worst case), 

... ignoring most if not all semantic information, and 

independent CPU scheduling and resource allocation. 

Dependences between tasks not frequent for most 

applications of std. OSs & therefore frequently ignored. 

Situation different for ES since dependences between tasks 

are quite common. 

Source: R. Gupta, UCSD 
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Classes of RTOSs: 

3. Research trying to avoid limitations  

Research systems trying to avoid limitations. 

Include MARS, Spring, MARUTI, Arts, Hartos, DARK, and 

Melody 

Research issues [Takada, 2001]:  

 low overhead memory protection, 

 temporal protection of computing resources  

 RTOSes for on-chip multiprocessors 

 support for continuous media 

 quality of service (QoS) control. 

Source: R. Gupta, UCSD 



Resource Access Protocols 

Peter Marwedel 

Informatik 12 

TU Dortmund 

Germany 

These slides use Microsoft clip arts. Microsoft copyright restrictions apply.  

©
 S

p
ri
n
g
e
r,

 2
0
1
0

 



 -  28 - 
 p. marwedel,  

informatik 12,  2013 

Resource access protocols 

Critical sections: sections of code at which exclusive access 

to some resource must be guaranteed. 

Can be guaranteed with semaphores S or “mutexes”*. 

P(S) 

V(S) 

P(S) 

V(S) 

P(S) checks semaphore to see 

if resource is available  

and if yes, sets S to “used“. 

Uninterruptible operations! 

If no, calling task has to wait. 

V(S): sets S to “unused“ and 

starts sleeping task (if any). 

Mutually 

exclusive 

access 

to resource 

guarded by 

S 

Task 1 Task 2 

* Note the differences in ownership: http://roshansingh. 

wordpress.com/ 2010/11/17/mutex-vs-semaphore/ 
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Blocking due to mutual exclusion 

Priority T1 assumed to be > than priority of T2. 

If T2 requests exclusive access first (at t0), 

T1 has to wait until T2 releases the resource (at time t3): 

For 2 tasks: 

blocking is bounded by the length of the critical section 
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Blocking with >2 tasks can exceed 

the length of any critical section 

Priority of T1 > priority of T2 > priority of T3. 

T2 preempts T3: T2 can prevent T3 from releasing the resource. 

Priority inversion! 
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The MARS Pathfinder problem (1) 

“But a few days into the mission, 

not long after Pathfinder started 

gathering meteorological data, the 

spacecraft began experiencing 

total system resets, each resulting 

in losses of data. The press 

reported these failures in terms 

such as "software glitches" and 

"the computer was trying to do too 

many things at once".” … 

http://research.microsoft.com/~mbj/ 

Mars_Pathfinder/Mars_Pathfinder.html 

mars.jpl.nasa.gov 
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The MARS Pathfinder problem (2) 

“VxWorks provides preemptive priority scheduling of threads. 

Tasks on the Pathfinder spacecraft were executed as threads 

with priorities that were assigned in the usual manner reflecting 

the relative urgency of these tasks.” 

“Pathfinder contained an "information bus", which you can 

think of as a shared memory area used for passing information 

between different components of the spacecraft.” 

 A bus management task ran frequently with high priority 

to move certain kinds of data in and out of the 

information bus. Access to the bus was synchronized 

with mutual exclusion locks (mutexes).”  

http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html 
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The MARS Pathfinder problem (3) 

 The meteorological data gathering task ran as an 

infrequent, low priority thread, … When publishing its data, 

it would acquire a mutex, do writes to the bus, and release 

the mutex. .. 

 The spacecraft also contained a communications task that 

ran with medium priority.” 

 

High priority:      retrieval of data from shared memory 

Medium priority: communications task 

Low priority:       thread collecting meteorological data 

http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html 
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The MARS Pathfinder problem (4) 

“… However, very infrequently it was possible for an interrupt to occur 

that caused the (medium priority) communications task to be scheduled 

during the short interval while the (high priority) information bus thread 

was blocked waiting for the (low priority) meteorological data thread. 

In this case, the long-running communications task, having higher priority 

than the  meteorological task, would prevent it from running, consequently 

preventing the blocked information bus task from running. 

After some time had passed, a watchdog timer would go off, notice that 

the data bus task had not been executed for some time, conclude that 

something had gone drastically wrong, and initiate a total system reset.” 

http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html 



 -  35 - 
 p. marwedel,  

informatik 12,  2013 

Solutions 

Disallow preemption during the execution of all critical 

sections. Simple, but creates unnecessary blocking as 

unrelated tasks may be blocked. 

T 
1 

T 
1 

blocked 

normal execution critical section 

T 
2 

P(S) V(S) 

T 
3 

t 

P(S) V(S) 

Source: Thiele, Buttazzo 
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Coping with priority inversion: 

the priority inheritance protocol 

 Tasks are scheduled according to their active priorities. 

Tasks with the same priorities are scheduled FCFS. 

 If task T1 executes P(S) & exclusive access granted to T2: 

T1 will become blocked. 

If priority(T2) < priority(T1): T2 inherits the priority of T1. 

 T2 resumes.  

Rule: tasks inherit the highest priority of tasks blocked by it. 

 When T2 executes  V(S), its priority is decreased to the 

highest priority of the tasks blocked by it. 

If no other task blocked by T2: priority(T2):= original value.  

Highest priority task so far blocked on S is resumed. 

 Transitive: if T2 blocks T1 and T1 blocks T0, 

then T2 inherits the priority of T0. 
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Example 

T3 inherits the 

priority of T1 

and T3 

resumes. 

How would priority inheritance affect our example with 3 tasks? 

leviRTS animation 
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Nested critical sections 
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Transitiveness of priority inheritance 

Source: Buttazzo, Thiele 

[P/V added@TU Do] 
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Deadlock is possible 

Problem exists also when no priority inheritance is used 

T 
1 

blocked on b 

normal execution critical section 

T 
2 

b t 

P(Sb) 

a 

b 

Source: Thiele, Buttazzo 

P(Sa) 

P(Sb) 

V(Sb) 

V(Sa) 

… 
P(Sb) 

P(Sa) 

V(Sa) 

V(Sb) 

… 
T 

1 
T 

2 P(Sa) P(Sb) 

P(Sa) 

blocked on a 
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Priority inversion on Mars 

Priority inheritance also solved the Mars Pathfinder problem: 

the VxWorks operating system used in the pathfinder 

implements a flag for the calls to mutex primitives. This flag 

allows priority inheritance to be set to “on”. When the software 

was shipped, it was set to “off”.  

The problem on Mars was 

corrected by using the 

debugging facilities of VxWorks 

to change the flag to “on”, while 

the Pathfinder was already on 

the Mars [Jones, 1997]. 
mars.jpl.nasa.gov 
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Remarks on priority inheritance protocol 

Possibly large number of tasks with high priority. 

Possible deadlocks. 

Ongoing debate about problems with the protocol: 

Victor Yodaiken: Against Priority Inheritance, Sept. 2004, 
http://www.fsmlabs.com/resources/white_papers/priority-inheritance/ 

Finds application in ADA: During rendez-vous, 

task priority is set to the maximum. 

Protocol for fixed set of tasks: priority ceiling protocol. 
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Summary 

 General requirements for embedded 

operating systems 

• Configurability 

• I/O 

• Interrupts 

 General properties of real-time operating systems 
• Predictability 

• Time services 

• Synchronization 

• Classes of RTOSs, 

• Device driver embedding 

 Priority inversion 
• The problem 

• Priority inheritance 
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SPARES 
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Byzantine Error 

Erroneous local clocks can have an impact on the computed 

local time. 

Advanced algorithms are fault-tolerant with respect to 

Byzantine errors. Excluding k erroneous clocks is possible 

with 3k+1 clocks (largest and smallest values will be 

excluded. 

Many publications in this area. 

t 

k=1 
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Virtual machines 

 Emulate several processors on a single real processor 

 Running  

• As Single process (Java virtual machine) 

• On bare hardware 

• Allows several operating systems to be executed on top 

• Very good shielding between applications 

 Temporal behavior? 


