
Operating Systems
Lecture 5: Threads

Michael Engel

Operating Systems 05: Threads 2

Review: fast process creation
• Copying the address space takes a lot of time

• Especially if the program immediately calls exec..() afterwards
➛ complete waste of time!

• Historic solution: vfork
• The parent process is suspended until the child process calls

exec..() or terminates using _exit()
• The child simply uses code and data of its parent (without copying!)

• The child process must not change any data
• sometimes not so simple: e.g., don’t call exit(), but _exit()!

• Modern solution: copy on write
• Parent and child process share the same code and data

segments using the memory management unit (MMU)
• A segment is copied only if the child process changes any data
• This is not the case when exec..() is called directly after fork()
• fork() using copy on write is almost as fast as vfork()

Unix process
model

Operating Systems 05: Threads 3

Can we do better?
• Modern solution: copy on write

• fork() using copy on write is almost as fast as vfork()
• The weight of a process is an informal description of the

size of its context
• Accordingly, it is an indicator for the time required for a

context switch, which does (among other things):
• CPU scheduling
• saving the previous context
• loading the new context

• Classical Unix processes are “heavyweight”
• …no matter if we use copy-on-write or not

Unix process
model

Operating Systems 05: Threads 4

Lightweight processes (threads)
• With processes, there is a 1:1 relation between control flow and

address space
• even for forked processes due to copy-on-write

• Closely cooperating threads can share an address space
• code + data + bss + heap, but not the stack!
• Why not the stack?

• Each thread has an independent flow of control
• Accordingly, it required an independent call hierarchy,

local variables etc.
• Advantage of threads:

• Complex operations can be delegated to a lightweight helper
thread

• The parent thread can already wait for input while the helper
thread is running ➛ reduced latency (response time)

Threads

Operating Systems 05: Threads 5

Threads example

• Programs consisting of
independent control flows can
immediately benefit from
multiprocessor systems

• Fast context switch: no need to copy the address space
• only switch the stack pointer – one CPU register

• Disadvantage of threads:
• Difficult and error-prone to program
• Access to shared data of threads requires coordination
• OS still has to schedule threads ➛ overhead

Threads

• Typical use case
for threads: web server main server

process

backlog queue
requests
accepted

pool of
worker threads

responses transmitted to clients

fro
m

 [1
]

Operating Systems 05: Threads 6

Threads in Windows

Process

Global and
static data

Stack 1 Stack 2 Stack 3 Stack 4

Code

A process contains 1..n

threads operating on the

same shared data

Operating Systems 05: Threads 7

Threads in Windows (2)
• Process: provides environment and address space for threads

• But has no execution context in itself!
• A Win32 process always contains at least one thread
• Thread: unit executing code

• Every thread has its own stack and CPU register set
(especially the program counter)

• The scheduler allocated compute time to the threads
• All threads are kernel level threads

• User level threads (fibers) are possible, but unusual
• Strategy: Keep the number of threads low

• Use overlapping (asynchronous) I/O

Operating Systems 05: Threads 8

• Linux implements POSIX threads using the pthreads library
• pthreads on Linux use a Linux-specific system call:

• In Linux, all threads and processes are internally managed
as tasks
• The scheduler does not differentiate between those

Threads in Linux

Linux system call:
int __clone(int (*fn)(void*), void *stack, int flags, void *arg)

• Universal function, parameterized using the flags parameter:
• CLONE_VM use a common address space
• CLONE_FS share information about the file system
• CLONE_FILES share file descriptors (open files)
• CLONE_SIGHAND share the signal handler table

Operating Systems 05: Threads 9

• Originally, threads of a process
showed up as individual
processes in the ps output [5]

• More recent Linux systems (from kernel 2.4) still behave like this [6], but
no longer show separate processes when using CLONE_THREAD

Threads in Linux (2)

Linux system call:
int __clone(int (*fn)(void*), void *stack, int flags, void *arg)

• New value for the flags parameter:
• CLONE_THREAD If CLONE_THREAD is set, the child is placed in

the same thread group as the calling process

92 Chapter 4 Threads

4.5 GNU/Linux Thread Implementation
The implementation of POSIX threads on GNU/Linux differs from the thread imple-
mentation on many other UNIX-like systems in an important way: on GNU/Linux,
threads are implemented as processes.Whenever you call pthread_create to create a
new thread, Linux creates a new process that runs that thread. However, this process is
not the same as a process you would create with fork; in particular, it shares the same
address space and resources as the original process rather than receiving copies.

The program thread-pid shown in Listing 4.15 demonstrates this.The program
creates a thread; both the original thread and the new one call the getpid function
and print their respective process IDs and then spin infinitely.

Listing 4.15 (thread-pid) Print Process IDs for Threads

#include <pthread.h>
#include <stdio.h>
#include <unistd.h>

void* thread_function (void* arg)
{
fprintf (stderr, “child thread pid is %d\n”, (int) getpid ());
/* Spin forever. */
while (1);
return NULL;

}

int main ()
{
pthread_t thread;
fprintf (stderr, “main thread pid is %d\n”, (int) getpid ());
pthread_create (&thread, NULL, &thread_function, NULL);
/* Spin forever. */
while (1);
return 0;

}

Run the program in the background, and then invoke ps x to display your running
processes. Don’t forget to kill the thread-pid program afterward—it consumes lots of
CPU doing nothing. Here’s what the output might look like:

% cc thread-pid.c -o thread-pid -lpthread
% ./thread-pid &
[1] 14608
main thread pid is 14608
child thread pid is 14610
% ps x
PID TTY STAT TIME COMMAND

14042 pts/9 S 0:00 bash
14608 pts/9 R 0:01 ./thread-pid

05 0430 CH04 5/22/01 10:21 AM Page 92

934.5 GNU/Linux Thread Implementation

14609 pts/9 S 0:00 ./thread-pid
14610 pts/9 R 0:01 ./thread-pid
14611 pts/9 R 0:00 ps x
% kill 14608
[1]+ Terminated ./thread-pid

Job Control Notification in the Shell
The lines starting with [1] are from the shell. When you run a program in the background, the shell
assigns a job number to it—in this case, 1—and prints out the program’s pid. If a background job termi-
nates, the shell reports that fact the next time you invoke a command.

Notice that there are three processes running the thread-pid program.The first of
these, with pid 14608, is the main thread in the program; the third, with pid 14610, is
the thread we created to execute thread_function.

How about the second thread, with pid 14609? This is the “manager thread,” which
is part of the internal implementation of GNU/Linux threads.The manager thread is
created the first time a program calls pthread_create to create a new thread.

4.5.1 Signal Handling
Suppose that a multithreaded program receives a signal. In which thread is the signal
handler invoked? The behavior of the interaction between signals and threads varies
from one UNIX-like system to another. In GNU/Linux, the behavior is dictated by
the fact that threads are implemented as processes.

Because each thread is a separate process, and because a signal is delivered to a par-
ticular process, there is no ambiguity about which thread receives the signal.Typically,
signals sent from outside the program are sent to the process corresponding to the
main thread of the program. For instance, if a program forks and the child process
execs a multithreaded program, the parent process will hold the process id of the main
thread of the child process’s program and will use that process id to send signals to its
child.This is generally a good convention to follow yourself when sending signals to a
multithreaded program.

Note that this aspect of GNU/Linux’s implementation of pthreads is at variance
with the POSIX thread standard. Do not rely on this behavior in programs that are
meant to be portable.

Within a multithreaded program, it is possible for one thread to send a signal
specifically to another thread. Use the pthread_kill function to do this. Its first para-
meter is a thread ID, and its second parameter is a signal number.

4.5.2 The clone System Call
Although GNU/Linux threads created in the same program are implemented as sepa-
rate processes, they share their virtual memory space and other resources.A child
process created with fork, however, gets copies of these items. How is the former type
of process created?

05 0430 CH04 5/22/01 10:21 AM Page 93

Operating Systems 05: Threads 10

Fibers
• also called user-level threads, green threads or featherweight

processes
• Implemented on application level only (inside of a process)

• The operating system doesn’t know about featherweight
processes

• Accordingly, scheduling affects the whole process
• Implemented using a library: user level thread package
• Advantages:

• Extremely fast context switch: only exchange processor registers
• No switch to kernel mode required to switch to different fiber
• Every application can choose the fiber library best suited for it

• Disadvantages:
• Blocking a single fiber leads to blocking the whole process (since

the OS doesn’t know about fibers)
• No speed advantage from multiprocessor systems

Threads

Operating Systems 05: Threads

send(short *to, *from, int count)
{
 register n = count / 8;
 do {
 *to = *from++;
 *to = *from++;
 *to = *from++;
 *to = *from++;
 *to = *from++;
 *to = *from++;
 *to = *from++;
 *to = *from++;
 } while (--n > 0);
}

11

Inspiration: Duff’s Device
• Problem: copying 16-bit unsigned integers (“short”s) from an array into

a memory-mapped output register is slow (loop overhead):

Threads

send(short *to, *from, int count)
{
 do { /* count > 0 assumed */
 *to = *from++;
 } while (--count > 0);
}

• Optimization:
unroll the loop – execute multiple
copy operations inside a single
loop iteration
➛ reduces the loop overhead

8 copies per

iteration

number of iterations

reduced to 1/8th

Operating Systems 05: Threads 12

Inspiration: Duff’s Device
• Problem with loop unrolling: count has to be a multiple of 8 now!

Threads

• Duff’s solution [3]:
Introduce a jump into the loop
body (using the C switch
statement) to implement the
first n mod 8 iterations!

send(short *to, *from, int count)
{
 register n = count / 8;
 do {
 *to = *from++;
 *to = *from++;
 *to = *from++;
 *to = *from++;
 *to = *from++;
 *to = *from++;
 *to = *from++;
 *to = *from++;
 } while (--n > 0);
}

send(short *to, *from, int count)
{
 register n = (count + 7) / 8;
 switch (count % 8) {
 case 0: do { *to = *from++;
 case 7: *to = *from++;
 case 6: *to = *from++;
 case 5: *to = *from++;
 case 4: *to = *from++;
 case 3: *to = *from++;
 case 2: *to = *from++;
 case 1: *to = *from++;
 } while (--n > 0);
}

please don’t write

code like this…

Operating Systems 05: Threads 13

Fibers example: Protothreads
• stackless, lightweight threads, or coroutines

• provide a blocking context cheaply using minimal memory per
protothread (on the order of single bytes)

• Developed by Adam Dunkels (SICS) [2]
• Related approaches described in detail in [4]

Threads

#include “pt.h”
// … protothreads example …
PT_THREAD(example(struct pt *pt)) {
 PT_BEGIN(pt);

 while (1) {
 if (initiate_io()) {
 timer_start(&timer);
 PT_WAIT_UNTIL(pt,
 io_completed() ||
 timer_expired(&timer));
 read_data();
 }
}

// protothreads implementation: pt.h
#define PT_BEGIN(pt) \
 switch(pt->lc) { case 0:

// … more macros defined …
#define PT_WAIT_UNTIL(pt, c) \
 pt->lc = __LINE__; case __LINE__: \
 if(!(c)) return 0

Note: you don’t need to understand

the details here – it’s a nice challenge

for your C knowledge to expand the

macros and find out what is going on

The __LINE__ macro is

a gcc extension to C:

gives the current source

code line number

Operating Systems 05: Threads 14

Processes vs. threads vs. fibers
Processes Threads Fibers

Address
space separate common common

Kernel
visibility yes yes no

Scheduling kernel level kernel level user space

Stack separate
per process

separate
per thread

can be
common

Switching
overhead very high high low

Operating Systems 05: Threads 15

Conclusion
• Traditional Unix process creation using fork is too heavyweight

for some applications
• e.g. a heavily used web server

• Alternatives exist:
• (kernel-level) threads
• (user-level) fibers

• Each solution has its own advantages and drawbacks
• Processes: copy and scheduling overhead
• Threads: synchronization difficult to program
• Fibers: no kernel management

• blocking a fiber of a process blocks all fibers
• Linux has used the Unix process model exclusively for a long time

• Windows (NT) didn’t have to be compatible and implemented
threads from the beginning

Operating Systems 05: Threads 16

References

1. Papastavrou, Stavros & Samaras, George & Evripidou, Paraskevas &
Chrysanthis, Panos. (2003). Fine-Grained Parallelism in Dynamic Web
Content Generation: The Parse and Dispatch Approach. 2888. 573-588.
doi 10.1007/978-3-540-39964-3_35

2. A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, Protothreads: Simplifying
Event-Driven Programming of Memory-Constrained Embedded
Systems, Proc. ACM SenSys, Boulder, CO, USA, Nov 2006

3. Tom Duff, AT&T Bell Laboratories, Posting to the Usenet group
comp.lang.c (August 1988): http://www.lysator.liu.se/c/duffs-device.html

4. Simon Tatham, Coroutines in C:
https://www.chiark.greenend.org.uk/~sgtatham/coroutines.html

5. M. Mitchell, J. Oldham, A. Samuel, Advanced Linux Programming,
Sams 2001, ISBN 073570970X

6. U. Drepper, I. Molnar, The Native POSIX Thread Library for Linux,
https://www.akkadia.org/drepper/nptl-design.pdf

http://www.lysator.liu.se/c/duffs-device.html
https://www.chiark.greenend.org.uk/~sgtatham/coroutines.html
https://www.akkadia.org/drepper/nptl-design.pdf

