
Operating Systems
Lecture 10: Virtual memory

Michael Engel

Operating Systems 10: Virtual memory 2

Memory management revisited
• The operating system has to collaborate closely with the hardware

to enable efficient memory management
• Segmentation and/or page-based addressing
• The implicit indirection implemented when accessing memory

enables the OS to move programs and data in memory while a
program is running

• The OS additionally has to make strategic decisions
• Placement strategy (first fit, best fit, Buddy, ...)

• These differ in the resulting fragmentation as well as the
overhead for memory allocation and release

• Selection of a strategy depends on the expected
application profile

• When swapping segments or paging:
• Loading strategy
• Replacement strategy ⇒ more on this in this lecture!

Operating Systems 10: Virtual memory 3

Locality of memory accesses
• The execution of single

instructions only requires the
presence of very few memory
pages

• This strong locality also
manifests itself over longer
periods of time
• e.g., instructions are usually

executed one after the other
(without jumps or exceptions)

• This locality can be exploited
when the system is running
out of available main memory
• e.g. using overlays

Operating Systems 10: Virtual memory 4

The idea of “virtual memory”
• Decouple the memory requirements from the available amount of

main memory
• Processes do not access all memory locations with the same

frequency
• certain instructions are used (executed) only very infrequently

or not at all (e.g. error handling code)
• certain data structures are not used to their full extent

• Processes can use more memory than available as main memory

• Idea:
• Create the illusion of a large main memory
• Make currently used memory areas available in main memory
• Intercept accesses to areas currently not present in main memory
• Provide required areas on demand
• Swap or page out areas which are (currently) not used

Operating Systems 10: Virtual memory 5

Demand paging
• Providing pages on demand

A0
B1
C2
D3

4
5

6

7
E8
F9

10
11

G12

1

0

1

0

0

0

0

0

1

0

0

0

1

2

14

1

5

7

11

4

presence bit

0
C1
A2

3
G4

5
6

E8

Background storage

C

D A

FG

B

E

0:

4:

8:

12:

16:

Vi
rtu

al
 a

dd
re

ss
 s

pa
ce

P
ag

e
ta

bl
e

P
ag

e
fra

m
es

 in
 m

em
or

y

Operating Systems 10: Virtual memory 6

Demand paging
• Reaction to a page fault

A0
B1
C2
D3

4
5

6

7
E8
F9

10
11

G12Vi
rtu

al
 a

dd
re

ss
 s

pa
ce

P
ag

e
ta

bl
e

1

0

1

0

0

0

0

0

1

0

0

0

1

2

14

1

5

7

11

4

presence bit

P
ag

e
fra

m
es

 in
 m

em
or

y 0
C1
A2

3
G4

5
6

E8

Background storage

C

D A

FG

B

E

0:

4:

8:

12:

16:

…
load v from F
…

Operating
system

Trap!

Operating Systems 10: Virtual memory 7

Demand paging
• Reaction to a page fault

A0
B1
C2
D3

4
5

6

7
E8
F9

10
11

G12Vi
rtu

al
 a

dd
re

ss
 s

pa
ce

P
ag

e
ta

bl
e

1

0

1

0

0

0

0

0

1

0

0

0

1

2

14

1

5

7

11

4

presence bit

P
ag

e
fra

m
es

 in
 m

em
or

y 0
C1
A2

3
G4

5
6

E8

Background storage

C

D A

FG

B

E

0:

4:

8:

12:

16:

…
load v from F
…

Operating
system

Trap!

F

search for the requested
memory page

page in requested
memory page

Operating Systems 10: Virtual memory 8

Demand paging
• Reaction to a page fault

A0
B1
C2
D3

4
5

6

7
E8
F9

10
11

G12Vi
rtu

al
 a

dd
re

ss
 s

pa
ce

P
ag

e
ta

bl
e

1

0

1

0

0

0

0

0

1

0

0

0

1

2

14

1

5

7

11

4

presence bit

P
ag

e
fra

m
es

 in
 m

em
or

y 0
C1
A2

3
G4

5
6

E8

Background storage

C

D A

FG

B

E

0:

4:

8:

12:

16:

…
load v from F
…

Operating
system

F

up
da

te
 p

ag
e

ta
bl

e

Operating Systems 10: Virtual memory 9

Demand paging
• Reaction to a page fault

A0
B1
C2
D3

4
5

6

7
E8
F9

10
11

G12Vi
rtu

al
 a

dd
re

ss
 s

pa
ce

P
ag

e
ta

bl
e

1

0

1

0

0

0

0

0

1

1

0

0

1

2

14

1

5

7

0

4

presence bit

P
ag

e
fra

m
es

 in
 m

em
or

y 0
C1
A2

3
G4

5
6

E8

Background storage

C

D A

FG

B

E

0:

4:

8:

12:

16:

…
load v from F
…

Operating
system

F
repeat the

access

Operating Systems 10: Virtual memory 10

Discussion: paging performance
• Performance of demand paging

• No page faults:
• Effective access time ~10–200 ns

• When a page fault occurs:
• Let p be the probability of a page fault
• Assume that the time required to page in a page from

background memory = 25 ms
(8 ms latency, 15 ms positioning time, 1 ms transfer time)

• Assume a normal access time of 100 ns
• Effective access time:

(1 – p) · 100 + p · 25000000 = 100 + 24999900 · p
➛ Page fault rate has to be extremely low

• p is close to 0

Operating Systems 10: Virtual memory 11

Discussion: additional properties
• Process creation

• Copy on write
• Easy to implement also using a paging MMU
• More fine grained compared to segmentation

• Program execution and loading can be interleaved
• Requested pages are loaded on demand

• Locking the access to pages
• Required for I/O operations

Operating Systems 10: Virtual memory 12

Discussion: demand segmentation
• In principle possible, but this comes with disadvantages…

• Coarse granularity
• e.g. code, data, stack segment

• Difficult main memory allocation
• With paging, all free page frames are equally useful
• When swapping segments, the search for appropriate

memory areas is more difficult
• Background memory allocation is more difficult

• The background memory is divided into blocks, similar
to page frames (sizes = 2n)

• Demand paging has won in practice!

Operating Systems 10: Virtual memory 13

Page replacement
• What is no free page frame is available when a request comes in?

• One page has to be preempted to create space for the new
page!

• Select pages with unchanged content (refer to the dirty bit in
the page table entries)

• Preemption of a page implies paging it to disk if its contents
were changed

• Sequence of events:
• page fault: trap into the OS
• page out a page frame, if no free page frame is available
• page in the requested page
• Repeat the memory access

• Problem:
• Which page to choose to be paged out (the “victim”)?

Operating Systems 10: Virtual memory 14

Replacement strategies
• We will discuss replacement strategies and their effect on

access sequences (also: access or reference orders)
• Access sequence:

• Sequence of page numbers which represents the
memory access behavior of a process

• Determine access sequences, e.g. by recording the
addresses accessed by a process
• Reduce the recorded sequence to only page numbers
• Conflate consecutive accesses to the same page to one

• Example access sequence:
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Operating Systems 10: Virtual memory 15

First in, first out
• Replace the oldest page
• Necessary state information:

• Age resp. page in time for each page frame

• Order of replacement (9 page ins):

Access sequence 1 2 3 4 1 2 5 1 2 3 4 5

main
memory

frame 1 1 1 1 4 4 4 5 5 5 5 5 5

frame 2 2 2 2 1 1 1 1 1 3 3 3

frame 3 3 3 3 2 2 2 2 2 4 4

control
states

(age per frame)

frame 1 0 1 2 0 1 2 0 1 2 3 4 5

frame 2 > 0 1 2 0 1 2 3 4 0 1 2

frame 3 > > 0 1 2 0 1 2 3 4 0 1

Operating Systems 10: Virtual memory 16

Optimal replacement strategy
• Forward distance

• Time until the next access to the respective page
• Strategy OPT (or MIN) is optimal (for a fixed number of frames):

minimal number of page ins/replacements (here: 7)
• “Always replace the page with the largest forward distance”

Access sequence 1 2 3 4 1 2 5 1 2 3 4 5

main
memory

frame 1 1 1 1 1 1 1 1 1 1 3 4 4

frame 2 2 2 2 2 2 2 2 2 2 2 2

frame 3 3 4 4 4 5 5 5 5 5 5

control
states

(forward dist.)

frame 1 4 3 2 1 3 2 1 > > > > >

frame 2 > 4 3 2 1 3 2 1 > > > >

frame 3 > > 7 7 6 5 5 4 3 2 1 >

Operating Systems 10: Virtual memory 17

First in, first out
• Larger main memory: 4 frames now (10 page ins)
• FIFO-anomaly (Bélády's anomaly, 1969)

Access sequence 1 2 3 4 1 2 5 1 2 3 4 5

main
memory

frame 1 1 1 1 1 1 1 5 5 5 5 4 4

frame 2 2 2 2 2 2 2 1 1 1 1 5

frame 3 3 3 3 3 3 3 2 2 2 2

frame 4 4 4 4 4 4 4 3 3 3

control
states

(age per frame)

frame 1 0 1 2 3 4 5 0 1 2 3 0 1

frame 2 > 0 1 2 3 4 5 0 1 2 3 0

frame 3 > > 0 1 2 3 4 5 0 1 2 3

frame 4 > > > 0 1 2 3 4 5 0 1 2

Operating Systems 10: Virtual memory 18

Optimal replacement strategy
• Larger main memory: 4 frames now (6 page ins)

• no anomaly

Access sequence 1 2 3 4 1 2 5 1 2 3 4 5

main
memory

frame 1 1 1 1 1 1 1 1 1 1 1 4 4

frame 2 2 2 2 2 2 2 2 2 2 2 2

frame 3 3 3 3 3 3 3 3 3 3 3

frame 4 4 4 4 5 5 5 5 5 5

control
states

(forward dist.)

frame 1 4 3 2 1 3 2 1 > > > > >

frame 2 > 4 3 2 1 3 2 1 > > > >

frame 3 > > 7 6 5 4 3 2 1 > > >

frame 4 > > > 7 6 5 5 4 3 2 1 >

Operating Systems 10: Virtual memory 19

Optimal replacement strategy
• Implementation of OPT is practically impossible

• …because we would have to know the access sequence
in advance!

• OPT is only useful to compare strategies

• Wanted: strategies which are as close to OPT as possible
• e.g. Least Recently Used (LRU)

Operating Systems 10: Virtual memory 20

Least recently used (LRU)
• Backward distance

• Time since the last access to the page
• LRU strategy (10 page ins)

• “Replace the page with the largest backward distance!”

Access sequence 1 2 3 4 1 2 5 1 2 3 4 5

main
memory

frame 1 1 1 1 4 4 4 5 5 5 3 3 3

frame 2 2 2 2 1 1 1 1 1 1 4 4

frame 3 3 3 3 2 2 2 2 2 2 5

control
states

(backward dist.)

frame 1 0 1 2 0 1 2 0 1 2 0 1 2

frame 2 > 0 1 2 0 1 2 0 1 2 0 1

frame 3 > > 0 1 2 0 1 2 0 1 2 0

Operating Systems 10: Virtual memory 21

Least recently used (LRU)
• Larger main memory: 4 frames now (8 page ins)

Access sequence 1 2 3 4 1 2 5 1 2 3 4 5

main
memory

frame 1 1 1 1 1 1 1 1 1 1 1 1 5

frame 2 2 2 2 2 2 2 2 2 2 2 2

frame 3 3 3 3 3 5 5 5 5 4 4

frame 4 4 4 4 4 4 4 3 3 3

control
states

(backward dist.)

frame 1 0 1 2 3 0 1 2 0 1 2 3 0

frame 2 > 0 1 2 3 0 1 2 0 1 2 3

frame 3 > > 0 1 2 3 0 1 2 3 0 1

frame 4 > > > 0 1 2 3 4 5 0 1 2

Operating Systems 10: Virtual memory 22

Least recently used (LRU)
• No anomaly

• In general: there exists a class of algorithms (stack
algorithms) that do not show an anomaly:
• For stack algorithms with k page frames, the following

holds:
At every point in time a subset of the pages is paged in
that would also be paged in at the same time in a
system with k+1 page frames!

• LRU: the most recently used k pages are paged in
• OPT: the k pages are pages in which will be accessed

next
• Problem

• Implementing LRU requires hardware support
• Every memory access has to be considered

Operating Systems 10: Virtual memory 23

Least recently used (LRU)
• Naive Idea: Hardware support using counters

• CPU implements a counter that is incremented with every
memory access

• For every access, the current counter value is written into
the respective page descriptor

• Select the page with the lowest counter value (➛ search!)

• Large implementation overhead
• many additional memory accesses required
• large amount of additional memory required
• Minimum search required in the page fault handler

Operating Systems 10: Virtual memory 24

Second chance (clock)
• This approach works: use reference bits

• Reference bit in the page descriptor is set automatically by
the hardware when a page is accessed

• easier to implement
• fewer additional memory accesses

• Modern processors/MMUs support reference bits
(e.g. called “access bit” on x86)

• Objective: approach LRU
• the reference bit of a newly paged in page is initially set to 1
• when a “victim” page is needed, the reference bits are

checked in order
• if the reference bit = 1, set it to 0 (second chance)
• if the reference bit = 0, replace this page!

Operating Systems 10: Virtual memory 25

Second chance (clock)
• Implementation using a rotating pointer (clock)

• Reference bit at pointer position is tested
• if the reference bit = 1: clear it
• if the reference bit = 0: we found a page to be replaced
• Pointer “ticks on”: if no page could be found, then start over

• If all reference bits are = 1, then second chance is a FIFO

A 1

B 0I 1

H 0 C 1

D 1

E 0F 1

G 1

reference bit A 1

B 0I 1

H 0 C 0

D 0

0F 1

G 1

page is
replaced

E

Operating Systems 10: Virtual memory 26

Second chance (clock)
• Sequence with three page frames:

9 page ins

Access sequence 1 2 3 4 1 2 5 1 2 3 4 5

main
memory

frame 1 1 1 1 4 4 4 5 5 5 5 5 5

frame 2 2 2 2 1 1 1 1 1 3 3 3

frame 3 3 3 3 2 2 2 2 2 4 4

control
states

(reference bits)

frame 1 1 1 1 1 1 1 1 1 1 0 0 1

frame 2 0 1 1 0 1 1 0 1 1 1 1 1

frame 3 0 0 1 0 0 1 0 0 1 0 1 1

pointer pos. 2 3 1 2 3 1 2 2 2 3 1 1

Operating Systems 10: Virtual memory 27

Second chance (clock)
• Increase the main memory (4 page frames):

10 page ins

Access sequence 1 2 3 4 1 2 5 1 2 3 4 5

main
memory

frame 1 1 1 1 1 1 1 5 5 5 5 4 4

frame 2 2 2 2 2 2 2 1 1 1 1 5

frame 3 3 3 3 3 3 3 2 2 2 2

frame 4 4 4 4 4 4 4 3 3 3

control
states

(reference bits)

frame 1 1 1 1 1 1 1 1 1 1 1 1 1

frame 2 0 1 1 1 1 1 0 1 1 1 0 1

frame 3 0 0 1 1 1 1 0 0 1 1 0 0

frame 4 0 0 0 1 1 1 0 0 0 1 0 0

pointer pos. 2 3 4 1 1 1 2 3 4 1 2 3

Operating Systems 10: Virtual memory 28

Second chance (clock)
• Second chance can also show the FIFO anomaly

• If all reference bits are = 1, this is a FIFO order
• In the common case, however, second chance is close to LRU

• Extension
• Modification bit can be considered in addition (dirty bit)
• Three classes of (reference bit, modification bit) :

 (0,0), (1,0) and (1,1)
• Search for the “lowest” class (used in macOS)

Operating Systems 10: Virtual memory 29

Discussion: free page buffer
…accelerates page fault handling
• Instead of replacing a page, a number of free pages is always

kept in memory
• Pageouts take place “in advance”
• More efficient: time to replace a page is dominated by the

time required for the page in (no need to find a victim and
page it out)

• Page-to-page frame relation is still valid after paging out
• In case the page is used again before it would be replaces,

it can be reused with high efficiency
• The page is no longer allocated to the free page buffer and

is reallocated to its respective process

Operating Systems 10: Virtual memory 30

Page frame assignment
• Problem: Distribution of page frames to processes

• How many page frames should a single process use?
• Maximum: limited by the number of page frames
• Minimum: depends on the processor architecture

• At least the number of pages which is necessary to
execute a machine instruction

• Identical share size
• The number of frames allocated to a process depends on

the number of processes
• Program size dependent shares

• Program size is considered when determining the number of
page frames to allocate to it

Operating Systems 10: Virtual memory 31

Page frame assignment
• Global and local page requests

• local: a process only replaces its own pages
• Page fault behavior depends only on the behavior of the

process
• global: a process can also replace pages of other processes

• More efficient, since unused pages of other processes
can be used

Operating Systems 10: Virtual memory 32

Thrashing
• A page that was paged out is accessed immediately after the

page out happened
• The process spends more time waiting to handle the page

faults than with its own execution
C

P
U

 lo
ad

Grade of multiprogramming (number of processes)

thrashing

Operating Systems 10: Virtual memory 33

Thrashing
• Causes

• A process is close to its page minimum
• Too many processes in the system at the same time
• Suboptimal replacement strategy

➛ Local page requests avoids thrashing between processes

➛ Allocating a sufficiently large number of page frames avoids
thrashing within process pages
• Limitation of the number of processes

Operating Systems 10: Virtual memory 34

• Inactive processes do not require page frames
• Page frames can be distributed among fewer processes
• Has to be combined with scheduling to…

• avoid starvation
• enable short answer (reaction) times

Solution 1: swapping of processes

blocked blocked

readyready
running

active process inactive process

deactivate

activate

deactivate

wait for pagepage
blockedpage fault

Operating Systems 10: Virtual memory 35

• Set of pages really needed by a process (working set)
• Can only be approximated, since this is usually not

predictable
• Approximation by looking at the more recently accessed ∆ pages

• Appropriate selection of a ∆
• too large: overlapping of local access patterns
• too small: working set does not contain all necessary

pages

Solution 2: working set model

• Notice: ∆ > |working set|, since a single page is usually
accessed multiple times in a row.

1 2 3 4 1 2 5 1 2 3 4 5

∆
access sequence

Operating Systems 10: Virtual memory 36

• Example: working sets for different values of ∆

Working set model

Access sequence 1 2 3 4 1 2 5 1 2 3 4 5

∆ = 3

page 1 X X X X X X X X X

page 2 X X X X X X X X X

page 3 X X X X X X

page 4 X X X X X

page 5 X X X X

∆ = 4

page 1 X X X X X X X X X X X

page 2 X X X X X X X X X X X

page 3 X X X X X X X

page 4 X X X X X X

page 5 X X X X X

Operating Systems 10: Virtual memory 37

• Approximate accesses by time values
• A certain time interval is ~proportional to the number of

memory accesses

• Requires measuring the virtual time of the process
• Only that time is relevant in which the process is in state

RUNNING
• Each process has its own virtual clock

Working set model

Operating Systems 10: Virtual memory 38

• Naive idea: approximate the working set using:
• A reference bit
• Age information per page (time interval in which the page was

not used)
• Timer interrupt (using a system timer)

• Algorithm
• Periodic timer interrupts are used to update the age

information using the reference bit:
• reference is set (page was used) ➛ set age to zero
• else increase the age information
• only pages of the currently running process “age”

• Pages with an age > ∆ are no longer considered to be part of
the working set of the respective process

Determining the working set and timers

Operating Systems 10: Virtual memory 39

• Imprecise
• Reduce the time intervals:

more overhead, but more precise measurement
• However, the system is not sensitive to this imprecision

• Inefficient
• A large number of pages has to be checked

Determining the working set and timers

Operating Systems 10: Virtual memory 40

• This is the real solution:
WSClock algorithm (“working set clock”)
• Works like the previous clock algorithm
• A page is only replaced if

• it is not an element of the working set of its process
• or the process is deactivated

• When resetting the reference bit, the current time of the
respective process is noted
• this time can e.g. be kept and updated in the process

control block PCB
• Determining the working set:

• Calculate the difference between the virtual time of the
process and the time stamp in the page frame

Determine the working set with WSclock

Operating Systems 10: Virtual memory 41

• WSClock Algorithm

Determine the working set with WSclock

A 0

G B

C

DE

F

6

0 6

0 4

0 10 0

1 1

1 4

page is
replaced

A 1

G B

C

DE

F

3

1 1

0 4

0 10 0

1 1

1 4

virtual process time

reference bit page frame
time stamp

∆ = 3
PCB1 PCB2 PCB3

1 6 5

Operating Systems 10: Virtual memory 42

Discussion: working set problems
• Time stamps also need memory
• It is not always possible to ascribe a page to a specific process

• shared memory pages are the rule rather than an exception
in modern operating systems
• Shared libraries
• Shared pages in the data segment (shared memory)

➛ Solution 3: Thrashing can be avoided in an easier way by
directly controlling the page fault rate
• Measure per process

• rate < limit: reduce page frame set
• rate > limit: enlarge page frame set

Operating Systems 10: Virtual memory 43

Loading strategy
• Load on demand

• Safe approach
• Prefetch

• Difficult:
Pages that are paged out are not used right now, only later

• Often, one machine instruction leads to multiple page faults
• Prefetching of these pages can be realized by interpreting the

machine instruction that causes the first page fault.
This will avoid any additional page faults for this instruction.

• Load the complete working set in advance when a process
is swapped in

• Detect sequential access patterns and prefetch subsequent
pages

Operating Systems 10: Virtual memory 44

Conclusions
• Virtual memory allows to use large logical address spaces even if the

physical memory is small

• However, this involves some overhead
• Hardware overhead
• Complex algorithms in the operating system
• “Surprising” effects (such as “thrashing”)
• Timing behavior not predictable

➛ Simple (special purpose) systems that do not necessarily need these
 features should better not implement them

