
Operating Systems
Lecture 2: Resources and computer architecture

Michael Engel

Operating Systems 02: Resources and Computer Archit. 2

Overview
• Structure of a typical computer system

• Basic elements
• Instruction execution

• From von Neumann to modern computers
• Memory hierarchy
• Multiprocessing
• Communication
• Heterogeneous systems: GPGPUs

• Non-functional properties
• Security and virtual memory

Operating Systems 02: Resources and Computer Archit. 3

Computers as they are no more
• The typical diagram of a von Neumann-style computer system in an

introductory course of computer architecture [1]
(this diagram only models very simple microcontrollers today):

CPU Memory

Device

instructions

data

I/O

re
qu

es
t

D
at

a

In
te

rr
up

t

Dire
ct m

emory

acce
ss

(DMA) • Addressable unified memory for code
and data

• I/O devices in the same or a different
address range

• Optional: Interrupts notify CPU of the
completion of an I/O operation

• Optional: I/O devices can use DMA
to transfer data to memory without
CPU interaction

Operating Systems 02: Resources and Computer Archit. 4

Asynchronous execution: interrupts

• Access to I/O devices is often slow
• Polling sends a command and then waits until the device

returns data
• With interrupts, the device notifies the program when data is ready

• This changes the control flow the CPU executes!
• More complex to develop software for

CPU Memory

Device

instructions

data

I/O

re
qu

es
t

D
at

a

In
te

rr
up

t

Dire
ct m

emory

acce
ss

(DMA)

Polling:
write(device, command)
while (not ready(device)) {
 // just wait and waste time!
}
read(device, data)

Interrupt driven:
write(device, command)
// do something else…………………
↯ Interrupt:
 ➛ read(device, data)

Operating Systems 02: Resources and Computer Archit. 5

Computers as they are no more
• Going a bit more into details:

CPU

Memory Device

• Components of the computer
are connected by buses

• Address bus:
identify component

• Data bus:
transfer information

• Control bus:
metainformation
(read/write, interrupt, …)
– not shown here

• CPU has control over the bus
• Exception: DMA

Data path
ALU

Control Unit
(CU)

Device

Address bus

Data bus

Operating Systems 02: Resources and Computer Archit. 6

Instruction execution
CPU

Memory Device

Data path
ALU

Control Unit
(CU)

Device

Address bus

Data bus

Control Unit

Fetch Unit

Decode Unit

Execute Unit

Memory

3050

MOV R1, #42

PC

IR

10111001001100…1

10111000101100…1

10100000111000…0

10111010001100…1

3046

3050

3054

3058

Address from program counter (PC)

Instruction bit pattern to
instruction register (IR)

PC = <reset address> // initialize PC
IR = memory[PC] // fetch first instruction
haltFlag = false
while (not haltFlag) {

execute(IR) // execute
PC = PC + 4 // address of next instr.
IR = memory[PC] // fetch it!

}

Operating Systems 02: Resources and Computer Archit. 7

Getting a bit more real
• Simple model of execution only works efficiently if the speed of

memory = speed of the CPU
• This was the case until ca. 1980

• Memory speed only improved ~6%/year
• Today: “memory gap:

• CPU speed ~ 10,000x faster, but memory speed only ~ 10x

Operating Systems 02: Resources and Computer Archit. 8

Introducing a memory hierarchy
• Idea: introduce caches

• small, but fast intermediate levels of memory
• Caches can only hold a partial copy of the whole memory

• Unified caches vs. separate instruction and data caches
• Expensive to manufacture (➛ small)
• Later: introduction of multiple levels of cache (L1, L2, L3…)

• Each one bigger but slower than the previous one
• Caches work efficiently due to locality principles [2]:

• temporal locality: a program accessing some part of memory is
likely to access the same memory soon thereafter

• spatial locality: a program accessing some part of memory is
likely to access nearby memory next

Operating Systems 02: Resources and Computer Archit. 9

Introducing a memory hierarchy

Control

Data
Path

R
E
G
S

L1 (on
chip)
Cache

L2
Cache

RAM

Disk
L1 Cache

L2 Cache

RAM

Regs100 Byte 1 ns

10 kB 5 ns

100 kB 15 ns

MB...GB 100 ns

The further from the CPU:
• Increasing size
• Decreasing speed

Operating Systems 02: Resources and Computer Archit. 10

Memory impact: non-functional properties
Memory has a large influence on
non-functional properties of a system
• Average, best, and worst case

performance, throughput and
latencies

• Power and energy consumption
• Reliability and security

Non-functional properties depend
on many parameters of memory, e.g.
• Cache architecture
• Memory type
• Alignment and aliasing of data

L1 cache size
L2 cache size

 [2]

[3]

Operating Systems 02: Resources and Computer Archit. 11

When one processor is not enough
• Moore’s Law (1965) [4]:

• observation that the number of transistors in a dense integrated
circuit (IC) doubles about every two years

• Accordingly, increase in CPU speed due to smaller semiconductor
structures

• This development is
hitting physical
limitations
• CPU frequencies

“stuck” at ~3 GHz
• Energy consump-

tion is additional
limiting factor

Operating Systems 02: Resources and Computer Archit. 12

When one processor is not enough
• What can we do with all these transistors?

• Bigger caches – energy hungry and prone to faults!
➛ Put more processors on a chip!

• Earlier high-end systems already used multiple separate
processor chips

• Old as well as new problems:
• Memory throughput now has

to satisfy demands of n processors
• Software now has to

support execution on
multiple processors!

• Caches need to be coherent
so they hold the same copies
of main memory data

CPU 1

Memory Device Device

Address bus

Data bus

Cache

CPU 2

Cache

CPU 3

Cache

Operating Systems 02: Resources and Computer Archit. 13

More processors, more memories
• Memory throughput now has to satisfy demands

of n processors
• Provide each processor with its own main memory!
• NUMA

“non unified memory
architecture”

• And new problems show up:
• How to access data in

another CPU’s memory?
• Who decides which CPU

is allowed to use the bus?
• Is a common bus still

efficient?

CPU 1

Memory

Device Device

Address bus

Data bus

Cache

CPU 2

Cache
Memory

?

Operating Systems 02: Resources and Computer Archit. 14

A NUMA system board

[HP Z820 mainboard from Wikimedia by Jud McCranie CC BY-SA 4.0]

CPU1
CPU2

Memory
banks local
to CPU 2

Memory
banks local

to CPU 1

PCIe
I/O bus
slots

https://commons.wikimedia.org/wiki/User:Bubba73

Operating Systems 02: Resources and Computer Archit. 15

On-chip communication
• Use high-speed networks instead of conventional buses

• Using ideas from computer networking
• On-chip network can achieve high throughput and low

latencies
• Example: on-chip ring network connecting 6 CPUs, a

system controller (“agent”) and a GPU

Operating Systems 02: Resources and Computer Archit. 16

Heterogeneous systems: GPGPUs
• In modern computers, not only CPUs can execute code
• GPGPUs (general purpose graphics processing units)

• Massively parallel processors for typical parallel tasks
• 3D graphics, signal processing, machine learning, bitcoin

mining…
• Few features for protection, security…

• Traditionally, GPUs were accessible to a single program only
(in Unix: “X window server”) for drawing
• Other programs had to ask the X server for services

• In modern systems, multiple programs want direct access to
the GPGPU
• How can the OS multiplex the GPGPU safely and

securely?

Operating Systems 02: Resources and Computer Archit. 17

Security
• …there’s another important non-functional property!
• Multiple programs running simultaneously

• e.g. a online banking application
and a video player

• How can be avoid the video player
accessing memory of the banking app?
• e.g. your account number and

password, which the video player
could share online!

• Restrict access to non permitted
memory ranges
• The memory management

unit (MMU) only makes memory
ranges visible to a running program
“belonging” to it

CPU 1

Memory Device Device

Address bus

Data bus

Cache

CPU 2

Cache

CPU 3

Cache

MMU MMU MMU

Operating Systems 02: Resources and Computer Archit. 18

The MMU
• Idea: intercept “virtual” addresses generated by the CPU

• MMU checks for “allowed” addresses
• It translates allowed addresses to “physical” addresses in main memory

using a translation table

• Problem: translation table for each single address would be large
• Split memory into pages of identical size (power of 2)
• Apply the same translation to all addresses in the page:

page table

• MMUs were originally separate ICs
sitting between CPU and RAM

• Or even realised using discrete
components (e.g. in the Sun 1 [8])

• Higher integration due to Moore’s
Law ➛ fit on CPU chip now! [W

ik
im

ed
ia

 b
y

D
av

id
 M

on
ni

au
x,

C

C
 B

Y-
S

A
3.

0]

Motorola
68451 MMU
chip (1982) [7]

Operating Systems 02: Resources and Computer Archit. 19

Page table structure
• Split memory into pages of identical size (power of 2)
• Apply the same translation to all addresses in the page: page table
• Find a compromise page size allowing flexibility and efficiency

• Typically several kB: 4 kB=212 bytes (x86), 16 kB (Apple M1)
• 32 bit CPU (232 addr.): 4 kB pages ➛ 232/212 = 220 pages ~ 1 million!

• Use sparse multi-level page tables ➛ reduce page table size
For 32 bit x86:
• Page size:

• 212 = 4096 bytes
• Page table:

• 210 page entries
• Page directory:

• 210 page tables

Operating Systems 02: Resources and Computer Archit. 20

The memory translation process
• The MMU splits the virtual (or “linear”) address coming from the

CPU into three parts:
• 10 bits (31–22) page directory entry (PDE) number
• 10 bits (21–12) page directory entry (PTE) number
• 12 bits (11–0) page offset inside the references page (untranslated)

Translation process:
1. Read PDE entry from directory:
➛ address of one page table

2. Read PTE entry from table:
➛ physical base address
 of memory page

3. Add offset from original
 virtual address (bits 11–0)
 to obtain the complete
 physical memory address

1⃣

2⃣
3⃣

Operating Systems 02: Resources and Computer Archit. 21

Speeding up translation
• Where is the page table stored?

• Can be several MB in size
➛ doesn’t fit on the CPU chip!

• Page directory and page tables
are in main memory!

• Using virtual memory address translation requires
three main memory accesses!
• Same idea as with regular slow memory access: use cache!

• The MMU uses a special cache on the CPU chip:
the Translation Lookaside Buffer (TLB)
• Caches commonly (most often? most recently?) used PTEs
• The locality principle at work again

• More details on this an upcoming lecture…

Operating Systems 02: Resources and Computer Archit. 22

What about the operating system?
• New hardware capabilities have to be used efficiently
• The operating system has to manage and multiplex the

related resources
➛ The OS has to adapt to new hardware capabilities!
➛ It has to provide code for all new capabilities
➛ These often interact with other parts of the system, making

the overall OS more complex
• A modern OS also has to ensure adherence to non-

functional requirements (security, energy, real-time, …)
• The OS has to do more bookkeeping and statistics
• Some of the non-functional properties contradict each other
• Unexpected problems may show up (Meltdown, Spectre [5,6])

• Finally, the OS itself has to be efficient!

Operating Systems 02: Resources and Computer Archit. 23

References
1. John von Neumann, First Draft of a Report on the EDVAC, 1945 – reproduced in

IEEE Annals of the History of Computing, vol. 15, no. 4, pp. 27-75, 1993
2. U. Drepper, What Every Programmer Should Know About Memory, RedHat Inc., 2007
3. R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, P. Marwedel, Scratchpad memory:

design alternative for cache on-chip memory in embedded systems, Proceedings of the
tenth international symposium on hardware/software codesign, 2002

4. Gordon E. Moore, Gordon E., Cramming more components onto integrated circuits,
Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.,
in IEEE Solid-State Circuits Society Newsletter, vol. 11, no. 3, pp. 33-35, Sept. 2006

5. Moritz Lipp et al., Meltdown: Reading Kernel Memory from User Space, 27th USENIX
Security Symposium 2018

6. Paul Kocher et al., Spectre Attacks: Exploiting Speculative Execution, 40th IEEE
Symposium on Security and Privacy 2019

7. Motorola Semiconductors Inc., MC68451 Memory Management Unit, document nr.
ADI-872-R1, 1983

8. Sun Microsystems Inc., Sun-1 System Reference Manual, P/N 800-0345, 1982

