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Processes, once again…
• Processes run concurrently in a computer 
• To coordinate processes, we use synchronization 

primitives  

• Basic idea: passive waiting 
• Semaphores enable... 

• mutual exclusion 
• one-sided synchronization 
• resource-oriented synchronization 

• Waiting mechanisms lead to deadlock problems

Processes 
again
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Deadlocks
Traffic rule:  
"Left yields to right" 
No car is allowed to proceed

Deadlocks like this can 
also occur with  
processes

Deadlocks
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Why is this happening? Deadlocks

Car 1 occupies “L” and needs “R” 
Car 2 occupies “R” and needs “L”

Deadlock!Deadlock 
possible
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Abstract view of the problem Deadlocks

Progress 
process C1

Resource

L
R

L R

Progress 
process C2
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4 5

1–6: possible sequences 
      : Deadlock

The processes  
cannot enter 
these areas!

Deadlock 
unavoidable
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Abstract view of the problem Deadlocks

Progress 
process C1

Resource

L
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1–6: possible sequences

In this scenario, 
no deadlock  
can occur
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Deadlocking processes Deadlocks

• The term “deadlock” (in computer science) means:

„[…] a situation in which two or more processes are unable 
to proceed because each is waiting for one of the others to 
do something.“ 

William Stallings. 
Operating Systems: Internals and Design Principles.
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Deadlocking processes Deadlocks

• Alternative 1: Deadlock 
• Passive waiting 
• Process state is BLOCKED 

• Alternative 2: Livelock 
• Active waiting (busy waiting or “lazy” busy waiting) 
• Arbitrary process state (including RUNNING), but non 

of the involved processes is able to procees 
• Deadlocks are the “lesser evil” 

• This state is uniquely discoverable  
→ Basis to ”resolve” deadlocks is available 

• Active waiting results in an extremely high system load
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Conditions for deadlocks Deadlocks

All of the following three conditions must be fulfilled for a deadlock to occur 
("necessary conditions"): 

1. Exclusive allocation of resources ("mutual exclusion") 
• Only one process may use a resource at a time. No process may access a 

resource unit that has been allocated to another process 
2. Allocation of additional resources ("hold and wait") 

• A process may hold allocated resources while awaiting assign- ment of 
other resources  

3. No removing of resources ("no preemption") 
• The OS is unable to forcibly remove a resource from a process once it is 

allocated 
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Conditions for deadlocks Deadlocks

All of the following three conditions must be fulfilled for a deadlock to occur 
("necessary conditions"): 

1. Exclusive allocation of resources ("mutual exclusion") 
• Only one process may use a resource at a time. No process may access a 

resource unit that has been allocated to another process 
2. Allocation of additional resources ("hold and wait") 

• A process may hold allocated resources while awaiting assignment of 
other resources  

3. No removing of resources ("no preemption") 
• The OS is unable to forcibly remove a resource from a process once it is 

allocated 
4. Only if an additional condition occurs at runtime, we really have a deadlock: 

• ”circular wait” 
• A closed chain of processes exists, such that each process holds at least 

one resource needed by the next process in the chain 
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Resources… Deadlocks

are administered by the operating system and provided to the 
processes. There are two kinds of resources: 
• Reusable resources 

• Are allocated by processes for a certain time and released 
again afterwards 

• Examples: CPU, main and mass storage, I/O devices, system 
data structures such as files, process table entries, … 

• Typical access synchronization: mutual exclusion 
• Consumable resources 

• Are generated (produced) and destroyed (consumed) while 
the system is running 

• Examples: Interrupt requests, signals, messages, data from 
input devices 

• Typical access synchronization: one-sided synchronization
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Reusable resources Deadlocks

• A deadlock occurs if two processes each have allocated a 
reusable resource which is afterwards additionally 
requested by the respective other process 

• Example: A computer has 200 GB of main memory.  
Two processes allocate the memory in steps. The 
allocation is blocking

If both processes execute their first resource request successfully before 
any of the second requests is executed, a deadlock is unavoidable.

Process 1 
… 
Allocate 80 GB; 
… 
Allocate 60 GB;

Process 2 
… 
Allocate 70 GB; 
… 
Allocate 80 GB;
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Consumable resources Deadlocks

• A deadlock occurs if two processes each wait for a 
consumable resource which is produced by the respective 
other process 

• Example: synchronization signals exchanged between the 
two processes using the semaphore operations wait and 
signal

Each process waits for a synchronization signal from the other.  
This cannot be sent since the other process itself is blocked.

Process 1 
semaphore s1 = {0, NULL}; 
wait (&s1); 
… // consume 
… // produce 
signal (&s2);

Process 2 
semaphore s2 = {0, NULL}; 
wait (&s2); 
… // consume 
… // produce 
signal (&s1);
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Resource allocation graphs Deadlocks

• ... are used to visualize and also automatically detect 
deadlock situations 
• They describe the current system state 
• The nodes are processes and resources 
• The edges show an allocation or a request

Process P2 allocates 
resource B2

Resource R1 is requested 
by process P1

R1P1 R2P2
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Resource allocation graphs Deadlocks

• Question to consider:  
• Is there a state of circular waiting? 
• Which processes and resources are part of it? 

• Example: 7 processes A – G and 6 resources R – W 
• Current state: 

• A allocates R and requests S. 
• B allocates nothing but requests T. 
• C allocates nothing but requests S. 
• D allocates U and S and requests T. 
• E allocates T and requests V. 
• F allocates W and requests S. 
• G allocates V and requests U.
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Resource allocation graphs Deadlocks

There is a circular waiting 
condition between processes 

D, E and G!

R A

SC

F

W

D T E

B

U

G

V

A allocates R and requests S. 
B allocates nothing but requests T. 
C allocates nothing but requests S. 
D allocates U and S and requests T. 
E allocates T and requests V. 
F allocates W and requests S. 
G allocates V and requests U.
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Classic deadlock: dining philosophers
Deadlocks

Five philosophers spend 
their life either thinking or 
eating. And they love 
eating spaghetti! [1] 

To eat, the philosophers  
sit around a round table. 
Thinking makes you 
hungry – every 
philosopher has to eat!  

To eat spaghetti, a 
philosopher needs both 
forks next to her or his 
plate!

process → philosopher 
resource → fork (indivisible)

fork 0

fork 4

fork 3 fork 2

fork 1

philosopher 0

philos. 1

philosopher 2

philos. 3

philosopher 4
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Deadlocked philosophers? Deadlocks

Here, the three first necessary conditions are fulfilled: 
• ”mutual exclusion” 

• Philosophers need both forks in order to eat spaghetti. 
• ”hold and wait” 

• The philosophers are so deep lost in thought before 
they eat that they are neither able to take both forks at 
the same time nor have the idea to put back a single 
fork. 

• ”no preemption” 
• Of course, it is not appropriate to take another 

philosopher’s fork while it is in use. 
• But does this necessarily lead to a deadlock?
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Dining philosophers: version 1 Deadlocks

/* all philosophers are  
   concurrent... */ 
void phil (int who) { 
    while (1) { 
         think(); 
         grab(who); 
         eat(); 
         drop(who); 
    } 
} 

void think () { ... } 
void eat   () { ... }

semaphore fork[NPHIL] = { 
  {1, NULL}, ... 
}; 

void grab (int who) { 
    wait(&fork[who]); 
    wait(&fork[(who+1)%NPHIL]); 
} 

void drop (int who) { 
    signal(&fork[who]); 
    signal(&fork[(who+1)%NPHIL]); 
}

Using a semaphore guarantees mutual exclusion when accessing the forks. 
By tradition, every philosopher first takes the right and then the left fork.
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…deadlock endangered… Deadlocks

void grab(0) { 
  wait(&fork[0]);

void grab(1) { 
  wait(&fork[1]);

void grab(2) { 
  wait(&fork[2]);

void grab(3) { 
  wait(&fork[3]);

void grab(4) { 
  wait(&fork[4]); 
  wait(&fork[0]); 
}

  wait(&fork[4]); 
}

  wait(&fork[3]); 
}

  wait(&fork[2]); 
}

  wait(&fork[1]); 
}

All philosophers block
at the second wait.

Deadlock!

↯
↯

↯
↯
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…deadlock endangered… Deadlocks

void grab(0) { 
  wait(&fork[0]);

void grab(1) { 
  wait(&fork[1]);

void grab(2) { 
  wait(&fork[2]);

void grab(3) { 
  wait(&fork[3]);

void grab(4) { 
  wait(&fork[4]); 
  wait(&fork[0]); 
}

  wait(&fork[4]); 
}

  wait(&fork[3]); 
}

  wait(&fork[2]); 
}

  wait(&fork[1]); 
}

All philosophers block
at the second wait.

Deadlock!

↯
↯

↯
↯

fork 0

phil 
0

Resource allocation graph

fork 4

phil 
4

phil 
2

phil 
3

fork 3

4. “circular wait”

fork 
1

fork 2

phil 
1
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Dining philosophers: version 2 Deadlocks

semaphore mutex = {1, NULL}; 

void grab (int who) { 
    wait(&mutex); 
    wait(&fork[who]); 
    wait(&fork[(who+1)%NPHIL]); 
    signal(&mutex); 
}

The problem in version 1 was 
the consequence of a process 
switch between the 1. und 2. 
wait – a critical section.  

Version 2 protects this critical 
section using mutual exclusion.

• Is this solution deadlock free? 
 

• Is this a “good” solution? 
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Dining philosophers: version 2 Deadlocks

semaphore mutex = {1, NULL}; 

void grab (int who) { 
    wait(&mutex); 
    wait(&fork[who]); 
    wait(&fork[(who+1)%NPHIL]); 
    signal(&mutex); 
}

The problem in version 1 was 
the consequence of a process 
switch between the 1. und 2. 
wait – a critical section.  

Version 2 protects this critical 
section using mutual exclusion.

• Is this solution deadlock free? Yes, … 
• 1 process maximum can wait for a fork (a cycle needs 2!) 
• A process waiting for mutex has no fork 

• Is this a “good” solution? No, … 
• When philowho  eats, philowho+1 blocks in the critical sections. 

All others then also block. Many spaghetti get cold. 
• Low level of concurrency and inefficient resource use!
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Dining philosophers: version 3 Deadlocks

const int N = 5;                  /* Number of philosophers */ 
semaphore mutex = {1, NULL};      /* Mutual exclusion */ 
semaphore s[N] = {{0, NULL},...}; /* one semaphor per philos. */ 
enum { THINKING, EATING, HUNGRY } status[N]; /* Philos. state*/ 

int left(i) { return (i+N-1)%N; } /* Index left neighbor */ 
int right(i) { return (i+1)%N; }  /* Index right neighbor */

void test (int i) { 
  if (state[i] == HUNGRY && state[left(i)] != EATING && 
      state[right(i)] != EATING) { 
    state[i] = EATING; 
    signal(&s[i]); 
  } 
}

void grab(int i) { 
  wait(&mutex); 
  state[i] = HUNGRY; 
  test(i); 
  signal(&mutex); 
  wait(&s[i]); 
}

void drop(int i) { 
  wait(&mutex); 
  state[i] = THINKING; 
  test(left(i)); 
  test(right(i)); 
  signal(&mutex); 
}

This solution is 
deadlock free and has 
the maximum degree of 
concurrency
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Discussion: dining philosophersDeadlocks

• In particular: usually there are many different ways to 
ensure a system is deadlock free 
• Solutions differ in the possible degree of concurrency 
• A solution that is too restrictive implies that resources 

are unnecessary idle at least a part of the time 
• In general: dining philosophers are a representative 

example for the administration of atomic resources 
• Invented by E. Dijkstra (1965) [1] 
• Established standard scenario to evaluate and 

demonstrate operating system and language 
mechanisms for concurrent programming
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Preventing deadlocks Deadlocks

• Indirect methods invalidate one of the conditions 1–3 
1. use non blocking approaches 
2. only allow atomic resource allocations 
3. enable the preemption of resources using virtualization 

• virtual memory, virtual devices, virtual processors 
• Direct methods invalidate condition 4 

4. introduce a linear/total order of resource classes: 
• Resource Ri can only be successfully allocated 

before Rj if i is ordered linear before j (i.e. i < j) 
• Rules that prevent deadlocks 

• Methods at design or implementation time
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Preventing deadlocks Deadlocks

• Preventing circular waiting (in a running system) using strategic 
approaches: 

• none of the first three necessary conditions is invalidated 
• continuous requirements analysis avoids circular waiting 

• Resource request of processes have to be controlled: 
• always keep a “safe state”: 

• there is no process sequence in which all of the processes 
can obtain their maximum resource requirements 

• “unsafe states” are avoided: 
• request denies in case of non-satisfiable resource 

requirement 
• requesting processes are not serviced or suspended early 

• Problem:  this approach has to know the maximum resource 
requirements in advance
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Safe/unsafe states Deadlocks

(using the dining philosophers example) 
• Starting point: five forks are available 

• each philosopher needs two forks to eat 
• Situation:  

P0, P1 and P2 have one fork each, two forks are free 
• P3 requests a fork → one fork is still free 

• safe state: one of three philosophers could eat 
• the request of P3 is allocated (accepted) 
• P4 requests a fork → no more forks are free 

• unsafe state: none of the philosophers could eat 
• the request of P4 has to wait 

• if four philosophers have one fork each, the fifth is blocked 
before taking the first fork
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Safe/unsafe states Deadlocks

(using the dining philosophers example) 
• Starting point: five forks are available 

• each philosopher needs two forks to eat 
• Situation:  

P0, P1 and P2 have one fork each, two forks are free 
• P3 requests a fork → one fork is still free 

• safe state: one of three philosophers could eat 
• the request of P3 is allocated (accepted) 
• P4 requests a fork → no more forks are free 

• unsafe state: none of the philosophers could eat 
• the request of P4 has to wait 

• if four philosophers have one fork each, the fifth is blocked 
before taking the first fork

  wait(&fork[4]); 
}

↯

↯

fork 0

phil 
0

Detection: Resource allocation graph

fork 4

phil 
4

phil 
2

phil 
3

fork 3

Changing this  
“request edge” into 

a real allocation 
would result  

in a cycle

fork 
1

fork 2

phil 
1
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Safe/unsafe states Deadlocks

(using the example of multiple instances of resources) 
• Starting point: a primitive Unix system with a maximum of 12 

shared memory segments 
• Process P0 needs 10 segments max., P1 four and P2 nine 

• Situation: P0 uses 6 segments, P1 and P2 each two;  
two segments are free 
• P2 requests a segment, one remains free 
→ unsafe state 
• request of P2 is denied, P2 has to wait 

• P0 requests two segments, none would be free 
→ unsafe state 
• request of P0 is denied, P0 has to wait 

• safe process sequence: P1 → P0 → P2
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Safe/unsafe states Deadlocks

(using the example of multiple instances of resources) 
• Starting point: a primitive Unix system with a maximum of 12 

shared memory segments 
• Process P0 needs 10 segments max., P1 four and P2 nine 

• Situation: P0 uses 6 segments, P1 and P2 each two;  
two segments are free 
• P2 requests a segment, one remains free 
→ unsafe state 
• request of P2 is denied, P2 has to wait 

• P0 requests two segments, none would be free 
→ unsafe state 
• request of P0 is denied, P0 has to wait 

• safe process sequence: P1 → P0 → P2

 
Detection: “banker’s algorithm” 

• administers process/resource matrices 
for the current and maximum allocation 

• function to find a process sequence that 
guarantees that the system does not run  
out of resources even when all processes 
completely use their “credit limit” 

• predictive application of this function in 
case of resource allocations 
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Deadlock detection
• Deadlocks are (silently) accepted („ostrich algorithm“)... 

• Nothing in the system tries to avoid the  
occurrence of waiting cycles! 

• None of our four conditions is invalidated 
• Approach: create waiting graph and search for cycles → O(n) 

• Checking too frequently wastes resource and compute time 
• Checking too infrequently wastes unused resources 

• Cycle search take place in large time intervals only, if… 
• Resource requests take too much time 
• The CPU load decreases even though the number of 

processes increases 
• The CPU is already idle for a long time

Deadlocks
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Deadlock resolution Deadlocks

Recovery phase after the detection phase 
• Terminate processes to release resources 

• Terminate deadlocked processes step by step (lots of effort) 
• Start with the ”most effective victim” (?) 

• Terminate  all deadlocked processes (large possible damage) 
• Preempt resources and start with the “most effective victim” (?) 

• Roll back or restart the affected process 
• Use transactions, checkpointing/recovery (lots of effort) 

• A starvation of the rolled back processes has to be avoided 
• Also: take care of livelocks! 

• Balance between damage and effort: 
• Damages are unavoidable, so we need to consider what the 

consequence is
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Discussion of prevention methods
Deadlocks

• Methods to avoid/detect deadlocks have little practically  
relevance in the context of operating systems 

• They are very difficult to implement, require too much 
overhead and are thus not useable 

• Since sequential programming is still the predominant 
approach, avoidance and detection methods are rarely 
required 

• The risk of deadlock can be solved by virtualizing resources 
• Processes only request/allocate logical resources 
• Using virtualization, physical resources can be removed 

(preempted) from a process (without the process noticing) in 
critical moments 

• Accordingly, the “no preemption” condition is invalidated 
➙ Prevention methods more commonly used & relevant in practice
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Conclusion
• Problems with deadlocks and livelocks 

• “[...] a situation in which two or more processes are 
unable to proceed because each is waiting for one of the 
others to do something.” 

• livelocks are the bigger problem of the two 
• For a dead/lifelock to occur, four conditions have to occur 

simultaneously: 
• Exclusive allocation, hold and wait, no preemption of 

resources 
• Circular waiting of the processes requesting the resources 

• Handling dead/lifelocks implies: 
• prevent, avoid, detect/resolve 
• the discussed approaches can also be combined
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