
Operating Systems
Lecture 6: Concurrency: Synchronization

Michael Engel

Operating Systems 06: Mutual Exclusion & Synchronization 2

Processes, once more…
• Processes are programs in execution (under the control of the OS)

• The abstraction for control flows in computers
• Processes are conceptionally independent
• Technically, the CPU is multiplexed
• The OS determines when a process is to be preempted and in

which order processes are executed
• Processes have an address space

• Logical addresses of a process are mapped to physical
addresses using the hardware (MMU)

• Processes can share code and data areas
• Threads and fibers operate in the same address space
• The OS can map a single memory area into multiple address

spaces using the MMU
• Data of the OS itself is also shared (in a controlled way)

Processes
again

Operating Systems 06: Mutual Exclusion & Synchronization 3

Example: Shared data Synchronization

/* Data type for list elements */
struct element {
 char payload; /* the data to be stored */
 struct element *next; /* pointer to next list element */
};

/* Data type for list administration */
struct list {
 struct element *head; /* first element */
 struct element **tail; /* 'next' pointer in last element */
};

/* Function to add a new element to the end of the list */
void enqueue (struct list *list, struct element *item) {
 item->next = NULL;
 *list->tail = item;
 list->tail = &item->next;
}

A simple linked list implementation in C:

This list implementation is a bit sophisticated.

Since tail does not point to the last list element,

but to its next pointer, we don’t need any

special case to add an element to an empty list.

Operating Systems 06: Mutual Exclusion & Synchronization 4

Example: simple linked list in C
Scenario

/* enqueue */
void enqueue (struct list *list,
 struct element *item) {
 item->next = NULL;
 *list->tail = item;
 list->tail = &item->next;
}

Thread 1 Thread 2

Shared address space

‘a’

?

‘b’

?

NULL

●

List element e1 List element e2Global list element l

enqueue(&l, &e1) enqueue(&l, &e2)

co
de

da
ta

Synchronization

Operating Systems 06: Mutual Exclusion & Synchronization 5

Example: simple linked list in C
Case 1: thread 2 after thread 1

*list->tail = item;

‘a’

NULL

‘b’

?

NULL

●

Synchronization

item->next = NULL;

list->tail = &item->next;

enqueue(&l, &e1)

enqueue(&l, &e2)

‘b’

?

item->next = NULL;
*list->tail = item;
list->tail = &item->next;

l e1 e2

●

●

‘a’

NULL

‘b’

?

●

●

‘a’

NULL

‘a’

●

‘b’

NULL

●

●

Operating Systems 06: Mutual Exclusion & Synchronization 6

Example: simple linked list in C
Case 2: thread 2 overlaps thread 1

‘a’

NULL

‘b’

NULL

NULL

●

Synchronization

item->next = NULL;
*list->tail = item;

list->tail = &item->next;

enqueue(&l, &e1)

enqueue(&l, &e2)

‘b’

?

item->next = NULL;
*list->tail = item;
list->tail = &item->next;

l e1 e2

●

●

‘a’

NULL

‘a’

NULL

‘b’

NULL

●

●

process
switch

process
switch

↯

↯

Operating Systems 06: Mutual Exclusion & Synchronization 7

Where else does this problem occur?
• Shared memory used to communicate between processes

• Systems with a shared memory service
• Threads and fibers

• Concurrent access to the same variables
• Operating system data which are used to coordinate the

access of processes to non-divisible resources
• File system structures, process table, memory

management, …
• Devices (terminals, printers, network interfaces, …)

• Similar special case: interrupt synchronization
• Caution: methods that work for synchronizing

processes do not necessarily work for interrupts!

Synchronization

Operating Systems 06: Mutual Exclusion & Synchronization 8

The problem: race conditions
• A race condition is a situation in which multiple

processes access shared data concurrently and at least
one of the processes manipulates the data
• When a race condition occurs, the resulting value of

the shared data is dependent on the order of access
by the processes

• The result is therefore not predictable and can also
be incorrect in case of overlapping accesses!

• To avoid race conditions, concurrent processes need to
be synchronized

Synchronization

Operating Systems 06: Mutual Exclusion & Synchronization 9

Synchronization
• The coordination of the cooperation of processes is called

synchronization

• Synchronization creates an order for the activities of
concurrent processes

• Thus, on a global level, synchronization enables the
sequentiality of activities

Synchronization

Source: Herrtwich/Hommel (1989), Kooperation und Konkurrenz, p. 26

Operating Systems 06: Mutual Exclusion & Synchronization10

Critical section
• In the case of a race condition, N processes compete for

the access to shared data
• The code fragments accessing these critical data are

called critical sections

• Problem
• We need to ensure that only a single process can be

in the critical section at the same time

Synchronization

Operating Systems 06: Mutual Exclusion & Synchronization

11

Solution: Lock variables Synchronization

Lock lock;

/* Example code for enqueue */
void enqueue (struct list *list, struct element *item) {
 item->next = NULL;

 acquire(&lock);

 *list->tail = item;
 list->tail = &item->next;

 release(&lock);
}

A lock variable is an abstract data type with

two operations: acquire and release

• blocks a process until the
specified lock is open

• then locks the lock itself
“from the inside”

• opens the specified lock
without blocking the
calling process

Implementations like these are called lock(ing) algorithms

Operating Systems 06: Mutual Exclusion & Synchronization12

Implementing locks: incorrect Synchronization

/* Lock variable (initial value is 0) */
typedef unsigned char Lock;

/* enter the critical section */
void acquire (Lock *lock) {
 while (*lock); /* note: empty loop body! */
 *lock = 1;
}

/* leave the critical section */
void release (Lock *lock) {
 *lock = 0;
}

This naïve lock implementation does not work!

Operating Systems 06: Mutual Exclusion & Synchronization13

Implementing locks: incorrect Synchronization

/* Lock variable */
typedef unsigned char Lock;

/* enter the critical section */
void acquire (Lock *lock) {
 while (*lock);
 *lock = 1;
}

/* leave the critical section */
void release (Lock *lock) {
 *lock = 0;
}

acquire must protect a critical
section – but it is critical itself!
• the critical moment is the point

in time after leaving the waiting
loop and before setting the lock
variable!

• If the current process is
preempted between the two
lines of code, another process
sees the critical section as free
and would also enter!

If this happens, (at least) two processes could enter the
critical section simultaneously that should be protected by
acquire!

Operating Systems 06: Mutual Exclusion & Synchronization14

A working solution: “bakery” algorithm
(probably not that common in Norway…)
• A process takes a waiting number (ticket)

before it is allowed to enter the critical section [1]
• Admission in order of the waiting numbers

• i.e. the process with the lowest number is allowed
to enter the critical section when the section is free

• When leaving the critical section, its waiting number is
invalidated

• Problem
• The algorithm cannot guarantee that a waiting number

is given to only one process
• In this case, a process ID (0..N-1) decides about the

priority

Synchronization

Operating Systems 06: Mutual Exclusion & Synchronization15

A working solution: “bakery” algorithm
typedef struct { /* lock variables (initially all 0) */
 bool choosing[N]; int number[N];
} Lock;

void acquire (Lock *lock) { /* enter critical section */
 int j; int i = pid();
 lock->choosing[i] = true;
 lock->number[i] = max(lock->number[0], ...number[N-1]) + 1;
 lock->choosing[i] = false;
 for (j = 0; j < N; j++) {
 while (lock->choosing[j]);
 while (lock->number[j] != 0 &&
 (lock->number[j] < lock->number[i] ||
 (lock->number[j] == lock->number[i] && j < i)));
 }
}

void release (Lock *lock) { /* leave critical section */
 int i = pid(); lock->number[i] = 0;
}

Careful: this is

pseudo code!

Operating Systems 06: Mutual Exclusion & Synchronization16

Discussion: bakery algorithm
The bakery algorithm is a provably correct solution for the
problem of critical sections, but...
• in most cases, it is not known beforehand how many

processes will compete to enter a critical section
• process IDs are not necessarily in a range 0…N-1
• the acquire function has a long runtime even in cases

where the critical section is already free → O(N)

Can we find a correct algorithm that is as simple
as the (incorrect) naïve approach?

Synchronization

Operating Systems 06: Mutual Exclusion & Synchronization17

Locks with atomic operations
Many CPUs support indivisible (atomic) read/modify/write cycles that can
be used to implement lock algorithms
• We have to use special machine instructions for atomic operations, e.g.:

• Motorola 68K: TAS (test and set)
• sets bit 7 of the destination operand

and returns its previous state in
the CPU’s condition code bits

• Intel x86: XCHG (exchange)
• Exchanges the content of a register

with that of a memory location
(i.e. a variable in memory)

• ARM: LDREX/STREX (load/store exclusive)
• STREX checks if any write to the

address has occurred since the last
LDREX

• More recent ARM CPUs (v8/v8.1)
provide additional (better performing)
atomic instructions

Synchronization

acquire TAS lock
 BNE acquire

 mov ax, 1
acquire xchg lock
 cmp ax, 0
 jne acquire

 MOV r1, #0xFF
acquire LDREX r0, [LockAddr]
 CMP r0, #0
 STREXEQ r0, r1, [LockAddr]
 CMPEQ r0, #0
 BNE acquire

Operating Systems 06: Mutual Exclusion & Synchronization18

Discussion: active waiting
• So far, our lock algorithms have a significant drawback:

The actively waiting process…
• is unable to change the condition it is waiting for on its

own
• It unnecessarily impedes other processes which would

be able to use the CPU for “useful” work
• It harms itself due to active waiting:

• The longer a process holds the processor, the
longer it has to wait for other processes to fulfill the
condition it is waiting for

• This problem does not occur in multi processor
systems

Synchronization

Operating Systems 06: Mutual Exclusion & Synchronization19

Suppressing interrupts Synchronization

/* enter critical section */
void acquire (Lock *lock) {
 asm ("cli");
}

/* leave critical section */
void release (Lock *lock) {
 asm ("sti");
}

What is the reason for a process switch inside of a critical section?
• The operating system interferes (e.g. due to a process using too much

CPU time) and moves another process to the RUNNING state
• This can only happen if the OS regains control
➛ a timer or device interrupt occurs

Idea:
disable interrupts to ensure a process can stay in the critical section!

cli and sti are used in
Intel x86 processors to
disable and enable the
handling of interrupts

Operating Systems 06: Mutual Exclusion & Synchronization20

Alternative: passive waiting
• Idea: processes release the CPU while they wait for events

• in the case of synchronization, a process “blocks itself” waiting
for an event

• the process is entered into a waiting queue
• when the event occurs, one of the processes waiting for it is

unblocked (there can be more than one waiting)
• The waiting phase of a process is realized as a blocking phase

(“I/O burst”)
• the process schedule is updated
• another process in state READY will be moved to state

RUNNING (dispatching)
• what happens if no process is in READY at that moment?

• with the start of the blocking phase of a process, its CPU burst
ends

Synchronization

Operating Systems 06: Mutual Exclusion & Synchronization21

Semaphores
• A semaphore is defined as “a non-negative integer number” with

two atomic operations:

P (from Dutch “prolaag” = “decrement”; also down or wait)
• if the semaphore has the value 0, the process calling P is

blocked
• otherwise, the semaphore value is decremented

V (from Dutch “verhoog” = “increment”; also up or signal)
• a process waiting for the semaphore (due to a previous call to

P) is unblocked
• otherwise, the semaphore is incremented by 1

• Semaphores are an operating system abstraction to exchange
synchronization signals between concurrent processes

Synchronization

Operating Systems 06: Mutual Exclusion & Synchronization22

Example semaphore implementation
/* C++ implementation taken from the teaching OS OO-StuBS */
class Semaphore : public WaitingRoom {
 int counter;
public:
 Semaphore(int c) : counter(c) {}
 void wait() {
 if (counter == 0) {
 Customer *life = (Customer*)scheduler.active();
 enqueue(life);
 scheduler.block(life, this);
 }
 else
 counter--;
 }
 void signal() {
 Customer *customer = (Customer*)dequeue();
 if (customer)
 scheduler.wakeup(customer);
 else
 counter++;
 }
};

A "WaitingRoom" is a list of
processes (PCBs) with the
access methods enqueue and
dequeue

The scheduler has to
provide three operations:
• active returns the PCB of

the running process
• block moves a process

into state BLOCKED
• wakeup puts a blocked

process back on the
READY list

Operating Systems 06: Mutual Exclusion & Synchronization

23

Using semaphores

Semaphore lock; /* = 1: use semaphore as lock variable */

/* Example code: enqueue */
void enqueue (struct list *list, struct element *item) {
 item->next = NULL;

 wait (&lock);

 *list->tail = item;
 list->tail = &item->next;

 signal (&lock);
}

Synchronization

“Mutual exclusion”: a semaphore initialized
to 1 can function as lock variable

• the first process entering the
critical section decrements
the counter to 0

• all others block

…and this is not the only application of semaphores…

• when leaving the critical section,
either a blocked process is
woken up or the counter is
incremented back to 1

Operating Systems 06: Mutual Exclusion & Synchronization24

Semaphores: simple interactions

/* shared memory */
Semaphore elem;
struct list l;
struct element e;

Synchronization
• “one sided synchronization”

void producer() {
 enqueue(&l, &e);
 signal(&elem);
}

void consumer() {
 struct element *x;
 wait(&elem);
 x = dequeue(&l);
}

/* initialization */
elem = 0;

• “resource oriented synchronization”

/* shared memory */
Semaphore resource;

/* initialization */
resource = N; /* N > 1 */

the rest: same as with
mutual exclusion

Operating Systems 06: Mutual Exclusion & Synchronization25

Semaphores: complex interactions

As with mutual exclusion, a critical section also has to be
protected in this example

However, here we have two classes of concurrent processes:

• Writers: they change data and thus need a guarantee for
mutual exclusion

• Readers: these only read data, thus multiple readers are
allowed to enter the critical section at the same time

Synchronization
• Example: the first reader/writer problem

Operating Systems 06: Mutual Exclusion & Synchronization26

Semaphores: complex interactions
Synchronization

• Example: the first reader/writer problem
/* shared memory */
Semaphore mutex;
Semaphore wrt;
int readcount;

/* writer */
wait(&wrt);

… write data …

signal(&wrt);

/* reader */
wait(&mutex);
readcount++;
if (readcount == 1)
 wait(&wrt);
signal(&mutex);

… read data …

wait(&mutex);
readcount--;
if (readcount == 0)
 signal(&wrt);
signal(&mutex);

/* initialization */
mutex = 1;
wrt = 1;
readcount = 0;

Operating Systems 06: Mutual Exclusion & Synchronization27

Semaphores: discussion
• Semaphore extensions and variants

• binary semaphore or mutex
• non blocking wait()
• timeout
• arrays of counters

• Sources of errors
• risk of “deadlocks” → next lecture
• difficult to implement more complex synchronization patterns
• cooperating processes depend on each other

• all of them must precisely follow the protocols
• use of semaphores is not enforced

• Support in programming languages

Synchronization

Operating Systems 06: Mutual Exclusion & Synchronization28

Language support: Monitors
• A monitor is an abstract data type [3,4] with implicit

synchronization properties:
multilateral synchronization at the interface to the monitor

• mutual exclusion of the execution of all monitor methods
unilateral synchronization inside of the monitors using
condition variables

• wait blocks a process until a signal or condition occurs
and implicitly releases the monitor again

• signal indicates that a signal or condition has occured
and unblocks (exactly one or all) processes blocking on
this event

• Language-supported mechanism:
Concurrent Pascal [5], PL/I, CHILL, . . . , Java

Synchronization

Operating Systems 06: Mutual Exclusion & Synchronization29

Monitors: example code

/* A synchronized queue */
monitor SyncQueue {
 Queue queue;
 condition not_empty;
public:
 /* add an element */
 void enqueue(Element element) {
 queue.enqueue(element);
 not_empty.signal();
 }
 /* remove an element */
 Element dequeue() {
 while (queue.is_empty())
 not_empty.wait();
 return queue.dequeue();
 }
};

The language guarantees
mutual exclusion of the
access methods per
SyncQueue object

enqueue signals that the
queue is no longer empty

If no process is waiting,
nothing happens

dequeue first waits until at
least one element is in the
queue

Careful: this is

pseudo code!

Synchronization

Operating Systems 06: Mutual Exclusion & Synchronization30

Signaling semantics in monitors
• In the case of waiting processes, a monitor has to fulfill the following

requirements:
• at least one process waiting for the condition variable is

deblocked
and

• at most one process continues to run after the monitor operation

• There are different solution approaches, each with its own
semantics:

• Number of processes that are activated (all or only one)
• If only one, then which one?

➛ Possible conflict with CPU allocation
• Change of the monitor owner or no change

• If no immediate change of the owner takes place, the waiting
condition has to be checked again

Synchronization

Operating Systems 06: Mutual Exclusion & Synchronization31

Monitors in Java

/* A synchronized queue */
class SyncQueue {
 private Queue queue;
 /* add element */
 public synchronized void enqueue(Element element) {
 queue.enqueue(element);
 notifyAll();
 }
 /* remove element */
 public synchronized Element dequeue() {
 while (queue.empty()) wait();
 return queue.dequeue();
 }
};

Synchronization

• synchronized is a keyword indicating mutual exclusion
• One implicit condition variable

• notify or notifyAll instead of signal, no change of owner

Operating Systems 06: Mutual Exclusion & Synchronization32

Conclusion
• Uncontrolled concurrent data access can lead to errors

• synchronisation methods provide coordination
• Basically, one has to be careful when implementing these to ensure that

the selection strategies do not contradict the OS scheduler decisions
• Ad hoc approach: active waiting

• Caution! Waste of compute time
• But: a short active wait is better than blocking, especially in multi

processor systems → lecture on multiprocessors
• Operating system-supported approach: semaphores

• Flexible (enables many different synchronization patterns), but error-
prone

• Language-supported approach: monitors
• Less versatile compared to semaphores
• Expensive, since many context switches are required
• But monitors are a very safe approach

Operating Systems 06: Mutual Exclusion & Synchronization33

References
1. Leslie Lamport (1974). "A new solution of Dijkstra's concurrent

programming problem". Communications of the ACM. 17 (8): 453–455.
doi:10.1145/361082.361093

2. Allen B. Downey. The Little Book of Semaphores. Green Tea Press
2016. https://greenteapress.com/wp/semaphores/

3. Per Brinch Hansen (1973). "7.2 Class Concept" (PDF). In Operating
System Principles. Prentice Hall.
ISBN 978-0-13-637843-3

4. C. A. R. Hoare (1974). "Monitors: an operating system structuring
concept". Comm. ACM. 17 (10): 549–557. CiteSeerX 10.1.1.24.6394.
doi:10.1145/355620.361161

5. Per Brinch Hansen (1975). "The programming language Concurrent
Pascal". IEEE Trans. Softw. Eng. SE-1 (2): 199–207.
doi:10.1109/TSE.1975.6312840

https://greenteapress.com/wp/semaphores/

