
Operating Systems
Lecture 4: Processes 

Michael Engel



Operating Systems 04: Processes and threads 2

Review: processes…
• are “programs in execution” 

• dynamic, not static 
• alternating sequences of  

“CPU bursts” and “I/O bursts” 
• require resources of the computer 

• CPU, memory, I/O devices 
• have a state 

• READY, RUNNING, BLOCKED 
• are conceptionally considered to be independent, 

concurrent control flows 
• are under the control of the operating system 

• resource allocation and revocation

RUNNING

BLOCKED READY

B

A C

A

B

C

now

CPU

CPU

I/O

CPU

Processes



Operating Systems 04: Processes and threads 3

Unix (Thompson & Ritchie 1968)

• A system with a long (hi)story… [1,2] 

• Origin: AT&T Bell Labs 
• Developed as an alternative  

to “Multics” 
• Version 1 created on a PDP 7 [4,5] 

• written in assembler 
• 8192 18 bit words of memory 

• Version 3 implemented in C  
on a PDP11 
• C was created to enable OS  

development in a high-level  
language

Unix process model

Thompson & Ritchie with a 
PDP11 at Bell Labs, 1970s

PDP11/40 systems in  
NTNU’s datamuseum



Operating Systems 04: Processes and threads 4

Unix variants https://www.levenez.com/unix/ Unix process 
model

https://www.levenez.com/unix/


Operating Systems 04: Processes and threads 5

Unix processes
• are the primary way to structure activities 

• application as well as system processes 
• can create new processes in a fast and easy way 

• parent process ➛ child process 
• form a process hierarchy: Every Unix process has a  

unique number (process id, 
PID). The PID of the parent 
process is called PPID

The shell also uses processes: 
every command is executed  
as a separate child process

The init process reads a list of  
terminals from the file  
/etc/inittab and starts the program 
getty for each, which enables to 
connect to the terminal using login

swapper 
(pid 0)

init 
(pid 1)

pagedaemon 
(pid 2)

…getty tty2getty tty1getty tty0 
login 
bash

grep me file.c firefox

Unix process 
model



Operating Systems 04: Processes and threads 6

Unix shells
• A “shell” around the operating system “core” 
• Text based user interface to start  

commands (Unix programs): 
• Commands can be located anywhere in the file system 
• Shell searches in directories given in  

the $PATH environment variable 
• e.g. /usr/bin:/bin:/usr/local/bin:… 

• Every executed command is a separate child process 
• Typically, the shell blocks (waits) until the last command has 

terminated 
• It is possible to suspend, continue and terminate commands 

(job control) and to have commands executing in the background

me@unix:~> which vim
Shell prompt your input The command which shows 

where a command (here: vim) 

is found in the file system

Unix process 
model



Operating Systems 04: Processes and threads 7

Unix shells: job control
me@unix:~> vim foo.c

• Command vim is started 
• The shell blocks

[1]+  Stopped    vim foo.c 
me@unix:~> kate bar.c & 
[2] 19504 
me@unix:~> jobs 
[1]+  Stopped    vim foo.c 
[2]-  Running    kate bar.c & 
me@unix:~> bg %1 
[1]+ vim foo.c & 
me@unix:~> jobs 
[1]-  Running    vim foo.c & 
[2]+  Running    kate bar.c &

• Command is suspended  
• The shell continues to run

• The & at the end of the 
input tells the shell to start 
and run the kate command 
in the background

• jobs gives a list of all started 
commands

• bg sends a suspended 
command to the 
background

Ctrl-Z

Unix process 
model



Operating Systems 04: Processes and threads 8

Standard I/O channels
• Usually connected to the terminal in which the shell 

runs that started the process: 
• Standard input (stdin): 

read user input (Keyboard) 
• Standard output (stdout): 

text output of the process (terminal window) 
• Standard error (stderr): 

separate channel for error messages 
(usually also connected to the terminal) 

• Almost all Unix commands also accept files as input 
or output channels (instead of the terminal) 

• Shells provide a simple syntax to redirect the standard 
I/O channels

process

stdout

stderr

stdin

Unix process 
model



Operating Systems 04: Processes and threads 9

Redirecting standard I/O

me@unix:~> ls -l > d1 
me@unix:~> grep “Jan 29” < d1 > d2 
me@unix:~> wc < d2 
   2   18   118

Redirection of the standard 
output of the ls command to 
the file d1 using >

Redirection of the standard 
input of the command wc 
from the file d2 using <

me@unix:~> ls -l | grep “Jan 29” | wc      
   2   18   118

This can also be written in a compact way:

The | (pipe) symbol tells the shell to connect the standard output of 
the left process (ls) to the standard input of the right process (grep)

ls -l grep

Unix process 
model



Operating Systems 04: Processes and threads 10

The Unix philosophy
• Doug McIlroy, the inventor of Unix pipes, 

summarized the Unix philosophy as follows: 

"This is the Unix philosophy:  
Write programs that do one thing and do it well. 
Write programs to work together. 
Write programs to handle text streams, 
because that is a universal interface."

Unix process 
model

This is commonly expressed 
in a shorter way: 

“Do one thing, do it well.” [b
y 

D
en

is
e 

P
an

yi
k-

D
al

e,
 C

C
 B

Y 
2.

0]



Operating Systems 04: Processes and threads 11

Process–OS interaction in Unix
• How does an application program request a service from 

the operating system? 
• From the point of view of the application, calling 

an operating system service looks like a regular 
function call, e.g.: 

• However, arbitrarily calling code inside the OS kernel is 
dangerous: 
• No checking of permission to execute a function 
• No checking for correct parameters 

➛ security nightmare! 
• The transition from code executing in an application to 

code running in the kernel needs to be protected!

Unix process  
model

pid = fork();



Operating Systems 04: Processes and threads 12

Process–OS interaction in Unix
• The transition from code executing in an application to code 

running in the kernel needs to be protected! 
• Many CPUs provide several execution modes: 

• “user mode”: only restricted functionality is allowed 
• “kernel” or “supervisor mode”: full access to all hardware 

resources 
• Special machine instructions are provided to transition from 

user to kernel mode: 
• int 0x80 (intel x86), syscall/sysenter (intel/AMD64) 
• trap (Motorola 68k), SVC (ARM), ECALL (RISC-V) 

• Executing such an instruction causes the CPU to change its 
current execution mode to kernel mode and jump to an address 
predetermined by the processor hardware: system call

Unix process  
model



Operating Systems 04: Processes and threads 13

Process–OS interaction in Unix

• Applications can execute a syscall instruction directly, but: 
• This stops working when the syscall interface changes 

• In most modern systems, the C library (libc) provides stubs 
(adapter functions) that call the actuall syscall 
• The stub function is a regular function linked to the application

Unix process  
model

user  
process

libc 
stub

exec 
syscall

user 
mode

returned

kernel  
mode

… …syscall…



Operating Systems 04: Processes and threads 14

Unix process control: syscalls
• A first overview of process related system calls (syscalls) [3] 

• getpid (2)     returns PID of the calling process 
• getppid (2)    returns PID of the parent process(PPID) 
• getuid (2)     returns the UID of the calling process 
• fork (2)     creates a new child process 
• exit (3), _exit (2) terminates the calling process 
• wait (2)    waits for the termination of a child process 
• execve (2)    loads and starts a program in the 

                               context of the calling process

Unix process  
model

The number in brackets gives the section 

of the Unix manual pages the command is  

described in, read them e.g. with man 2 wait



Operating Systems 04: Processes and threads 15

Unix processes in detail: fork()
System call: pid_t fork (void) 

• Duplicates the calling process 
(the standard way to create new processes in Unix!) 

• The child process inherits… 
• Address space (code, data, bss, stack segments) 
• User and group ID 
• Standard I/O channels 
• Process group, signal table (more on this later) 
• Open files, current working directory (also later…) 

• Not copied are the following: 
• Process ID (PID), parent process ID (PPID) 
• Pending signals, accounting data,  ... 

• One process calls fork, but two processes return!

Unix process  
model

This is the C prototype  
for fork: 
no parameters (void),  
returns a pid_t value

🤔
???



Operating Systems 04: Processes and threads 16

Use of fork() Unix process  
model

... /* includes */ 
int main () { 
    int pid; 
    printf(“In parent: pid %d PPID %d\n”, getpid(), getppid()); 
    pid = fork();  /* Process is duplicated here! 
                      Both continue running from here */ 
    if (pid > 0) 
        printf(“In the parent process, child PID %d\n”, pid); 
    else if (pid == 0) 
        printf(“In the child process, PID %d PPID %d\n”, 
                getpid(), getppid()); 
    else 
        printf(“Oh, an error!\n”); /* more in the theoretical ex.*/ 
}

me@unix:~> gcc -o fork fork.c 
me@unix:~> ./fork 
In parent: pid 7553 PPID 4014 
In the child process,  PID 7554 PPID 7553 
In the parent process, chip PID 7554

4014 
/bin/sh

7553 
./fork

7554 
./fork

parent of 7553

child of 4014 
parent of 7554

child of 7553



Operating Systems 04: Processes and threads 17

Discussion: fast process creation
• Copying the address space takes a lot of time 

• Especially if the program immediately calls exec..() afterwards  
➛ complete waste of time! 

• Historic solution: vfork 
• The parent process is suspended until the child process calls 

exec..() or terminates using _exit() 
• The child simply uses code and data of its parent (without copying!) 

• The child process must not change any data 
• sometimes not so simple: e.g., don’t call exit(), but _exit()! 

• Modern solution: copy on write 
• Parent and child process share the same code and data 

segments using the memory management unit (MMU) 
• A segment is copied only if the child process changes any data 
• This is not the case when exec..() is called directly after fork() 
• fork() using copy on write is almost as fast as vfork()

Unix process  
model



Operating Systems 04: Processes and threads 18

Unix processes in detail: _exit()
System call: void _exit (int) 

• Terminates the calling process and passes the integer 
argument as “exit status” to the parent process 
• This call does not return! 

• Releases the resources allocated by the process 
• open files, used memory, … 

• Sends a signal SIGCHLD to its parent process 
• There is also a library function exit (3) which additionally 

releases resources used by the C library 
• Among other things, this outputs (flushes) all data still 

stored in output buffers! 
• Normal processes should use exit (3), not _exit

Unix process  
model



Operating Systems 04: Processes and threads 19

Discussion: orphaned processes
• A Unix process is orphaned when its parent process 

terminates 
• What happens to our process hierarchy?

Unix process  
model

init 
(pid 1)

getty tty0 
login 
bash

firefox

exit!

init 
(pid 1)

firefox

The init process (always pid 1) adopts all orphaned processes. 
Thus, the process hierarchy is still in working order.

🤔
???

What happens  
if init exits?



Operating Systems 04: Processes and threads 20

Unix processes in detail: wait()
System call: pid_t wait (int *) 

• Blocks the calling process until one of its child 
processes terminates 
• The return value of wait is the terminated 

child’s PID 
• Using the int * parameter, the caller is 

passed the child’s “exit status” (and more) 
• wait returns immediately if all child processes are 

already terminated

Unix process  
model



Operating Systems 04: Processes and threads 21

Use of wait() Unix process  
model

... /* includes, main() { … */ 
pid = fork();   /* create child process */ 
if (pid > 0) { 
   int status; 
   sleep(5);    /* Library function: sleep 5 seconds */ 
   if (wait(&status) == pid && WIFEXITED(status)) 
      printf ("Exit status: %d\n", WEXITSTATUS(status)); 
} 
else if (pid == 0) { 
   exit(42); 
} 
...

me@unix:~> ./wait 
Exit status: 42

A process can also be “killed”  
from the outside, i.e. it does not 
call exit. In this case, 
WIFEXITED would return 0.



Operating Systems 04: Processes and threads 22

Discussion: zombies
• A terminated process is called a “zombie” 

until its exit status is requested using wait 
• The resources allocated to such processes 

can be released, but the OS process 
management still needs to know about them 

• Especially the exit status has to be saved

Unix process  
model

me@unix:~> ./wait & 
me@unix:~> ps  
  PID TTY          TIME CMD 
 4014 pts/4    00:00:00 bash 
17892 pts/4    00:00:00 wait 
17895 pts/4    00:00:00 wait <defunct> 
17897 pts/4    00:00:00 ps 
me@unix:~> Exit status: 42

Example program from the 
previous slide during the  
5 seconds waiting time

Zombies are annotated by 
ps as <defunct>

[b
y 

C
ha

rli
e 

Ll
ew

el
lin

, C
C

 B
Y 

2.
0]



Operating Systems 04: Processes and threads 23

Unix processes in detail: execve()
System Call: int execve (const char *command, 

const char *args[ ], const char *envp[ ])  

• Loads and starts the command passed in the “command” 
parameter 

• Only returns in case of an error 
• e.g. command does not exist, no access, … 

• Replaces the complete address space of the calling process 
• but it remains the same process! 
• Same PID, PPID, open files, ... 

• The C library (libc) provides some comfortable support 
functions that internally call execve: 
execl, execv, execlp, execvp, … (check their man pages!)

Unix process  
model



Operating Systems 04: Processes and threads 24

Use of exec() Unix process  
model

... /* includes, main() { … */ 
char cmd[100], arg[100]; 
while (1) { 
  printf ("Command?\n"); 
  scanf ("%99s %99s", cmd, arg); 
  pid = fork(); /* Process is duplicated! 
                   Both continue running from here. */ 
  if (pid > 0) { 
    int status; 
    if (wait(&status) == pid && WIFEXITED(status)) 
      printf ("Exit Status: %d\n", WEXITSTATUS(status)); 
  } 
  else if (pid == 0) { 
    execlp(cmd, cmd, arg, NULL); 
    printf ("exec failed\n"); 
  } 
... 
}



Operating Systems 04: Processes and threads 25

Discussion: why no forkexec()?
• The parent process has more control if we separate the 

calls to fork and execve: 
• Execute operations in the context of the child 

process 
• Full access to the parent processes data 

• Unix shells use this feature to e.g. … 
• redirect the standard I/O channels 
• configure pipes

Unix process  
model



Operating Systems 04: Processes and threads 26

Unix process states
• a bit more complex than our earlier simple model…

Unix process  
model

created

ready 
swapped out

sleeping 
swapped  out

ready 
in memory

sleeping 
in memory

preempted

running in 
kernel mode

zombie

running in 
user mode

fork()

not enough 
memory

sufficient 
memory

swap out

swap out

swap in
wake 
up

wake 
up

sleep

CPU  
allocation

pre- 
emp- 
tionallocation

return

syscall 
interrupt

interrupt, 
int. return

exit



Operating Systems 04: Processes and threads 27

Conclusion
• Process management is an important part of any OS 

• Unix has a process hierarchy 
• The init process (PID 1) is the root of the hierarchy 

• Special approach taken in Unix: 
separate process creation (fork) and program execution 
(exec)! 
• Used by the Unix shell to implement I/O redirection 

• Small set of basic system calls for process management 
• Hardware support required to make fork efficient 

• Real-world process states are quite complex



Operating Systems 04: Processes and threads 28

References
1. Peter H. Salus, A Quarter Century of Unix, Addison-Wesley 1995, ISBN-13: 

978-0201547771 
2. Brian Kernighan, UNIX: A History and a Memoir, Independently published 2019, 

ISBN-13: 978-1695978553 
3. W. Stevens, Stephen Rago, Advanced Programming in the UNIX Environment, 

3rd Edition, Addison-Wesley 2013, ISBN-13: 978-0321637734 
4. Dennis M. Ritchie and Ken Thompson. 1974. The UNIX time-sharing system. 

Commun. ACM 17, 7 (July 1974), 365–375.  
DOI:https://doi.org/10.1145/361011.361061 

5. Dennis M. Ritchie, The Unix Time-Sharing System - A Retrospective,  
https://www.bell-labs.com/usr/dmr/www/retro.pdf

https://doi.org/10.1145/361011.361061
https://www.bell-labs.com/usr/dmr/www/retro.pdf

