
Department of Computer Science – IDI TDT4186 Operating Systems

https://folk.ntnu.no/michaeng/tdt4186_22/
michael.engel@ntnu.no

Practical exercises
Spring 2022

Practical Exercise 2
Multithreading and Communication

Please submit solutions on Blackboard by Tuesday, 22.3.2022 12:00h

2.1 A multithreaded web server

You all use a web server every day – though, of course, not directly, but through your web browser. In this exercise,
you are going to implement a web server for a Unix system in several steps.

The task is to implement a multi-threaded webserver mtwwwd in a file mtwwwd.c. The server listens on a configurable
TCP port port and delivers HTML files that are located in a directory hierarchy below the web root directory passed
as www-path.

The web server should be invoked as follows:

mtwwwd www-path port #threads #bufferslots

Parameters three and four (#threads and #bufferslots) are used in subtask d. A reguest to the webserver using the
given TCP port looks as follows:

GET /doc/index.html

The given path name must not contain whitespace characters (space, tab, etc.) and has to refer to an existing file. So
with a given www-path of /home/fritz/webroot and a request path of /doc/index.html, the file to be delievered
is /home/fritz/webroot/doc/index.html.

All text of the request following the path name is to be ignored. The request line is terminated by either the character
sequence “\n” (linefeed, Unix line end convention) or “\r\n” (Windows line end convention). After receiving the request,
the server should deliver the requested file to the client (which might be a web server or a tool such as wget or curl)
using the HTTP/0.9 protocol and close the TCP connection after delivering the file contents.

a. Start by writing a single-threaded web server. The main thread should start serving a request as soon as it is
received and should only accept a new connection (using accept(2)) after serving the previous request. Test
that your web server correctly delivers documents using different paths using a web browser.

Hint: You can optionally implement error handling by returning the infamous 404 error (see https://en.
wikipedia.org/wiki/HTTP_404)

b. Implement counting semaphores to coordinate POSIX threads (pthread_mutex_lock(3),
pthread_cond_wait(3)) in the module sem (file sem.c).

(continued on the next page)

https://folk.ntnu.no/michaeng/tdt4186_21/
mailto:michael.engel@ntnu.no
https://en.wikipedia.org/wiki/HTTP_404
https://en.wikipedia.org/wiki/HTTP_404


Department of Computer Science – IDI TDT4186 Operating Systems

c. Implement a ring buffer in the module bbuffer (file bbuffer.c), which will be used for communicating between
a single producer and multiple consumer threads.

Use your semaphore implementation from subtask b to synchronize over- and underflow situations of the ring
buffer, so that producers block when trying to insert an element into a full buffer and receivers block when trying
to take an element from an empty buffer.

d. Now extend your server using POSIX threads so that multiple worker threads perform the processing of the
requests and the main thread is only responsible for accepting connections and distributing the work. At the
start of the server, create #threads worker threads, which should continue to exist throughout the lifetime of
the server.

Use a ring buffer with #bufslot entries to exchange data between the worker threads and the main thread. The
main thread now only accepts connections and passes the respective file descriptor of the socket representing
the connection into the ring buffer. The worker threads then take one of the socket file descriptors from the ring
buffer and process the connection.

The connection is to be processed by:

• Receive the request on the socket file descriptor passed in the ring buffer

• Parse the request

• Open the file indicated in the request

• Create and send a HTTP/0.9 response

• Deliver the requested file

• Close the connection

• Start with the next request

e. Extra credit: As implemented, the web server has a significant security problem: it allows not only to access
files under the www-path directory, but enables access to all files in the file system of the server that can be
accessed by the user who started the webserver process.

Find a way to exploit this security problem. Then, find two different ways to prevent access to files outside of the
webroot directory.

Hints:

• A tutorial for using POSIX threads (pthreads) can be found at
https://www.cs.cmu.edu/afs/cs/academic/class/15492-f07/www/pthreads.html

• A detailed description of version 0.9 of the http protocol can be found at
http://www.w3.org/Protocols/HTTP/AsImplemented.html.

• On Unix systems, you can usually only open TCP ports < 1024 for incoming connections as root. You can use
a higher port number (e.g. 8000) for testing as a regular user. The port number can be specified in the URL:
http://localhost:8000/doc/index.html

• In the file p2.tar, you can find header files containing interface descriptions for the modules sem and bbuffer.
Comments in the header files provide a description of the API. Do not change the header files of the modules.

• The server should be able to serve requests via IPv4 as well as IPv6.

https://www.cs.cmu.edu/afs/cs/academic/class/15492-f07/www/pthreads.html
http://www.w3.org/Protocols/HTTP/AsImplemented.html
http://localhost:8000/doc/index.html

	A multithreaded web server

