
Operating Systems
Lecture 7:

Concurrency: Deadlocks

Michael Engel

Operating Systems 07: Deadlocks 2

Processes, once again…
• Processes run concurrently in a computer
• To coordinate processes, we use synchronization

primitives

• Basic idea: passive waiting
• Semaphores enable...

• mutual exclusion
• one-sided synchronization
• resource-oriented synchronization

• Waiting mechanisms lead to deadlock problems

Processes
again

Operating Systems 07: Deadlocks 3

Deadlocks
Traffic rule:
"Left yields to right"
No car is allowed to proceed

Deadlocks like this can
also occur with
processes

Deadlocks

Operating Systems 07: Deadlocks 4

Why is this happening? Deadlocks

Car 1 occupies “L” and needs “R”
Car 2 occupies “R” and needs “L”

Deadlock!Deadlock
possible

Operating Systems 07: Deadlocks 5

Abstract view of the problem Deadlocks

Progress
process C1

Resource

L
R

L R

Progress
process C2

6

1 2

3

4 5

1–6: possible sequences
 : Deadlock

The processes
cannot enter
these areas!

Deadlock
unavoidable

Operating Systems 07: Deadlocks 6

Abstract view of the problem Deadlocks

Progress
process C1

Resource

L
R

L R

Progress
process C2

6

1 2 3 4

5

1–6: possible sequences

In this scenario,
no deadlock
can occur

Operating Systems 07: Deadlocks 7

Deadlocking processes Deadlocks

• The term “deadlock” (in computer science) means:

„[…] a situation in which two or more processes are unable
to proceed because each is waiting for one of the others to
do something.“

William Stallings.
Operating Systems: Internals and Design Principles.

Operating Systems 07: Deadlocks 8

Deadlocking processes Deadlocks

• Alternative 1: Deadlock
• Passive waiting
• Process state is BLOCKED

• Alternative 2: Livelock
• Active waiting (busy waiting or “lazy” busy waiting)
• Arbitrary process state (including RUNNING), but non

of the involved processes is able to procees
• Deadlocks are the “lesser evil”

• This state is uniquely discoverable
→ Basis to ”resolve” deadlocks is available

• Active waiting results in an extremely high system load

Operating Systems 07: Deadlocks 9

Conditions for deadlocks Deadlocks

All of the following three conditions must be fulfilled for a deadlock to occur
("necessary conditions"):

1. Exclusive allocation of resources ("mutual exclusion")
• Only one process may use a resource at a time. No process may access a

resource unit that has been allocated to another process
2. Allocation of additional resources ("hold and wait")

• A process may hold allocated resources while awaiting assign- ment of
other resources

3. No removing of resources ("no preemption")
• The OS is unable to forcibly remove a resource from a process once it is

allocated

Operating Systems 07: Deadlocks 10

Conditions for deadlocks Deadlocks

All of the following three conditions must be fulfilled for a deadlock to occur
("necessary conditions"):

1. Exclusive allocation of resources ("mutual exclusion")
• Only one process may use a resource at a time. No process may access a

resource unit that has been allocated to another process
2. Allocation of additional resources ("hold and wait")

• A process may hold allocated resources while awaiting assignment of
other resources

3. No removing of resources ("no preemption")
• The OS is unable to forcibly remove a resource from a process once it is

allocated
4. Only if an additional condition occurs at runtime, we really have a deadlock:

• ”circular wait”
• A closed chain of processes exists, such that each process holds at least

one resource needed by the next process in the chain

Operating Systems 07: Deadlocks 11

Resources… Deadlocks

are administered by the operating system and provided to the
processes. There are two kinds of resources:
• Reusable resources

• Are allocated by processes for a certain time and released
again afterwards

• Examples: CPU, main and mass storage, I/O devices, system
data structures such as files, process table entries, …

• Typical access synchronization: mutual exclusion
• Consumable resources

• Are generated (produced) and destroyed (consumed) while
the system is running

• Examples: Interrupt requests, signals, messages, data from
input devices

• Typical access synchronization: one-sided synchronization

Operating Systems 07: Deadlocks 12

Reusable resources Deadlocks

• A deadlock occurs if two processes each have allocated a
reusable resource which is afterwards additionally
requested by the respective other process

• Example: A computer has 200 GB of main memory.
Two processes allocate the memory in steps. The
allocation is blocking

If both processes execute their first resource request successfully before
any of the second requests is executed, a deadlock is unavoidable.

Process 1
…
Allocate 80 GB;
…
Allocate 60 GB;

Process 2
…
Allocate 70 GB;
…
Allocate 80 GB;

Operating Systems 07: Deadlocks 13

Consumable resources Deadlocks

• A deadlock occurs if two processes each wait for a
consumable resource which is produced by the respective
other process

• Example: synchronization signals exchanged between the
two processes using the semaphore operations wait and
signal

Each process waits for a synchronization signal from the other.
This cannot be sent since the other process itself is blocked.

Process 1
semaphore s1 = {0, NULL};
wait (&s1);
… // consume
… // produce
signal (&s2);

Process 2
semaphore s2 = {0, NULL};
wait (&s2);
… // consume
… // produce
signal (&s1);

Operating Systems 07: Deadlocks 14

Resource allocation graphs Deadlocks

• ... are used to visualize and also automatically detect
deadlock situations
• They describe the current system state
• The nodes are processes and resources
• The edges show an allocation or a request

Process P2 allocates
resource B2

Resource R1 is requested
by process P1

R1P1 R2P2

Operating Systems 07: Deadlocks 15

Resource allocation graphs Deadlocks

• Question to consider:
• Is there a state of circular waiting?
• Which processes and resources are part of it?

• Example: 7 processes A – G and 6 resources R – W
• Current state:

• A allocates R and requests S.
• B allocates nothing but requests T.
• C allocates nothing but requests S.
• D allocates U and S and requests T.
• E allocates T and requests V.
• F allocates W and requests S.
• G allocates V and requests U.

Operating Systems 07: Deadlocks 16

Resource allocation graphs Deadlocks

There is a circular waiting
condition between processes

D, E and G!

R A

SC

F

W

D T E

B

U

G

V

A allocates R and requests S.
B allocates nothing but requests T.
C allocates nothing but requests S.
D allocates U and S and requests T.
E allocates T and requests V.
F allocates W and requests S.
G allocates V and requests U.

Operating Systems 07: Deadlocks 17

Classic deadlock: dining philosophers
Deadlocks

Five philosophers spend
their life either thinking or
eating. And they love
eating spaghetti! [1]

To eat, the philosophers
sit around a round table.
Thinking makes you
hungry – every
philosopher has to eat!

To eat spaghetti, a
philosopher needs both
forks next to her or his
plate!

process → philosopher
resource → fork (indivisible)

fork 0

fork 4

fork 3 fork 2

fork 1

philosopher 0

philos. 1

philosopher 2

philos. 3

philosopher 4

Operating Systems 07: Deadlocks 18

Deadlocked philosophers? Deadlocks

Here, the three first necessary conditions are fulfilled:
• ”mutual exclusion”

• Philosophers need both forks in order to eat spaghetti.
• ”hold and wait”

• The philosophers are so deep lost in thought before
they eat that they are neither able to take both forks at
the same time nor have the idea to put back a single
fork.

• ”no preemption”
• Of course, it is not appropriate to take another

philosopher’s fork while it is in use.
• But does this necessarily lead to a deadlock?

Operating Systems 07: Deadlocks 19

Dining philosophers: version 1 Deadlocks

/* all philosophers are
 concurrent... */
void phil (int who) {
 while (1) {
 think();
 grab(who);
 eat();
 drop(who);
 }
}

void think () { ... }
void eat () { ... }

semaphore fork[NPHIL] = {
 {1, NULL}, ...
};

void grab (int who) {
 wait(&fork[who]);
 wait(&fork[(who+1)%NPHIL]);
}

void drop (int who) {
 signal(&fork[who]);
 signal(&fork[(who+1)%NPHIL]);
}

Using a semaphore guarantees mutual exclusion when accessing the forks.
By tradition, every philosopher first takes the right and then the left fork.

Operating Systems 07: Deadlocks 20

…deadlock endangered… Deadlocks

void grab(0) {
 wait(&fork[0]);

void grab(1) {
 wait(&fork[1]);

void grab(2) {
 wait(&fork[2]);

void grab(3) {
 wait(&fork[3]);

void grab(4) {
 wait(&fork[4]);
 wait(&fork[0]);
}

 wait(&fork[4]);
}

 wait(&fork[3]);
}

 wait(&fork[2]);
}

 wait(&fork[1]);
}

All philosophers block
at the second wait.

Deadlock!

↯
↯

↯
↯

Operating Systems 07: Deadlocks 21

…deadlock endangered… Deadlocks

void grab(0) {
 wait(&fork[0]);

void grab(1) {
 wait(&fork[1]);

void grab(2) {
 wait(&fork[2]);

void grab(3) {
 wait(&fork[3]);

void grab(4) {
 wait(&fork[4]);
 wait(&fork[0]);
}

 wait(&fork[4]);
}

 wait(&fork[3]);
}

 wait(&fork[2]);
}

 wait(&fork[1]);
}

All philosophers block
at the second wait.

Deadlock!

↯
↯

↯
↯

fork 0

phil
0

Resource allocation graph

fork 4

phil
4

phil
2

phil
3

fork 3

4. “circular wait”

fork
1

fork 2

phil
1

Operating Systems 07: Deadlocks 22

Dining philosophers: version 2 Deadlocks

semaphore mutex = {1, NULL};

void grab (int who) {
 wait(&mutex);
 wait(&fork[who]);
 wait(&fork[(who+1)%NPHIL]);
 signal(&mutex);
}

The problem in version 1 was
the consequence of a process
switch between the 1. und 2.
wait – a critical section.

Version 2 protects this critical
section using mutual exclusion.

• Is this solution deadlock free?

• Is this a “good” solution?

Operating Systems 07: Deadlocks 23

Dining philosophers: version 2 Deadlocks

semaphore mutex = {1, NULL};

void grab (int who) {
 wait(&mutex);
 wait(&fork[who]);
 wait(&fork[(who+1)%NPHIL]);
 signal(&mutex);
}

The problem in version 1 was
the consequence of a process
switch between the 1. und 2.
wait – a critical section.

Version 2 protects this critical
section using mutual exclusion.

• Is this solution deadlock free? Yes, …
• 1 process maximum can wait for a fork (a cycle needs 2!)
• A process waiting for mutex has no fork

• Is this a “good” solution? No, …
• When philowho eats, philowho+1 blocks in the critical sections.

All others then also block. Many spaghetti get cold.
• Low level of concurrency and inefficient resource use!

Operating Systems 07: Deadlocks 24

Dining philosophers: version 3 Deadlocks

const int N = 5; /* Number of philosophers */
semaphore mutex = {1, NULL}; /* Mutual exclusion */
semaphore s[N] = {{0, NULL},...}; /* one semaphor per philos. */
enum { THINKING, EATING, HUNGRY } status[N]; /* Philos. state*/

int left(i) { return (i+N-1)%N; } /* Index left neighbor */
int right(i) { return (i+1)%N; } /* Index right neighbor */

void test (int i) {
 if (state[i] == HUNGRY && state[left(i)] != EATING &&
 state[right(i)] != EATING) {
 state[i] = EATING;
 signal(&s[i]);
 }
}

void grab(int i) {
 wait(&mutex);
 state[i] = HUNGRY;
 test(i);
 signal(&mutex);
 wait(&s[i]);
}

void drop(int i) {
 wait(&mutex);
 state[i] = THINKING;
 test(left(i));
 test(right(i));
 signal(&mutex);
}

This solution is
deadlock free and has
the maximum degree of
concurrency

Operating Systems 07: Deadlocks 25

Discussion: dining philosophersDeadlocks

• In particular: usually there are many different ways to
ensure a system is deadlock free
• Solutions differ in the possible degree of concurrency
• A solution that is too restrictive implies that resources

are unnecessary idle at least a part of the time
• In general: dining philosophers are a representative

example for the administration of atomic resources
• Invented by E. Dijkstra (1965) [1]
• Established standard scenario to evaluate and

demonstrate operating system and language
mechanisms for concurrent programming

Operating Systems 07: Deadlocks 26

Preventing deadlocks Deadlocks

• Indirect methods invalidate one of the conditions 1–3
1. use non blocking approaches
2. only allow atomic resource allocations
3. enable the preemption of resources using virtualization

• virtual memory, virtual devices, virtual processors
• Direct methods invalidate condition 4

4. introduce a linear/total order of resource classes:
• Resource Ri can only be successfully allocated

before Rj if i is ordered linear before j (i.e. i < j)
• Rules that prevent deadlocks

• Methods at design or implementation time

Operating Systems 07: Deadlocks 27

Preventing deadlocks Deadlocks

• Preventing circular waiting (in a running system) using strategic
approaches:

• none of the first three necessary conditions is invalidated
• continuous requirements analysis avoids circular waiting

• Resource request of processes have to be controlled:
• always keep a “safe state”:

• there is no process sequence in which all of the processes
can obtain their maximum resource requirements

• “unsafe states” are avoided:
• request denies in case of non-satisfiable resource

requirement
• requesting processes are not serviced or suspended early

• Problem: this approach has to know the maximum resource
requirements in advance

Operating Systems 07: Deadlocks 28

Safe/unsafe states Deadlocks

(using the dining philosophers example)
• Starting point: five forks are available

• each philosopher needs two forks to eat
• Situation:

P0, P1 and P2 have one fork each, two forks are free
• P3 requests a fork → one fork is still free

• safe state: one of three philosophers could eat
• the request of P3 is allocated (accepted)
• P4 requests a fork → no more forks are free

• unsafe state: none of the philosophers could eat
• the request of P4 has to wait

• if four philosophers have one fork each, the fifth is blocked
before taking the first fork

Operating Systems 07: Deadlocks 29

Safe/unsafe states Deadlocks

(using the dining philosophers example)
• Starting point: five forks are available

• each philosopher needs two forks to eat
• Situation:

P0, P1 and P2 have one fork each, two forks are free
• P3 requests a fork → one fork is still free

• safe state: one of three philosophers could eat
• the request of P3 is allocated (accepted)
• P4 requests a fork → no more forks are free

• unsafe state: none of the philosophers could eat
• the request of P4 has to wait

• if four philosophers have one fork each, the fifth is blocked
before taking the first fork

 wait(&fork[4]);
}

↯

↯

fork 0

phil
0

Detection: Resource allocation graph

fork 4

phil
4

phil
2

phil
3

fork 3

Changing this
“request edge” into

a real allocation
would result

in a cycle

fork
1

fork 2

phil
1

Operating Systems 07: Deadlocks 30

Safe/unsafe states Deadlocks

(using the example of multiple instances of resources)
• Starting point: a primitive Unix system with a maximum of 12

shared memory segments
• Process P0 needs 10 segments max., P1 four and P2 nine

• Situation: P0 uses 6 segments, P1 and P2 each two;
two segments are free
• P2 requests a segment, one remains free
→ unsafe state
• request of P2 is denied, P2 has to wait

• P0 requests two segments, none would be free
→ unsafe state
• request of P0 is denied, P0 has to wait

• safe process sequence: P1 → P0 → P2

Operating Systems 07: Deadlocks 31

Safe/unsafe states Deadlocks

(using the example of multiple instances of resources)
• Starting point: a primitive Unix system with a maximum of 12

shared memory segments
• Process P0 needs 10 segments max., P1 four and P2 nine

• Situation: P0 uses 6 segments, P1 and P2 each two;
two segments are free
• P2 requests a segment, one remains free
→ unsafe state
• request of P2 is denied, P2 has to wait

• P0 requests two segments, none would be free
→ unsafe state
• request of P0 is denied, P0 has to wait

• safe process sequence: P1 → P0 → P2

Detection: “banker’s algorithm”

• administers process/resource matrices
for the current and maximum allocation

• function to find a process sequence that
guarantees that the system does not run
out of resources even when all processes
completely use their “credit limit”

• predictive application of this function in
case of resource allocations

Operating Systems 07: Deadlocks 32

Deadlock detection
• Deadlocks are (silently) accepted („ostrich algorithm“)...

• Nothing in the system tries to avoid the
occurrence of waiting cycles!

• None of our four conditions is invalidated
• Approach: create waiting graph and search for cycles → O(n)

• Checking too frequently wastes resource and compute time
• Checking too infrequently wastes unused resources

• Cycle search take place in large time intervals only, if…
• Resource requests take too much time
• The CPU load decreases even though the number of

processes increases
• The CPU is already idle for a long time

Deadlocks

Operating Systems 07: Deadlocks 33

Deadlock resolution Deadlocks

Recovery phase after the detection phase
• Terminate processes to release resources

• Terminate deadlocked processes step by step (lots of effort)
• Start with the ”most effective victim” (?)

• Terminate all deadlocked processes (large possible damage)
• Preempt resources and start with the “most effective victim” (?)

• Roll back or restart the affected process
• Use transactions, checkpointing/recovery (lots of effort)

• A starvation of the rolled back processes has to be avoided
• Also: take care of livelocks!

• Balance between damage and effort:
• Damages are unavoidable, so we need to consider what the

consequence is

Operating Systems 07: Deadlocks 34

Discussion of prevention methods
Deadlocks

• Methods to avoid/detect deadlocks have little practically
relevance in the context of operating systems

• They are very difficult to implement, require too much
overhead and are thus not useable

• Since sequential programming is still the predominant
approach, avoidance and detection methods are rarely
required

• The risk of deadlock can be solved by virtualizing resources
• Processes only request/allocate logical resources
• Using virtualization, physical resources can be removed

(preempted) from a process (without the process noticing) in
critical moments

• Accordingly, the “no preemption” condition is invalidated
➙ Prevention methods more commonly used & relevant in practice

Operating Systems 07: Deadlocks 35

Conclusion
• Problems with deadlocks and livelocks

• “[...] a situation in which two or more processes are
unable to proceed because each is waiting for one of the
others to do something.”

• livelocks are the bigger problem of the two
• For a dead/lifelock to occur, four conditions have to occur

simultaneously:
• Exclusive allocation, hold and wait, no preemption of

resources
• Circular waiting of the processes requesting the resources

• Handling dead/lifelocks implies:
• prevent, avoid, detect/resolve
• the discussed approaches can also be combined

Operating Systems 07: Deadlocks 36

References
1. Dijkstra, E. W. (1971, June). Hierarchical ordering of sequential

processes. Acta Informatica 1(2): 115–138

