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Overview
• Structure of a typical computer system 

• Basic elements 
• Instruction execution 

• From von Neumann to modern computers 
• Memory hierarchy 
• Multiprocessing 
• Communication 
• Heterogeneous systems: GPGPUs 

• Non-functional properties 
• Security and virtual memory
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Computers as they are no more
• The typical diagram of a von Neumann-style computer system in an 

introductory course of computer architecture [1] 
(this diagram only models very simple microcontrollers today):
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(DMA) • Addressable unified memory for code  
and data 

• I/O devices in the same or a different 
address range 

• Optional: Interrupts notify CPU of the  
completion of an I/O operation 

• Optional: I/O devices can use DMA 
to transfer data to memory without 
CPU interaction
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Asynchronous execution: interrupts

• Access to I/O devices is often slow 
• Polling sends a command and then waits until the device 

returns data 
• With interrupts, the device notifies the program when data is ready 

• This changes the control flow the CPU executes! 
• More complex to develop software for
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(DMA)

Polling:
write(device, command) 
while (not ready(device)) { 
    // just wait and waste time! 
} 
read(device, data)

Interrupt driven:
write(device, command) 
// do something else………………… 
↯ Interrupt: 
     ➛ read(device, data)
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Computers as they are no more
• Going a bit more into details:

CPU

Memory Device

• Components of the computer  
are connected by buses 

• Address bus:  
identify component 

• Data bus:  
transfer information 

• Control bus:  
metainformation 
(read/write, interrupt, …) 
– not shown here 

• CPU has control over the bus 
• Exception: DMA
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Instruction execution
CPU

Memory Device

Data path 
ALU

Control Unit 
(CU)

Device

Address bus

Data bus

Control Unit 

Fetch Unit

Decode Unit

Execute Unit

Memory

3050

MOV R1, #42

PC

IR

10111001001100…1

10111000101100…1

10100000111000…0

10111010001100…1

3046

3050

3054

3058

Address from program counter (PC)

Instruction bit pattern to  
instruction register (IR)

PC = <reset address>   // initialize PC 
IR = memory[PC]        // fetch first instruction 
haltFlag = false 
while (not haltFlag) { 

execute(IR)        // execute 
PC = PC + 4          // address of next instr. 
IR = memory[PC]  // fetch it! 

}
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Getting a bit more real
• Simple model of execution only works efficiently if the speed of 

memory = speed of the CPU 
• This was the case until ca. 1980 

• Memory speed only improved ~6%/year 
• Today: “memory gap: 

• CPU speed ~ 10,000x faster, but memory speed only ~ 10x
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Introducing a memory hierarchy
• Idea: introduce caches 

• small, but fast intermediate levels of memory 
• Caches can only hold a partial copy of the whole memory 

• Unified caches vs. separate instruction and data caches 
• Expensive to manufacture (➛ small) 
• Later: introduction of multiple levels of cache (L1, L2, L3…) 

• Each one bigger but slower than the previous one 
• Caches work efficiently due to locality principles [2]: 

• temporal locality: a program accessing some part of memory is 
likely to access the same memory soon thereafter 

• spatial locality: a program accessing some part of memory is 
likely to access nearby memory next
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Introducing a memory hierarchy
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L1 (on 
chip) 
Cache

L2 
Cache

RAM

Disk
L1 Cache

L2 Cache

RAM

Regs100 Byte 1 ns

10 kB 5 ns

100 kB 15 ns

MB...GB 100 ns

The further from the CPU: 
• Increasing size 
• Decreasing speed



Operating Systems 02: Resources and Computer Archit. 10

Memory impact: non-functional properties
Memory has a large influence on  
non-functional properties of a system 
• Average, best, and worst case  

performance, throughput and 
latencies 

• Power and energy consumption 
• Reliability and security 

Non-functional properties depend  
on many parameters of memory, e.g. 
• Cache architecture 
• Memory type 
• Alignment and aliasing of data

L1 cache size
L2 cache size

 [2]

[3]
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When one processor is not enough
• Moore’s Law (1965) [4]: 

• observation that the number of transistors in a dense integrated 
circuit (IC) doubles about every two years  

• Accordingly, increase in CPU speed due to smaller semiconductor 
structures 

• This development is  
hitting physical  
limitations 
• CPU frequencies 

“stuck” at ~3 GHz 
• Energy consump- 

tion is additional  
limiting factor
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When one processor is not enough
• What can we do with all these transistors? 

• Bigger caches – energy hungry and prone to faults! 
➛ Put more processors on a chip! 

• Earlier high-end systems already used multiple separate 
processor chips 

• Old as well as new problems: 
• Memory throughput now has  

to satisfy demands of n processors 
• Software now has to  

support execution on  
multiple processors! 

• Caches need to be coherent 
so they hold the same copies 
of main memory data
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CPU 2
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CPU 3
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More processors, more memories
• Memory throughput now has to satisfy demands 

of n processors 
• Provide each processor with its own main memory! 
• NUMA 

“non unified memory 
architecture” 

• And new problems show up: 
• How to access data in 

another CPU’s memory? 
• Who decides which CPU 

is allowed to use the bus? 
• Is a common bus still 

efficient?
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A NUMA system board

[HP Z820 mainboard from Wikimedia by Jud McCranie CC BY-SA 4.0]

CPU1
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https://commons.wikimedia.org/wiki/User:Bubba73
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On-chip communication
• Use high-speed networks instead of conventional buses 

• Using ideas from computer networking 
• On-chip network can achieve high throughput and low 

latencies 
• Example: on-chip ring network connecting 6 CPUs, a 

system controller (“agent”) and a GPU
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Heterogeneous systems: GPGPUs
• In modern computers, not only CPUs can execute code 
• GPGPUs (general purpose graphics processing units) 

• Massively parallel processors for typical parallel tasks 
• 3D graphics, signal processing, machine learning, bitcoin 

mining… 
• Few features for protection, security… 

• Traditionally, GPUs were accessible to a single program only 
(in Unix: “X window server”) for drawing 
• Other programs had to ask the X server for services 

• In modern systems, multiple programs want direct access to 
the GPGPU 
• How can the OS multiplex the GPGPU safely and 

securely?
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Security
• …there’s another important non-functional property! 
• Multiple programs running simultaneously 

• e.g. a online banking application 
and a video player 

• How can be avoid the video player  
accessing memory of the banking app? 
• e.g. your account number and 

password, which the video player  
could share online! 

• Restrict access to non permitted 
memory ranges 
• The memory management  

unit (MMU) only makes memory 
ranges visible to a running program 
“belonging” to it

CPU 1

Memory Device Device
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CPU 2

Cache

CPU 3
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MMU MMU MMU
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The MMU
• Idea: intercept “virtual” addresses generated by the CPU 

• MMU checks for “allowed” addresses 
• It translates allowed addresses to “physical” addresses in main memory 

using a translation table 

• Problem: translation table for each single address would be large 
• Split memory into pages of identical size (power of 2) 
• Apply the same translation to all addresses in the page: 

page table 

• MMUs were originally separate ICs  
sitting between CPU and RAM 

• Or even realised using discrete 
components (e.g. in the Sun 1 [8]) 

• Higher integration due to Moore’s  
Law ➛ fit on CPU chip now! [W

ik
im

ed
ia

 b
y 

D
av

id
 M

on
ni

au
x,

 
C

C
 B

Y-
S

A 
3.

0]

Motorola  
68451 MMU 
chip (1982) [7]
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Page table structure
• Split memory into pages of identical size (power of 2) 
• Apply the same translation to all addresses in the page: page table 
• Find a compromise page size allowing flexibility and efficiency 

• Typically several kB: 4 kB=212  bytes (x86), 16 kB (Apple M1) 
• 32 bit CPU (232 addr.): 4 kB pages ➛ 232/212 = 220 pages ~ 1 million! 

• Use sparse multi-level page tables ➛ reduce page table size 
For 32 bit x86: 
• Page size:  

• 212 = 4096 bytes 
• Page table:  

• 210 page entries 
• Page directory:  

• 210 page tables
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The memory translation process
• The MMU splits the virtual (or “linear”) address coming from the 

CPU into three parts: 
• 10 bits (31–22) page directory entry (PDE) number 
• 10 bits (21–12) page directory entry (PTE) number 
• 12 bits (11–0) page offset inside the references page (untranslated) 

Translation process: 
1. Read PDE entry from directory: 
➛ address of one page table 

2. Read PTE entry from table: 
➛ physical base address  
    of memory page 

3. Add offset from original 
 virtual address (bits 11–0) 
 to obtain the complete  
 physical memory address

1⃣

2⃣
3⃣
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Speeding up translation
• Where is the page table stored? 

• Can be several MB in size  
➛ doesn’t fit on the CPU chip! 

• Page directory and page tables  
are in main memory! 

• Using virtual memory address translation requires  
three main memory accesses! 
• Same idea as with regular slow memory access: use cache! 

• The MMU uses a special cache on the CPU chip: 
the Translation Lookaside Buffer (TLB) 
• Caches commonly (most often? most recently?) used PTEs 
• The locality principle at work again 

• More details on this an upcoming lecture…
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What about the operating system?
• New hardware capabilities have to be used efficiently 
• The operating system has to manage and multiplex the 

related resources 
➛ The OS has to adapt to new hardware capabilities! 
➛ It has to provide code for all new capabilities 
➛ These often interact with other parts of the system, making 

the overall OS more complex 
• A modern OS also has to ensure adherence to non-

functional requirements (security, energy, real-time, …) 
• The OS has to do more bookkeeping and statistics 
• Some of the non-functional properties contradict each other 
• Unexpected problems may show up (Meltdown, Spectre [5,6]) 

• Finally, the OS itself has to be efficient!
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