
Operating Systems
More Q&A for PE4 – 18.03.2021

Michael Engel

OS Q&A 2

PE4a Terminal I/O handling and input scanning

• A standard Unix shell…
• reads commands from stdin (fd 0)
• writes regular output (e.g. the prompt) to stdout (fd 1)
• writes error messages to stderr (fd 2)

• Reading commands
• Using gets(3) is not a good idea: buffer overflows!
• scanf(3) might also be difficult:

• "Scanning stops when an input character does not match
such a format character"

• getline(3) even can allocate memory for you!

Operating systems TE4 3

PE4b Unix shell parsing
Splitting the command line:

• Today, this would be called a REPL – "Read-Evaluate-Print-Loop"
• Prompt: what the shell prints
• Command name: command to execute (internal or external)
• Optional: zero or more parameters
• Optional: input and output redirect (in arbitrary order)

/home/me > /bin/ls -l /bin /usr/bin > /tmp/listing
/home/me > /bin/sed s/foo/bar/ < inputfile > resultfile

prompt command
name

param1: "-l" param2: "/bin" param3: "/usr/bin"

input redirection
from "inputfile"

output redirection
to "inputfile"

OS Q&A 4

PE4b Interpreting the command line
• What about the order on the command line?
• Would these three lines be identical?

• on a "real" Unix shell: yes! (but most people don’t expect it)
• Your shell does not have to support this

• I/O redirection at the end of the line is perfectly fine
• However, these two lines should both work in your shell:

/home/me > /bin/ls -l /bin /usr/bin > /tmp/listing
/home/me > /bin/ls > /tmp/listing -l /bin /usr/bin
/home/me > /bin/ls -l /bin > /tmp/listing /usr/bin

/home/me > /bin/sed s/foo/bar/ < inputfile > resultfile
/home/me > /bin/sed s/foo/bar/ > resultfile < inputfile

Operating systems TE4 5

PE4a Terminal I/O handling and input scanning

Parsing by hand is lots of work and error-prone…

• Alternative: one of the strtok(3) libc functions
• From the strtok manpage on strtok_r(3):

char *
strtok_r(char *restrict str, const char *restrict sep, char **restrict lasts);

char line[80];
char *sep = "\\/:;=-";
char *word, *phrase, *brkt, *brkb;

strcpy(test, "This;is.a:test:of=the/string\\tokenizer-function.");

for (word = strtok_r(test, sep, &brkt); // strtok_r has an internal state machine
 word;
 word = strtok_r(NULL, sep, &brkt)) // it stores current pos in string in brkt
{
 printf("So far we're at %s:%s\n", word); // word contains ptr to current part
}

Operating systems TE4 6

PE4b Unix shell parsing
Parsing by hand is lots of work and error-prone…

• Alternative:
strsep(3)

char *
strsep(char **stringp, const char *delim);

First example:
char *token, *string, *tofree;

tofree = string = strdup("abc,def,ghi");
assert(string != NULL);

while ((token = strsep(&string, ",")) != NULL)
 printf("%s\n", token);

free(tofree);

Second example:
char **ap, *argv[10], *inputstring;

for (ap = argv; (*ap = strsep(&inputstring, " \t")) != NULL;)
 if (**ap != '\0')
 if (++ap >= &argv[10])
 break;

Operating systems TE4 7

PE4b Unix shell exec calls
There are several different exec functions in libc:

• Depending on your representation of the parameters you parse, some
might be more appropriate than others… execv works for many of you!

 int
 execl(const char *path, const char *arg0, ... /*, (char *)0 */);

 int
 execle(const char *path, const char *arg0, ... /*, (char *)0, char *const envp[] */);

 int
 execlp(const char *file, const char *arg0, ... /*, (char *)0 */);

 int
 execv(const char *path, char *const argv[]);

 int
 execvp(const char *file, char *const argv[]);

 int
 execvP(const char *file, const char *search_path, char *const argv[]);

OS Q&A 8

PE4c Implement I/O redirection
• A Unix program created by fork(2) inherits all file descriptors

of its parents
• Especially stdin (0), stdout (1) and stderr (2)

• General way to do I/O redirection:
• In the shell, use pid = fork(); to create a child process

• In the parent process (pid returned = pid of child), just wait for
termination of the child process

• In the child process (pid returned = 0)
• If input redirection indicated:

• open file for read & redirect input file descriptor stdin
• If output redirection indicated:

• open file for write (create if required) & redirect input file
descriptor stdout

• Then use exec to call the program

Operating systems TE4 9

PE4c Unix shell I/O redirection
Redirecting I/O in Unix works uses the dup(2) or dup2(2) syscall:

• dup copies the file descriptor passed as parameter to the first unused
file descriptor

• to redirect I/O:
• open the file you want to redirect to/from ➛ file descriptor, e.g. refd
• then either close the fd you want to redirect (e.g. stdout = 1) and

• and call dup with refd as parameter
• or call dup2 with the fd you want to redirect and refd as parameters

 int
 dup(int fildes);

 int
 dup2(int fildes, int fildes2);

OS Q&A 10

PE4d Internal shell commands
• Why are cd and exit implemented as internal commands?
• Unix processes have the concept of a current directory
• File/path names can be relative (to the current dir) or absolute

• absolute names start with a "/"
• so they always start at the root of the file system tree

• relative names start with any other character
• can include partial path, e.g. sub/dir/file.c refers to /

home/me/sub/dir/file.c if current dir is /home/me
• For looking up commands, this is not (generally) true

• Instead, the shell searches executable files in a set of
directories in an environment variable $PATH

• If "." (current dir) is in $PATH: possible security problem

OS Q&A 11

PE4d Internal shell commands
• For looking up commands, this is not (generally) true

• Instead, the shell searches executable files in a set of
directories in an environment variable $PATH

• If "." (current dir) is in $PATH: possible security problem
• Why is this a security problem?
• Imagine a $PATH such as .:/bin:/usr/bin
• Now if you type ls…

• The shell first searches in the current directory
• What if you typed cd /tmp and then ls?
• … and some other user left an executable program in /tmp

that deletes your home directory?
😮

OS Q&A 12

PE4d Internal shell commands
• Why are cd and exit implemented as internal commands?
• Think about exit implemented as an external command:

#include <stdlib.h>
int main(void) {
 exit(0);
}

• What would this do?

OS Q&A 13

PE4e Simple shell scripting
• There has been a lot of confusion about shell scripts
• A shell script is just a text file with shell commands

• Usually one command per line
• "Real" Unix shells implement control structures

• if/while etc.
• Your shell only has to implement sequences of commands

• …just as if you typed them one after the other on the
command line by hand

• Call it like this:
./wish shellscript.sh

• Implementation is simple!
Think about what happens if you call your shell like this:
./wish < shellscript.sh

Operating systems TE4 14

PE4 Overall Unix shell structure
General structure
of a Unix shell:

Initialize

print prompt

read command
line

scan and parse
command line

cd?

yes

no

fork(2)

no

exit?

yes
chdir(2)

exit(3)

input
redirect?

scan/parse results:
• command name "cmd"
• parameter array "args"
• optional filename for input redirect "inf"
• optional filename for output redirect "outf"

no output
redirect?

yes yes

open(inf, O_RDONLY);
close(stdin);

dup();

waitpid(2)

two
processes!

exec…(2)

open(inf, O_WRONLY);
close(stdout);

dup();after exec
finishes

the
command
should be
running

returns
with error?

print error
message

