
Operating Systems
Example solutions for Theoretical Exercise 4

Michael Engel

Operating Systems – Solution TE 4 2

4.1 Replacement strategies
Perform and visualize (as shown in lecture 10) the access
sequence with the replacement strategies FIFO, Optimal and LRU
once with a memory with a capacity of 4 pages and once with 5
pages. Calculate the “hit rate” (accesses which did not result in a
replacement operation) for all scenarios.
Request sequence: 1,3,5,4,2,4,3,2,1,0,5,3,5,0,4,3,5,4,3,2,1,3,4,5

Operating Systems – Solution TE 4 3

4.1 Replacement strategies
FIFO:

Prof. Dr. Christian Baun
Operating Systems (WS1920)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Replacement strategy Least Frequently Used (LFU):

Replacement strategy FIFO:

3. What is the key message of Laszlo Belady’s anomaly?

FIFO result in worse results for certain access sequences with a bigger memory.

Content: Topics of slide set 5 Page 8 of 11

Operating Systems – Solution TE 4 4

4.1 Replacement strategies
Optimal:

Prof. Dr. Christian Baun
Operating Systems (WS1920)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Optimal replacement strategy (OPT):

Content: Topics of slide set 5 Page 6 of 11

Operating Systems – Solution TE 4 5

4.1 Replacement strategies
LRU:

Prof. Dr. Christian Baun
Operating Systems (WS1920)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Replacement strategy Least Recently Used (LRU):

Content: Topics of slide set 5 Page 7 of 11

Operating Systems – Solution TE 4 6

4.2 More replacement strategies
A computer has four page frames. The time of loading, time of last
access, and the R (reference) and M (modified) bits for each page are
as shown below (the times are in clock ticks):

Which pages will the algorithms FIFO, LRU and Second Chance
replace? Explain your answer!

FIFO: Page 3 because it is loaded at 110 (First In)
LRU: Page 1 because is referenced at 265 (Least Recently)
2nd ch.: Page 2 because it is loaded at 140 and the reference bit is 0.

Department of Computer Science – IDI TDT4186 Operating Systems

https://folk.ntnu.no/michaeng/tdt4186_22/
michael.engel@ntnu.no

Theoretical exercises
Spring 2022

Theoretical Exercises 4
Memory allocation and virtual memory

Please submit solutions on Blackboard by Monday, 28.2.2022 12:00h

4.1 Replacement strategies

Perform and visualize (as shown in lecture 10) the access sequence with the replacement strategies FIFO, Optimal
and LRU once with a memory with a capacity of 4 pages and once with 5 pages. Calculate the “hit rate” (accesses
which did not result in a replacement operation) for all scenarios.

Request sequence: 1, 3, 5, 4, 2, 4, 3, 2, 1, 0, 5, 3, 5, 0, 4, 3, 5, 4, 3, 2, 1, 3, 4, 5

4.2 More replacement strategies

A computer has four page frames. The time of loading, time of last access, and the R (reference) and M (modified)
bits for each page are as shown below (the times are in clock ticks):

Page Loaded Last ref. R M
0 126 280 1 0
1 230 265 0 1
2 140 270 0 0
3 110 285 1 1

Which pages will the algorithms FIFO, LRU and Second Chance replace? Explain your answer!

4.3 Buddy allocation

The Buddy method for allocating memory to processes shall be used for a memory with a capacity of 1024 kB. Perform
the provided operations and give the occupancy state of the memory after each operation. Indicate if an allocation
cannot be satisfied.

a. Request 65 kB (A)

b. Request 30 kB (B)

c. Request 90 kB (C)

d. Request 34 kB (D)

e. Request 130 kB (E)

f. Release C

g. Release B

h. Request 275 kB (F)

Operating Systems – Solution TE 4 7

4.3 Buddy allocation
The Buddy method for allocating memory to processes shall be used for a memory
with a capacity of 1024 kB. Perform the provided operations and give the
occupancy state of the memory after each operation. Indicate if an allocation
cannot be satisfied.

a. Request 65 kB (A)
b. Request 30 kB (B)
c. Request 90 kB (C)
d. Request 34 kB (D)
e. Request 130 kB (E)
f. Release C
g. Release B
h. Request 275 kB (F)
i. Request 145 kB (G)
j. Release D
k. Release A
l. Release G
m. Release E

Operating Systems – Solution TE 4 8

4.3 Buddy allocation
a. Request 65 kB (A)
b. Request 30 kB (B)
c. Request 90 kB (C)
d. Request 34 kB (D)
e. Request 130 kB (E)
f. Release C
g. Release B
h. Request 275 kB (F)
i. Request 145 kB (G)
j. Release D
k. Release A
l. Release G
m. Release E

Prof. Dr. Christian Baun
Operating Systems (WS1920)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Exercise 2 (Buddy Memory Allocation)

The Buddy method for allocating memory to processes shall be used for a memory
with a capacity of 1024 kB. Perform the provided operations and give the occupancy
state of the memory after each operation.

Exercise 3 (Real Mode and Protected Mode)

1. Describe the functioning of the real mode.

Each process can access the entire memory, which can be addressed.

Content: Topics of slide set 5 Page 2 of 11

request

request

request

request

request

request

145 KB request => G

release

release

release

release

release

release

impossible, no
contiguous 275 kB!

Operating Systems – Solution TE 4 9

4.4 Virtual memory
A machine has a physical memory with 232 addressable bytes and a
page size of 8 kB. Each process is allocated a virtual address space
of 4 GB. Page table entries are 32 bits long. Page tables are kept in
pageable memory.
a. Why is one-level paging inadequate for this system?

A one-level page table would imply that the first (and only) level of the
table has space for all page entries.

of pages: 4 GB / 8 kB = 232 / 213 = 232-13 = 219

Each page requires a 32 bit = 4 byte entry in the page table.
Thus, the page table for each process would require:
219 * 4 bytes = 2 MB.
This is quite a waste of memory…

Operating Systems – Solution TE 4 10

4.4 Virtual memory
A machine has a physical memory with 232 addressable bytes and a
page size of 8 kB. Each process is allocated a virtual address space of
4 GB. Page table entries are 32 bits long. Page tables are kept in
pageable memory.
b. Why is two-level paging sufficient?

The page table structure is a tradeoff between the size of the table and
the overhead to look up a page entry in case of a TLB miss.

For 32 bit virtual addresses, level 0 and 1 page directories will have
around 1024 entries or less (see part c), so a page directly will
comfortably fit inside a page of the virtual memory system.

The sv32 page table structure of RISC-V (RV32) uses such a two-level
page table with 4 kB pages and 210=1024 entries for level 0 and 1.

Operating Systems – Solution TE 4 11

4.4 Virtual memory
A machine has a physical memory with 232 addressable bytes and a
page size of 8 kB. Each process is allocated a virtual address space of
4 GB. Page table entries are 32 bits long. Page tables are kept in
pageable memory.
c. How many bits are needed to reference the outer page table and
 how many to reference the inner page table?
 Explain your answer showing all appropriate arithmetic.
A two-level page table splits a virtual address into three parts, e.g.:

The offset is 13 bits (213 = 8192 = 8 kB), so we need to split the
remaining 32-13 = 19 bits into two halves
 e.g. 10 bits for a level 1 entry and 9 for a level 2 entry
This would imply a level 1 page table size of 210 * 4 bytes = 4096 b.
A level 2 page table would only use 29 * 4 bytes = 2048 bytes

index in level 1 index in level 2 offset inside page
0121331 22 21

Operating Systems – Solution TE 4 12

4.5 Paging and memory accesses
Consider the following 2D array (assume sizeof(int)=8):
int X[32][32];
Suppose that a system uses 4 pages of 512 byte page size each.
The X array is stored in row-major order (i.e., X[0][1] follows
X[0][0] in memory).

Which of the following two code fragments will generate the lower
number of page faults?
Compute the total number of page faults for each code fragment.
Explain your calculation.

Operating Systems – Solution TE 4 13

4.5 Paging and memory accesses
Consider the following 2D array (assume sizeof(int)=8):
int X[32][32];
Suppose that a system uses 4 pages of 512 byte page size each.
The X array is stored in row-major order (i.e., X[0][1] follows X[0][0] in memory).

Fragment 1:
for (int j=0; j<32; j++)
 for (int i=0; i<32; i++)
 X[i][j]++;

of page faults:
A frame is 64 (=512/8) words
⇒ one row of the X array occupies half of a page (i.e., 32 words)
The entire array fits into 32 × 16/64 = 8 frames
The inner loop of the code steps through consecutive rows of X for a given column.
Thus every other reference to X[i][j] will cause a page fault.
⇒The total number of page faults will be 32 × 32/2 = 512.

Operating Systems – Solution TE 4 14

4.5 Paging and memory accesses
Consider the following 2D array (assume sizeof(int)=8):
int X[32][32];
Suppose that a system uses 4 pages of 512 byte page size each.
The X array is stored in row-major order (i.e., X[0][1] follows X[0][0] in memory).

Fragment 2:
for (int i=0; i<32; i++)
 for (int j=0; j<32; j++)
 X[i][j]++;

of page faults:
A frame is 64 (=512/8) words
⇒ one row of the X array occupies half of a page (i.e., 32 words)
The entire array fits into 32 × 16/64 = 8 frames
Fragment 2 will generate fewer page faults since the code has more spatial locality
than Fragment 1.
The inner loop causes only one page fault for every other iteration of the outer loop.
⇒There will only be 16 page faults.

