® NTNU | bowegian niversity of

Operating Systems

Lecture 4: Processes

Michael Engel

Review: processes... Processes

are “programs in execution” chup 1o
. . CPU
. namic, n |
dyna c ot static ®]
 alternating sequences of

“CPU bursts” and “I/O bursts” o
require resources of the computer RN
« CPU, memory, I/O devices
have a state
 READY, RUNNING, BLOCKED ®

are conceptionally considered to be independent,
concurrent control flows

are under the control of the operating system
* resource allocation and revocation

@ NTNU | S oy Operating Systems 04: Processes and threads 2

Unix (Thompson & Ritchie 1968)

« A system with a long (hi)story... [1,2]

« Origin: AT&T Bell Labs

 Developed as an alternative
to “Multics”

« Version 1 created on a PDP 7 [4,5]
* written in assembler
« 8192 18 bit words of memory

* Version 3 implemented in C
on a PDP11

« C was created to enable OS
development in a high-level
language

Thompson & Ritchie with a

PDP11 at Bell Labs, 1970s

PDP11/40 systems in
NTNU’s datamuseum

@ N'TNU | Sowegian Lniversity of Operating Systems 04: Processes and threads 3

Science and Technology

-M

= u i essS
Un|x Var|ants https://www.levenez.com/unix/ Unl):ni:"g:‘ ‘

1969 @named PDP-7 operating syst@ b
T . (e} source
Unix
197110 1973 \Version s to 4 ‘:' Mixed/shared source 1971to0 1973
1974 t0 1975 PWB/Unix [closed source 19740 1975
1978 1978
Unix
1979 Version 7 1979
—_— Unix/32V »—\
1980 1980
1981 1981
1982 1982
1983 1983
1984 1984
1985 1985
1986 Unix-like systems 1986
1987 1987
1988 1988
1989 1989
1990 Rero T S e N e 1990
1991 1991
1992 1992
NetBS|
0.8to 1.0
1993 1993
1994 1994
1995 1995
1996 1996
1997 1997
1998 1998
1999 1999
2000 S 2000
2001 to 2004 2001 to 2004
2005 2005
2006 to 2007 2006 to 2007
2008 Maocso)% X, o
2009 macOS 2009
10.0 to 10.12
2010 {D: i 2010
12.1t017)

2011 2011
2012t0 2015 2012 to 2015
2016 f 2016
2017 G e 2017

@ NTNU | S oy Operating Systems 04: Processes and threads 4

https://www.levenez.com/unix/

Unix process

Unix processes model

« are the primary way to structure activities
« application as well as system processes

* can create new processes in a fast and easy way
« parent process > child process

« form a process hierarchy: Every Unix process has a

unique number (process id,
PID). The PID of the parent
process is called PPID

pagedaemon
(pid 2)

The shell also uses processes:
every command is executed
as a separate child process

swapper

The init process reads a list of :
(pid 0)

terminals from the file

/etc/inittab and starts the program
getty for each, which enables to
connect to the terminal using login

getty tty0
login
bash
grep me file.c

@ NTNU | S oy Operating Systems 04: Processes and threads 5

- Unix process
Unix shells P el
« A“shell” around the operating system “core” '

 Text based user interface to start
commands (Unix programs): %
« Commands can be located anywhere in the file system = _ .

« Shell searches in directories given in
the $PATH environment variable

* e.dg./usr/bin:/bin:/usr/local/bin....

The command which sh9w§m)
where a command (here: vi

me@unix:~ > which vim is found in the file system
« Every executed command is a separate child process

« Typically, the shell blocks (waits) until the last command has
terminated

* |tis possible to suspend, continue and terminate commands
(job control) and to have commands executing in the background

Shell prompt your input

@ NTNU | S oy Operating Systems 04: Processes and threads 6

Unix shells: job control Unix process

model

me@unix:” > vim foo.c .
¢ — >° Command vim is started

 The shell blocks

Ctrl-2 « Command is suspended
—P> :
l * The shell continues to run
* The & at the end of the

[1]+ Stopped vim foo.c input tells the shell to start
E%?@l%%l& - katebarc & — —» and run the kate command
me@unix:~> jobs in the background
[1]+ Stopped vim foo.c \\ : :
[2]- Running kate bar.c & * jobs gives a list of all started
me@unix:~>bg %1 commands
[1]+ vim foo.c & \\
me@unix: > jobs « bg sends a suspended
[1]- Running vim foo.c & d to th
[R]+ Running kate bar.c & GoliElel Lo us

background

@ NTNU | S oy Operating Systems 04: Processes and threads 7

Standard I/O channels Unix process

« Usually connected to the terminal in which the shell
runs that started the process: stdout

« Standard input (stdin): stderr [|
read user input (Keyboard) R

- Standard output (stdout): T e
text output of the process (terminal window)

« Standard error (stderr):

separate channel for error messages
(usually also connected to the terminal)

« Almost all Unix commands also accept files as input
or output channels (instead of the terminal)

« Shells provide a simple syntax to redirect the standard
I/O channels

N ian Uni i .
@ NTNU | S oy Operating Systems 04: Processes and threads 8

Redirecting standard /O Ui process

Redirection of the standard

— output of the 1s command to
. : o
me@unix:~>1s -1 dl i 115 aLL LElie
me@unix:~ > grep “Jan 29” <dl >d2
me@unix:~ > wce

2 18 118
\ Redirection of the standard

input of the command wec
from the file d2 using <

This can also be written in a compact way:

me@unix:~ >1s @rep “Jan 29@70
p.A

& 18 118 /

The | (pipe) symbol tells the shell to connect the standard output of
the left process (1s) to the standard input of the right process (grep)

s -1 -}[[]] =) Srep

@ NTNU | S oy Operating Systems 04: Processes and threads 9

The Unix philosophy model

Unix proceSS

* Doug Mcllroy, the inventor of Unix pipes,
summarized the Unix philosophy as follows:

"This is the Unix philosophy:
Write programs that do one thing and do it well.
Write programs to work together.

Write programs to handle text streams,
because that is a universal interface.”

@ NTNU

This is commonly expressed

Norwegian University of
Science and Technology

In a shorter way:
“Do one thing, do it well.”

Operating Systems 04: Processes and threads

[by Denise Panyik-Dale, CC BY 2.0]

10

Unix process ‘

Process—0S interaction in Unixj ™"

 How does an application program request a service from
the operating system?

* From the point of view of the application, calling
an operating system service looks like a regular
function call, e.g.:

pid = fork();

 However, arbitrarily calling code inside the OS kernel is
dangerous:

* No checking of permission to execute a function

« No checking for correct parameters
> security nightmare!

« The transition from code executing in an application to
code running in the kernel needs to be protected!

@ N'TINU | Sorwegian University of Operating Systems 04: Processes and threads 11

nce and Technology

Process—0S interaction in Unix|Ur*Prose

« The transition from code executing in an application to code
running in the kernel needs to be protected!

« Many CPUs provide several execution modes:
« “user mode”: only restricted functionality is allowed

« “kernel” or “supervisor mode”: full access to all hardware
resources

« Special machine instructions are provided to transition from
user to kernel mode:

 int 0x80 (intel x86), syscall/sysenter (intel/AMDG64)
 trap (Motorola 68k), SVC (ARM), ECALL (RISC-V)

« Executing such an instruction causes the CPU to change its
current execution mode to kernel mode and jump to an address
predetermined by the processor hardware: system call

@ NTNU | S oy Operating Systems 04: Processes and threads 12

Process—0S interaction in Unix| o

model

user user
process mode
kernel
mode

» Applications can execute a syscall instruction directly, but:
« This stops working when the syscall interface changes

* In most modern systems, the C library (libc) provides stubs
(adapter functions) that call the actuall syscall

« The stub function is a regular function linked to the application

@ NTNU | S oy Operating Systems 04: Processes and threads 13

Unix proceSS

Unix process control: syscalls """

« Afirst overview of process related system calls (syscalls) [3]

« getpid (2) returns PID of the calling process

« getppid (2) returns PID of the parent process(PPID)

« getuid (2) returns the UID of the calling process

« fork (2) creates a new child process

« exit (3), _exit (2) terminates the calling process

« walit (2) waits for the termination of a child process
« execve (2) loads and starts a program in the

context of the calling process
The number in brackets gives the section

of the Unix manual pages the c_;ommand is |
described in, read them e.g. with man & wait

@ NTNU | S oy Operating Systems 04: Processes and threads 14

Unix process

Unix processes in detail: fork()jv™ "%

System call: pid_t fork (void)
—— This is the C prototype

for fork:

no parameters (void),

returns a pid_t value

Duplicates the calling process
(the standard way to create new processes in Unix!}

The child process inherits...
« Address space (code, data, bss, stack segments)
« User and group ID
« Standard I/O channels
* Process group, signal table (more on this later)
« Open files, current working directory (also later...)
Not copied are the following:
* Process ID (PID), parent process ID (PPID)
* Pending signals, accounting data,
One process calls fork, but two processes return\ f/

??

N ian Uni i .
@ NTNU | S oy Operating Systems 04: Processes and threads 15

Use of fork() tm:“ process

... /* includes */
int main () {
int pid;
printf(“In parent: pid %d PPID %d\n”, getpid(), getppid());
pid = fork(); /* Process is duplicated here!
Both continue running from here */
if (pid > 0)
printf(“In the parent process, child PID %d\n”, pid);
else if (pid == 0)
printf(“In the child process, PID %d PPID %d\n”,
getpid(), getppid());
else

printf(“Oh, an error!\n”); /* more in the theoretical ex.*/

4014

Ibin/sh parent of 7553
child of 4014 me@unix:~ > gce -o fork fork.c
parent of 7554 me@unix:” > ./fork
In parent: pid 7883 PPID 4014
: In the child process, PID 7884 PPID 7683
child of 7553 In the parent process, chip PID 7654

@ NTNU | S oy Operating Systems 04: Processes and threads

16

Unix proceSS

Discussion: fast process creationjU" %

« Copying the address space takes a lot of time

« Especially if the program immediately calls exec..() afterwards
> complete waste of time!

« Historic solution: vfork

« The parent process is suspended until the child process calls
exec..() or terminates using _exit()

« The child simply uses code and data of its parent (without copying!)
« The child process must not change any data
« sometimes not so simple: e.g., don't call exit(), but _exit()!

* Modern solution: copy on write

« Parent and child process share the same code and data
segments using the memory management unit (MMU)

« A segment is copied only if the child process changes any data
« This is not the case when exec..() is called directly after fork()
« fork() using copy on write is almost as fast as vfork()

@ N'TNU | Sowegian Lniversity of Operating Systems 04: Processes and threads 17

Science and Technology

Unix processes in detail: _exit() U™

System call: void _exit (int)

« Terminates the calling process and passes the integer
argument as “exit status” to the parent process

« This call does not return!

 Releases the resources allocated by the process
« open files, used memory, ...

« Sends a signal SIGCHLD to its parent process

« There is also a library function exit (&) which additionally
releases resources used by the C library

« Among other things, this outputs (flushes) all data still
stored in output buffers!

 Normal processes should use exit (3), not _exit

@ NTNU | S oy Operating Systems 04: Processes and threads 18

Discussion: orphaned processes P

model

A Unix process is orphaned when its parent process
terminates

« What happens to our process hierarchy?

=)
getty tty0
login ex|t| What happens
bash if init exits?
v

The init process (always pid 1) adopts all orphaned processes.
Thus, the process hierarchy is still in working order.

@ NTNU | S oy Operating Systems 04: Processes and threads 19

Unix processes in detail: wait()

System call: pid_t wait (int *)

processes terminates

 The return value of wait is the terminated
child’s PID

« Using the int * parameter, the caller is

passed the child’s “exit status” (and more)

Unix process
model

Blocks the calling process until one of its child

« wait returns immediately if all child processes are

already terminated

@ NTNU | S oy Operating Systems 04: Processes and threads 20

Use of Wa,it() Unix process

model

... /* includes, main() { .. */
pid = fork(); /* create child process */
if (pid > 0) {
int status;
sleep(5); /* Library function: sleep 5 seconds */
if (wait(&status) == pid && WIFEXITED(status))
printf ("Exit status: %d\n", WEXITSTATUS(status));

}
else if (pid == 0) {
exit(42);

) A process can also be “killed”
. from the outside, i.e. it does not
call exit. In this case,
WIFEXITED would return O.

me@unix:” > ./wait
BExit status: 42

@ NTNU | S oy Operating Systems 04: Processes and threads 21

Discussion: zombies Umix process

model

* Aterminated process is called a “zombie” g
until its exit status is requested using wait o
« The resources allocated to such processes E
can be released, but the OS process E
management still needs to know about them ok NEED&I °
» Especially the exit status has to be saved EKH [NO. £
(IN CoNCRESS) §
me@unix:”> ./wait & €= — Example program from the

me@unix: > ps previous slide during the

PID TTY TIME CMD
4014 pts/4 00:00:00 bash
17892 pts/4 00:00:00 wait
17895 pts/4 00:00:00 wait <defunct>

17897 pts/4 00:00:00 ps :
me@unix:~> Exit status: 42 \ Zombies are annotated by
ps as <defunct>

5 seconds waiting time

@ NTNU | S oy Operating Systems 04: Processes and threads 22

Unix processes in detail: execve()

Unix process
model

System Call: int execve (const char *command,

const char *args[], const char *envpl[])

* Loads and starts the command passed in the “command”

parameter
* Only returns in case of an error
e e.g. command does not exist, no access, ...

* Replaces the complete address space of the calling process

 but it remains the same process!
« Same PID, PPID, open files, ...

« The C library (libc) provides some comfortable support

functions that internally call execve:

execl, execv, execlp, execvp, ... (check their man pages!)

@ NTNU | S oy Operating Systems 04: Processes and threads 23

Use of exec()

Unix proceSS

model

/* includes, main() { .. */

char cmd[100], arg[l00];
while (1) {
printf ("Command?\n");
scanf ("%99s %99s", cmd, arg);
pid = fork(); /* Process is duplicated!

Both continue running from here. */

if (pid > 0) {

}

int status;
if (wait(&status) == pid && WIFEXITED(status))
printf ("Exit Status: %d\n", WEXITSTATUS(status));

else if (pid == 0) {

}

execlp(cmd, cmd, arg, NULL);
printf ("exec failed\n");

@ NTNU | S oy Operating Systems 04: Processes and threads

24

Discussion: why no forkexec()? |unxPoie

* The parent process has more control if we separate the
calls to fork and execve:

« Execute operations in the context of the child
process

* Full access to the parent processes data

* Unix shells use this feature to e.q. ...
» redirect the standard /O channels
« configure pipes

@ NTNU | S oy Operating Systems 04: Processes and threads 25

Unix process states U process

model !

« a bit more complex than our earlier simple model...

fork()
preempted l
fo\\o(\ pre- - created
(b\\o emp- sufficient not enough
tion CPU memory memory
return allocatio ready —
running in running in . swabbed out
user mode Jyscal kernel mode PP
interrup swap in
. S/ wak
interrupt, exit s, Wake ’ s e
int. return

sleeping sleeping
in memory swapped out
swap out

N i i i .
@ NTNU | S oy Operating Systems 04: Processes and threads 26

Conclusion

* Process management is an important part of any OS
* Unix has a process hierarchy
* The init process (PID 1) is the root of the hierarchy
« Special approach taken in Unix:
separate process creation (fork) and program execution
(exec)!
« Used by the Unix shell to implement 1/O redirection
« Small set of basic system calls for process management
« Hardware support required to make efficient

« Real-world process states are quite complex

@ NTNU | S oy Operating Systems 04: Processes and threads

27

References

1. Peter H. Salus, A Quarter Century of Unix, Addison-Wesley 1995, ISBN-13:
978-0201547771

2. Brian Kernighan, UNIX: A History and a Memoir, Independently published 2019,
ISBN-13: 978-1695978553

3. W. Stevens, Stephen Rago, Advanced Programming in the UNIX Environment,
3rd Edition, Addison-Wesley 2013, ISBN-13: 978-0321637734

4. Dennis M. Ritchie and Ken Thompson. 1974. The UNIX time-sharing system.
Commun. ACM 17, 7 (July 1974), 365—-375.
DOI:https://doi.org/10.1145/361011.361061

5. Dennis M. Ritchie, The Unix Time-Sharing System - A Retrospective,
https://www.bell-labs.com/usr/dmr/www/retro.pdf

@ NTNU | S oy Operating Systems 04: Processes and threads 28

https://doi.org/10.1145/361011.361061
https://www.bell-labs.com/usr/dmr/www/retro.pdf

