
Operating Systems
Lecture 1: Motivation and History 

Michael Engel



Operating Systems 01: Motivation and History 2

whoami?
• Michael Engel 

(michael.engel@ntnu.no, http://folk.ntnu.no/michaeng/) 
• Studied computer engineering and  

applied mathematics (Univ. Siegen) 
• PhD (Univ. Marburg) 2005 
• Assist. Prof. TU Dortmund 2007–14 
• Leeds Beckett U., Oracle Labs UK 2014–16 
• Assoc. Prof. Coburg Univ. 2016–19 
• Assoc. Prof. NTNU 2020–… 

• Research Interests 
Compilers, operating systems, 
parallelization, dependability,  
embedded systems

mailto:michael.engel@ntnu.no
http://folk.ntnu.no/michaeng/


Operating Systems 01: Motivation and History 3

Literature
Authors Remzi H. Arpaci-Dusseau and Andrea C. 

Arpaci-Dusseau
Title Operating Systems: Three Easy Pieces
Available Free PDF download: 

http://pages.cs.wisc.edu/~remzi/OSTEP/

+ additional papers, articles, … on my web page: 
http://folk.ntnu.no/michaeng/tdt4186_21/

Author William Stallings

Title Operating Systems - Internals and 
Design Principles, 9th Global Edition

ISBN 9781292214290

http://pages.cs.wisc.edu/~remzi/OSTEP/
http://folk.ntnu.no/michaeng/tdt4186_21/


Operating Systems 01: Motivation and History 4

Overview
• Learning objectives 
• Definition of an operating system 
• History: the evolution of computers and operating systems 
• From batch processing over multiprogramming to 

interactive computer use 
• Semester overview



Operating Systems 01: Motivation and History 5

Learning objectives
• Acquire basic knowledge about operating systems 

• Functionality and structure 
• Algorithms and implementation 
• Examples of implementation details in Linux 

• First experiences with system programming 
• Exercises in C running under Unix 

• Understanding what is going on inside a computer system 
• Learn about current trends and challenges 

• At least some important ones…



Operating Systems 01: Motivation and History 6

Definitions: what is an operating system?
• “Operating system: software that controls the operation of a 

computer and directs the processing of programs (as by 
assigning storage space in memory and controlling input 
and output functions)” [Merriam-Webster] 

• “The operating system is software that manages every part 
of a computer system—all hardware and all other software. 
To be specific, it controls every file, every device, every 
section of main memory, every nanosecond of processing 
time, and every network connection. It controls who can 
use the system and how. In short, it is the boss—without it, 
nothing can happen” [encyclopedia.com]

http://encyclopedia.com


Operating Systems 01: Motivation and History 7

Definitions: what is an operating system?
• “It is hard to pin down what an operating system is other 

than saying it is the software that runs in kernel mode—and 
even that is not always true. Part of the problem is that 
operating systems perform two basically unrelated 
functions:  
• providing application programmers (and application 

programs, naturally) a clean abstract set of resources 
instead of the messy hardware ones  

• and managing these hardware resources. Depending on 
who is doing the talking, you might hear mostly about 
one function or the other.”  
[Tanenbaum, Modern Operating Systems]



Operating Systems 01: Motivation and History 8

Definitions: what is an operating system?
• “An OS is a program that controls the execution of 

application programs, and acts as an interface between 
applications and the computer hardware. It can be thought 
of as having three objectives:  
• Convenience: An OS makes a computer more 

convenient to use. 
• Efficiency: An OS allows the computer system 

resources to be used in an efficient manner.  
• Ability to evolve: An OS should be constructed in such a 

way as to permit the effective development, testing, and 
introduction of new system functions without interfering 
with service.”  
[Stallings, Operating Systems]



Operating Systems 01: Motivation and History 9

Definitions: what is an operating system?
• “There is a body of software, in fact, that is responsible for 

making it easy to run programs (even allowing you to 
seemingly run many at the same time), allowing programs 
to share memory, enabling programs to interact with 
devices, and other fun stuff like that. That body of software 
is called the operating system (OS), as it is in charge of 
making sure the system operates correctly and efficiently in 
an easy-to-use manner.”  
[Arpaci-Dusseau, Operating Systems - Three Easy Pieces]



Operating Systems 01: Motivation and History 10

Definitions summary
• There are many definitions of the term “operating system” 
• Common ideas are: 

• The OS serves the users and their programs, it is never 
an end to itself 

• The OS has to know the hardware in detail and provides 
suitable abstractions to application programs 

• Hardware and application requirements determine the 
services provided by an OS 
• From this, its structure and functionality are derived 

• To understand which hardware abstractions are provided by 
operating systems today, we take a look at their history of 
development along with advances in hardware and typical 
applications



Operating Systems 01: Motivation and History 11

In the beginning…
• Punched cards – paper cards with holes indicating a “1” 
• Since 1725 used to control weaving looms (Jacquard) 
• Used by Hermann Hollerith for the 1890 US census 

• Hollerith and two other companies formed IBM later 
• Used until the 1970s as versatile memory

[From Wikipedia by Arnold Reinhold, CC0 1.0]



Operating Systems 01: Motivation and History 12

The first Norwegian computer
• NUSSE – “Norsk Universell Siffermaskin Selvstyrt Elektronisk” 

[1] – was developed at UiO, Sentralinstitutt for industriell 
forskning, by Thomas Hysing, Ole Amble and Tor Evjen 

• Constructed between 1950 and 1955 
• 1000 vacuum tubes 
• 2 kB main memory 
• Clock time 0.024 ms 

• ca. 40 kHz! 
• ca. 100 arithmetic  

operations/second 
• Now exhibited at the 

Norsk teknisk museum  
in Oslo [2]

[From Wikipedia by Mahlum, Public Domain]



Operating Systems 01: Motivation and History 13

The first computer at NTNU (NTH)
• …came from Denmark in 1962 to NTH: GIER  

“Geodætisk Instituts Elektroniske Regnemaskine” [3,4] 
• Already transistorized, ca. 40 built 
• 1024 words of 42-bit main memory (~5 kB) 
• Fixed point addition: 49 µs, multiplication: 180 µs 

Floating point addition: 93 µs, multiplication: 170 µs 
• Magnetic drum, 960 tracks  

with 40 words each (~200 kB) 
• Already provided: 

• operating system 
• Algol-60 compiler  
• runtime library with virtual  

memory management 
• GIER simulator [5], video [6]

[From Wikipedia by Mahlum, Public Domain]



Operating Systems 01: Motivation and History 14

Serial processing
• Non-interactive programming of computers 

• Commonly in machine language 
• Input via punched card reader 
• Output via printer 
• Errors indicated using lamps 

• Compute time scheduled with a paper calendar 
• Waste of compute time due to overallocation or termination 

of programs due to errors 
• Minimal CPU utilisation 

• Most of the time was spent waiting for slow I/O devices 
(punched card reader, printer) 

• First system software as reusable program libraries 
• Linker, loader, debugger, device drivers, …



Operating Systems 01: Motivation and History 15

Simple batch systems (from 1955)
• Reduced frequency of operator interactions  
• First operating systems: “resident monitors” 

• Interpretation of job control commands 
• Loading and execution of programs 
• Device control

$JOB

$FTN

$LOAD

$RUN

$END

FORTRAN 
program text

Input data

NEW: 
control cards



Operating Systems 01: Motivation and History 16

Simple batch systems (from 1955)

Problems due to erroneous 
applications: 
• Program doesn’t terminate, 
• writes in the memory of the 

resident monitor, 
• accesses card reader directly 

and interprets control 
commands as data

The monitor stayed 
resident in memory 
and executed one  
application after the 
other

User 
program 

area

Command language 
interpreter

Sequential 
job control

Device drivers

Main memory

M
on

ito
r



Operating Systems 01: Motivation and History 17

Simple batch systems (from 1955)
Solutions: 
• Addition of a timer circuit 

generating interrupts 
• Traps for erroneous 

programs 
• Fence register to realise 

primitive memory protection 
• Privileged operating mode of 

the CPU (supervisor mode) 
• Deactivates fence register 
• Allows input and output

User 
program

Command language 
interpreter

Sequential 
job control

Device drivers

Main memory

M
on

ito
r

Interrupt 
Handling

0x0000

0x0300

0x1FFF
Unused 

0x02FF

0x0300

timer

fence 
register



Operating Systems 01: Motivation and History 18

The Input/Output (I/O) Bottleneck
• Problem: CPU is faster than card reader and printer 

• valuable compute time is wasted by (active) waiting 
• Solution 1: off line processing 

• Enabled by magnetic tape drives 
• Parallelisation of I/O using multiple satellite computers

[T
an

en
ba

um
: M

od
er

n 
op

er
at

in
g 

sy
st

em
s]

SEC. 1.2 HISTORY OF OPERATING SYSTEMS 9

1401 7094 1401

(a) (b) (c) (d) (e) (f)

Card
reader

Tape
drive Input

tape
Output
tape

System
tape

Printer

Figure 1-3. An early batch system. (a) Programmers bring cards to 1401. (b)
1401 reads batch of jobs onto tape. (c) Operator carries input tape to 7094. (d)
7094 does computing. (e) Operator carries output tape to 1401. (f) 1401 prints
output.

it. When the whole batch was done, the operator removed the input and output
tapes, replaced the input tape with the next batch, and brought the output tape to a
1401 for printing off line (i.e., not connected to the main computer).

The structure of a typical input job is shown in Fig. 1-4. It started out with a
$JOB card, specifying the maximum run time in minutes, the account number to be
charged, and the programmer’s name. Then came a $FORTRAN card, telling the
operating system to load the FORTRAN compiler from the system tape. It was di-
rectly followed by the program to be compiled, and then a $LOAD card, directing
the operating system to load the object program just compiled. (Compiled pro-
grams were often written on scratch tapes and had to be loaded explicitly.) Next
came the $RUN card, telling the operating system to run the program with the data
following it. Finally, the $END card marked the end of the job. These primitive
control cards were the forerunners of modern shells and command-line inter-
preters.

Large second-generation computers were used mostly for scientific and engin-
eering calculations, such as solving the partial differential equations that often oc-
cur in physics and engineering. They were largely programmed in FORTRAN and
assembly language. Typical operating systems were FMS (the Fortran Monitor
System) and IBSYS, IBM’s operating system for the 7094.

1.2.3 The Third Generation (1965–1980): ICs and Multiprogramming

By the early 1960s, most computer manufacturers had two distinct, incompati-
ble, product lines. On the one hand, there were the word-oriented, large-scale sci-
entific computers, such as the 7094, which were used for industrial-strength nu-
merical calculations in science and engineering. On the other hand, there were the

Satellite computer 
for input (one or more)

CPU (reads/writes 
from/to tape only)

Satellite computer 
for output (one or more)



Operating Systems 01: Motivation and History 19

The Input/Output (I/O) Bottleneck
• Problem: CPU is faster than card reader and printer 

• valuable compute time is wasted by (active) waiting 
• Solution 2: spooling 

• Enabled by magnetic disk drives (random access) and 
direct memory access (DMA) 

• Computation and I/O can now overlap 
• Requires rules for processor allocation

Disk

CPU

Printer
Card 

reader

waiting  
jobs

result 
data



Operating Systems 01: Motivation and History 20

Multiprogramming (from 1965)
• Despite spooling, a single program does not utilise the CPU 

efficiently 
• System operation alternates between CPU bursts  

and I/O bursts, during with the CPU has to wait 
• With multiprogramming, the CPU works on multiple jobs at 

the same time:

CPU I/OCPU I/O

Single program operation

Time

Program A

Multiprogramming

Time

A and B

Program A

I/OCPU I/OCPU CPU CPU

Program B

CPU

CPU

CPU

CPU I/O

I/O

I/O

I/O



Operating Systems 01: Motivation and History 20

Multiprogramming (from 1965)
• Despite spooling, a single program does not utilise the CPU 

efficiently 
• System operation alternates between CPU bursts  

and I/O bursts, during with the CPU has to wait 
• With multiprogramming, the CPU works on multiple jobs at 

the same time:

CPU I/OCPU I/O

Single program operation

Time

Program A

Multiprogramming

Time

A and B

Program A

I/OCPU I/OCPU CPU CPU

Program B

CPU

CPU

CPU

CPU I/O

I/O

I/O

I/O

The operating system becomes increasingly more complex: 

• Handling concurrent I/O activities 
• Managing the main memory for multiple programs 
• Internal management of programs in execution (processes) 
• Processor scheduling 
• Multi user operation: security and accounting 



Operating Systems 01: Motivation and History 21

Multiprogramming (from 1965)
Memory management: 
• Programs to be started need an 

assigned memory range 
Memory protection: 
• Simple fence register is no longer 

sufficient to isolate processes from 
each other 

• Solution: use a simple memory 
management unit (MMU) 

Process management: 
• Every “program in execution” has 

its own context 
• When switching between 

processes, the context has to be 
switched as well

Program A 
(text, data, bss, stack)

Main memory

Operating 
System

0x0000

0x4000

0xFFFF
Unused 

0x3FFF

0x4000 
0x6000

bounds 
registers

Program B 
(text, data, bss, stack)

0x6000

0x5FFF

0xEFFF

Context A 

Lo 

Hi 

IP 

SP

Context B 

Lo 

Hi 

IP 

SP

4000

6000

…

…

6000

F000

62E6

E340

Lo 
Hi

0x430A

Instruction 
Pointer

0x5EE0

Stack 
Pointer

CPU and MMU



Operating Systems 01: Motivation and History 22

Dialog computing (from 1970)
• New I/O devices enable interactive 

software 
• Keyboard, screen, later mouse 

• Time sharing operation 
• Enables acceptable response times 

for interactive users 
• Timer interrupts ensure the 

preemption of processes which run 
(too) long 

• System programs enable 
interactive software development 

• Editor, shell, compiler, debugger 
• Disks and file systems allow to 

access programs and data at any 
time [Images: Columbia University]



Operating Systems 01: Motivation and History 23

Semester overview
• Review of relevant computer architecture concepts 
• Challenges and tasks of operating systems 
• Control flow abstractions: processes and threads 
• Concurrency: mutual exclusion, synchronisation, deadlocks 
• Memory management and virtual memory 
• Scheduling: uni- and multiprocessor, realtime 
• I/O management and disk scheduling 
• File management 
• Virtual machines and microkernels 
• The Cloud, Unikernels and single-address space OS’s 
• Embedded systems and non-functional properties 
• Operating system security



Operating Systems 01: Motivation and History 24

References
1. Ola Nordal, “Tool or Science? The History of Computing at the Norwegian University of 

Science and Technology”, IFIP WG9.7 First Working Conference on the History of Nordic 
Computing (HiNC1), June 16-18, 2003, Trondheim, Norway. Springer. p. 26. 
ISBN 9780387241685. 

2. NUSSE at the Norsk tekniske museum. http://www.nusse.org 
3. Erik Høg, “GIER: A Danish computer from 1961 with a role in the modern revolution of 

astronomy”, in Gudrun Wolfschmidt: Vom Abakus zum Computer - Begleitbuch zur 
Ausstellung "Geschichte der Rechentechnik", 2015-2019  

4. Knut Skog (2002). “Da NTH fikk sin kollektive PC: GIER”, 
 http://datamuseum.dk/w/images/1/1f/ArtikkelGIER-NTH.pdf 

5. GIER Simulator. https://ddhf.dk/site_dk/rc/giersimulator/tutorial/tutorial.shtml 
6. The first 50 years – A history of digital computing at NTNU  

https://www.youtube.com/watch?v=wFIyw9zIhrw

http://www.nusse.org
https://ddhf.dk/site_dk/rc/giersimulator/tutorial/tutorial.shtml
https://www.youtube.com/watch?v=wFIyw9zIhrw

