
Operating Systems
Example solutions for Theoretical Exercise 8

Michael Engel

Operating Systems – Solution TE 8 2

8.1 Emulation and JIT compilation
Options for binary compatibility (run x86-64 programs on Aarch64):
• Recompile all programs for the Aarch64 target instruction set
• Translate compiled binaries from x86-64 machine code to Aarch64

Find out why, in the common case, it is not possible to statically
translate a binary executable from one instruction set to the other.

A static binary translation would work like a translation of a book, e.g.
from bokmål to German. Such a translation can never be perfect and
tends to lose semantic details or introduce different possible meaning
or interpretation in the translated text.
The semantics of computer code is in general defined much more
precisely, but there can be a number of problems when trying to
translate (i.e. compile) a program statically.

Operating Systems – Solution TE 8

EECS 768 Virtual Machines 36

Code Location Problem

• Mapping of the source program counter to the
destination PC for indirect jumps

– indirect jump addresses in the translated code still
refer to source addresses for indirect jumps

x86 source code
movl %eax, 4(%esp) ;load jump address from memory
jmp %eax ;jump indirect through %eax

PowerPC target code
addi r16,r11,4 ;compute x86 address
lwzx r4,r2,r16 ;get x86 jump address

 ; from x86 memory image
mtctr r4 ;move to count register
bctr ;jump indirect through ctr

3

8.1 Emulation and JIT compilation
1. Code discovery problem
Depending on the architecture (especially for variable-length machine instructions such as
x86-64), it is difficult to predecode (disassemble) the whole program in advance

Consider this x86 code sequence:

If 8b is decoded as the first byte of
an instruction, it’s a movl, if b5 is the
first most, it’s a different mov instruction

2. Code location problem
Mapping of the source program counter to
the destination PC for indirect jumps – indirect
jump addresses in the translated code still refer
to source addresses for indirect jumps

More information in case you are interested:
• An article about Apple’s Rosetta2 binary translation

https://ffri.github.io/ProjectChampollion/
https://github.com/FFRI/ProjectChampollion

• An Emulator Writer's HOWTO for Static Binary Translation – http://www.gtoal.com/sbt/

EECS 768 Virtual Machines 34

Code Discovery Problem

• May be difficult to statically translate or
predecode the entire source program

• Consider x86 code

 mov %ch,0 ??

31 c0 8b b5 00 00 03 08 8b bd 00 00 03 00

 movl %esi, 0x08030000(%ebp) ??

https://ffri.github.io/ProjectChampollion/
https://github.com/FFRI/ProjectChampollion
http://www.gtoal.com/sbt/

Operating Systems – Solution TE 8 4

8.2 Virtual memory ballooning
Assuming no swap space is configured, explain why the memory ballooning approach
can work.

Memory ballooning is simply an overallocation of memory. If you have 16 GB of RAM and
three VMs allocating 6 GB each (so 18 GB overall), it is very unlikely that all three VMs
use the maximum amount of memory at the same time.
The virtual machine's kernel implements a "balloon driver" which allocates unused
memory within the VM's address space into a reserved memory pool (the "balloon") so
that it is unavailable to other processes on the VM.
This works since in many operating systems, a significant amount of physical memory is
free in regular operation.
In htop, the "Mem" entry shows the amount of memory allocated for different functionality
(here shown for Linux): Green = Used memory, Blue = Buffers, Yellow/Orange = Cache
MacOS allocates all free memory
for buffers/caches, so the memory
use in htop always appears "full".

Operating Systems – Solution TE 8 5

8.3 Containers
Give three examples of missing functionality in chroot to implement container
functionality as provided by Docker and explain why the functionality is required
(we give four here, there may be even more…)
1. chroot does not hide other processes in the system
 A process running inside the chroot environment can see activities outside the chroot
2. chroot does not prohibit the execution of specific syscalls
 Often, you want to limit process functionality, e.g. to accept network connections.
 This is not provided by chroot
3. Escaping chroot "jails" is simple
 If you manage to obtain root permissions inside a chroot, you can execute
 chroot again to break out
4. Insufficient isolation against other users
 Chroot does not isolate resources (memory, CPU time, size of files…), so a
 user inside of a chroot environment can e.g. start a denial-of-service (DoS) attack
In general, chroot is not a security feature (but might be used as a part of if)!
See also: Container from scratch: Using chroot to isolate the filesystem
https://kevinboone.me/containerfromscratch_chroot.html

https://kevinboone.me/containerfromscratch_chroot.html

Operating Systems – Solution TE 8 6

8.4 Popek and Goldberg Criteria
Find out why the Motorola 68000 MOVE from SR instruction is
problematic and how a virtual machine could exploit this
instruction.

This instruction is sensitive because it allows access to the entire
status register, which includes not only the condition codes but also
the user/supervisor bit, interrupt level, and trace control.
Thus, an OS or other code running as guest OS under a hypervisor
could find out it is not running natively and behave differently. E.g.,
malware could only become active when running on real hardware.
In most later 68000 family members, starting with the MC68010,
the MOVE from SR instruction was made privileged, and a new
MOVE from CCR instruction was provided to allow access to the
condition code register only

Operating Systems – Solution TE 8 7

8.5 Privilege Modes
Find out why more than two privilege levels could be useful and in which ways they were
used in the Windows NT 3.5 and VMS operating system.

These additional levels (called "rings" on x86) are used to isolate components of the OS that
need access to the hardware from the kernel itself. This is usually done for device drivers,
which are often provided by third parties and not completely trustworthy
Running kernel code in an additional level has a performance penalty, since mode switches
are now required between driver and OS kernel.
Windows NT up to version 3.51 ran drivers outside of the most privileged "ring 0", which
resulted in a severe performance problem. In NT 4, especially graphics drivers were moved
back to ring 0.
The VMS OS on DEC VAX hardware supports four "access modes", used as follows:

1. kernel (scheduling, I/O operations, memory management)
2. executive (file subsystem)
3. supervisor (shell)
4. user (user programs, compilers, editors, etc.)

See also https://people.cs.clemson.edu/~mark/syscall/vax.html and http://www.bitsavers.org/
pdf/dec/vax/vms/4.0/AA-Z102A-TE_VAX_VMS_4.0_Glossary_198409.pdf

https://people.cs.clemson.edu/~mark/syscall/vax.html
http://www.bitsavers.org/pdf/dec/vax/vms/4.0/AA-Z102A-TE_VAX_VMS_4.0_Glossary_198409.pdf
http://www.bitsavers.org/pdf/dec/vax/vms/4.0/AA-Z102A-TE_VAX_VMS_4.0_Glossary_198409.pdf
http://www.bitsavers.org/pdf/dec/vax/vms/4.0/AA-Z102A-TE_VAX_VMS_4.0_Glossary_198409.pdf

Operating Systems – Solution TE 8 8

8.6 Shadow Page Tables
Describe what happens in case of a page fault in a virtual machine
on a system that employs a hypervisor using shadow page tables.
Which lookups are performed, which parts of which of the page
tables are accessed?

Because most operating systems use paged virtual memory,
granting the guest OS direct access to the MMU would mean loss
of control by the virtualization manager.
Thus, some of the work of the (e.g. x86) MMU needs to be
duplicated in software for the guest OS using shadow page tables. 
This involves denying the guest OS any access to the actual page
table entries by trapping access attempts and emulating them
instead in software.
See also https://www.vmware.com/pdf/asplos235_adams.pdf

https://www.vmware.com/pdf/asplos235_adams.pdf

Operating Systems – Solution TE 8 9

8.6 Shadow Page Tables
Describe what happens in case of a page fault in a virtual machine
on a system that employs a hypervisor using shadow page tables.

Which lookups are performed, which parts of which of the page
tables are accessed?

Rather than describing here shortly what happens, please take a
look at
https://courses.engr.illinois.edu/cs423/fa2011/lectures/lect35-
virt2.pdf

https://courses.engr.illinois.edu/cs423/fa2011/lectures/lect35-virt2.pdf
https://courses.engr.illinois.edu/cs423/fa2011/lectures/lect35-virt2.pdf

