
Operating Systems

Solutions for the example exam questions

Michael Engel

Operating systems – Example exam question solutions 2

1 Processes
1.1 Process execution order
How many times does the following program print “Hello World”? Draw a
simple tree diagram to show the parent-child hierarchy of the spawned
processes.

“Hello World” is printed 8 (eight) times:

Department of Computer Science
Institutt for datateknologi og informatikk – IDI

TDT4186 – operativsystemer
Operating Systems

https://folk.ntnu.no/michaeng/tdt4186_21/
michael.engel@ntnu.no

Example Exam Questions for Operating Systems
Spring 2021

Example Exam Questions

Notice: This exam contains 10 questions covering a wide range of the topics we discussed in this course. The real exam will also have 10

questions of similar complexity to the ones in this example exam.

1 Processes (10 points)

1.1. Process execution order (6 p.)

How many times does the following program print “Hello World”? Draw a simple tree diagram to show the
parent-child hierarchy of the spawned processes.

1 #include <stdio.h>
2 #include <unistd.h>
3
4 int main() {
5 int i;
6 for (i = 0; i < 3; i++)
7 fork();
8 printf("Hello World\n");
9 return 0;

10 }

1.2. Process execution order (4 p.)

Consider the following example program. List all legal outputs this program may produce when executed on a
Unix system. The output consists of strings made up of multiple letters.

1 #include <unistd.h>
2 #include <sys/wait.h>
3
4 // W(A) means write(1, "A", sizeof "A")
5 #define W(x) write(1, #x, sizeof #x)
6
7 int main() {
8 W(A);
9 int child = fork();

10 W(B);
11 if (child)
12 wait(NULL);
13 W(C);
14 }

CS 3214 Spring 2015 Midterm

3/11

(e) (1 point) Thread T3 makes a system call that causes all threads in its process to terminate.

Which system call could it be?

Answer: exit()
Explanation: the exit() call terminates all activity in the process.

Question I.2 (10 points)

How many times does the following program print “Hello World”? Draw a simple tree
diagram to show the parent-child hierarchy of the spawned processes.

#include)<stdio.h>)
#include)<unistd.h>)
)
int)main()){)
int)i;)
for)(i)=)0;)i)<)3;)i++))
))))fork();)
printf("Hello)World\n");)
return)0;)
})
)
)
)

Answer: “Hello World” is printed 8 times.

i = 0 ➛ fork();

i = 1 ➛ fork(); i = 1 ➛ fork();

i=2➛fork(); i=2➛fork();i=2➛fork();i=2➛fork();

printf printf printf printf printf printf printf printf

main()

You had to recognize that
fork() copies the process
state, especially the value
of the loop variable i!

Operating systems – Example exam question solutions 3

1 Processes
1.2 Process execution order (this should read process synchronization…)
Consider the following example program. List all legal outputs this
program may produce when executed on a Unix system. The output
consists of strings made up of multiple letters

Two possible outputs:
ABBCC and ABCBC

Here you had to know that the
order in which parent and child
process continue to execute
after returning from fork() is
not fixed, it can be parent first
or child first.

Department of Computer Science
Institutt for datateknologi og informatikk – IDI

TDT4186 – operativsystemer
Operating Systems

https://folk.ntnu.no/michaeng/tdt4186_21/
michael.engel@ntnu.no

Example Exam Questions for Operating Systems
Spring 2021

Example Exam Questions

Notice: This exam contains 10 questions covering a wide range of the topics we discussed in this course. The real exam will also have 10

questions of similar complexity to the ones in this example exam.

1 Processes (10 points)

1.1. Process execution order (6 p.)

How many times does the following program print “Hello World”? Draw a simple tree diagram to show the
parent-child hierarchy of the spawned processes.

1 #include <stdio.h>
2 #include <unistd.h>
3
4 int main() {
5 int i;
6 for (i = 0; i < 3; i++)
7 fork();
8 printf("Hello World\n");
9 return 0;

10 }

1.2. Process execution order (4 p.)

Consider the following example program. List all legal outputs this program may produce when executed on a
Unix system. The output consists of strings made up of multiple letters.

1 #include <unistd.h>
2 #include <sys/wait.h>
3
4 // W(A) means write(1, "A", sizeof "A")
5 #define W(x) write(1, #x, sizeof #x)
6
7 int main() {
8 W(A);
9 int child = fork();

10 W(B);
11 if (child)
12 wait(NULL);
13 W(C);
14 }

Operating systems – Example exam question solutions 4

2 Shell pipelines
In a very special Unix shell, the command A <> B means that the standard
output of A should be connected to the standard input of B and the
standard input of A should be connected to the standard output of B (so
this creates a bidirectional shell pipeline).

The following C code is an excerpt of a shell that should implement this
behavior. It contains a number of errors. Indicate the location of each error
(give the line number), shortly describe the problem and propose fixes that
realize the desired behavior.

(continued on the next slide…)

Operating systems – Example exam question solutions 5

2 Shell pipelines
…Indicate the location of each error (give the
line number), shortly describe the problem
and propose fixes that realize the desired
behavior.
1.#define WRITE 1

With 2, the program would cause a buffer
overflow of arrays pipe1 and pipe2

2.pipe2[2]
Wrong dimension of 1 used here

3. dup2(pipe2[READ], STDIN);
Wrong order of arguments to dup2, would
lead to overwriting the file descriptor stored
in pipe2[READ] instead of STDIN

4. pipe2[WRITE];
The code closes both sides of one pipe

5. if (fork() == 0) {
We need two child processes for our
special pipeline, so both fork calls need to
execute code in the new process

Department of Computer Science
Institutt for datateknologi og informatikk – IDI

TDT4186 – operativsystemer
Operating Systems

2 Shell pipelines (10 points)

In a very special Unix shell, the command A <> B means that the standard output of A should be connected to the
standard input of B and the standard input of A should be connected to the standard output of B (so this creates a
bidirectional shell pipeline).
The following C code is an excerpt of a shell that should implement this behavior. It contains a number of errors.
Indicate the location of each error (give the line number), shortly describe the problem and propose fixes that realize
the desired behavior.

1 #define WRITE 2
2 #define READ 0
3
4 int pipe1[2], pipe2[1];
5
6 pipe(pipe1);
7 pipe(pipe2);
8
9 if(fork() == 0) {

10 dup2(pipe1[WRITE], STDOUT);
11 dup2(STDIN , pipe2[READ]);
12 close(pipe1[READ]);
13 close(pipe1[WRITE]);
14 exec(A);
15 }
16
17 if(fork() != 0) {
18 dup2(pipe1[READ], STDIN);
19 dup2(pipe2[WRITE], STDOUT);
20 close(pipe1[WRITE]);
21 close(pipe2[READ]);
22 exec(B);
23 }
24
25 close(pipe1[READ]);
26 close(pipe1[WRITE]);
27 close(pipe2[READ]);
28 close(pipe2[WRITE]);

⓵

⓶

⓷

⓸

⓹

Operating systems – Example exam question solutions 6

3 Threading
The following code that uses two
separate threads describes a famous
bug in MySQL, a widely used open
source SQL database server.

3.1. Explain the problem in the code

The code contains an atomicity problem:

The test of thd->proc_info and its use in the fputs statement are not in a
critical section.

After the test the value of thd->proc_info could be changed to NULL by
Thread 2, invalidating the purpose of the if in Thread 1. This would result in
a crash, since the FILE* passed to fputs is now NULL.

Department of Computer Science
Institutt for datateknologi og informatikk – IDI

TDT4186 – operativsystemer
Operating Systems

3 Threading (10 points)

The following code that uses two separate threads describes a famous bug in MySQL, a widely used open source SQL
database server.

3.1. Explain the problem in the following code (5 p.)

1 // Thread 1:
2
3 if (thd->proc_info) {
4 ...
5 fputs(thd->proc_info , ...);
6 ...
7 }
8
9 // Thread 2:

10 thd->proc_info = NULL;

3.2. Does the following code fix the problem? Explain your answer. (5 p.)

1 Semaphore proc_info_lock = 1;
2
3 // Thread 1:
4
5 if (thd->proc_info) {
6 ...
7 wait(&proc_info_lock);
8 fputs(thd->proc_info , ...);
9 signal(&proc_info_lock);

10 ...
11 }
12
13 // Thread 2:
14
15 wait(&proc_info_lock);
16 thd->proc_info = NULL;
17 signal(&proc_info_lock);

Operating systems – Example exam question solutions 7

3 Threading
The following code that uses two
separate threads describes a famous
bug in MySQL, a widely used open
source SQL database server.

3.2. Does the following code fix the
problem? Explain your answer.

The code still contains an atomicity
problem because the test of
thd->proc_info and its use in the
fputs statement are still not in a critical region together.

Thus, after the test the value of thd->proc_info could still be changed
to NULL by Thread 2 despite the use of the locks.

Department of Computer Science
Institutt for datateknologi og informatikk – IDI

TDT4186 – operativsystemer
Operating Systems

3 Threading (10 points)

The following code that uses two separate threads describes a famous bug in MySQL, a widely used open source SQL
database server.

3.1. Explain the problem in the following code (5 p.)

1 // Thread 1:
2
3 if (thd->proc_info) {
4 ...
5 fputs(thd->proc_info , ...);
6 ...
7 }
8
9 // Thread 2:

10 thd->proc_info = NULL;

3.2. Does the following code fix the problem? Explain your answer. (5 p.)

1 Semaphore proc_info_lock = 1;
2
3 // Thread 1:
4
5 if (thd->proc_info) {
6 ...
7 wait(&proc_info_lock);
8 fputs(thd->proc_info , ...);
9 signal(&proc_info_lock);

10 ...
11 }
12
13 // Thread 2:
14
15 wait(&proc_info_lock);
16 thd->proc_info = NULL;
17 signal(&proc_info_lock);

This is the actual critical region!

Operating systems – Example exam question solutions 8

4 Deadlocks
Consider the following
code.

Initially, all three mutexes
are initialized as “not
locked”. Also assume that
the threads can execute
in any arbitrary
interleavings.

Department of Computer Science
Institutt for datateknologi og informatikk – IDI

TDT4186 – operativsystemer
Operating Systems

4 Deadlocks (10 points)

Consider the following code:

1 Semaphore L1=1, L2=1, L3=1;
2
3 // Thread 1:
4 wait(L1);
5 wait(L2);
6 // critical section requiring L1 and L2 locked.
7 signal(L2);
8 signal(L1);
9

10 // Thread 2:
11 wait(L3);
12 wait(L1);
13 // critical section requiring L3 and L1 locked.
14 signal(L1);
15 signal(L3);
16
17 // Thread 3:
18 wait(L2);
19 wait(L3);
20 // critical section requiring L2 and L3 locked.
21 signal(L3);
22 signal(L2);

Initially, all three mutexes are initialized as “not locked”. Also assume that the threads can execute in any arbitrary
interleavings.

4.1. Can there be a problem when executing this multithreaded code? If yes, show an interleaving resulting in the
problem. If no, explain why not. (5 p.)

4.2. If there is a problem, propose a fix (Note that each critical section requires two different locks, you cannot change
this assumption). (5 p.)

Operating systems – Example exam question solutions 9

4 Deadlocks
4.1. Can there be a problem when
executing this multithreaded code? If yes,
show an interleaving resulting in the
problem. If no, explain why not.

Yes, there is a deadlock.
Consider the following interleaving:
thread 1:
wait(L1)

 thread 2:
 wait(L3);

 thread 3:
 wait(L2);

• Now there will be a circular wait:
thread 1 waiting for L2 (held by thread 3),
thread 2 waiting for L1 (held by thread 1),
thread 3 waiting for L3 (held by thread 2).

Department of Computer Science
Institutt for datateknologi og informatikk – IDI

TDT4186 – operativsystemer
Operating Systems

4 Deadlocks (10 points)

Consider the following code:

1 Semaphore L1=1, L2=1, L3=1;
2
3 // Thread 1:
4 wait(L1);
5 wait(L2);
6 // critical section requiring L1 and L2 locked.
7 signal(L2);
8 signal(L1);
9

10 // Thread 2:
11 wait(L3);
12 wait(L1);
13 // critical section requiring L3 and L1 locked.
14 signal(L1);
15 signal(L3);
16
17 // Thread 3:
18 wait(L2);
19 wait(L3);
20 // critical section requiring L2 and L3 locked.
21 signal(L3);
22 signal(L2);

Initially, all three mutexes are initialized as “not locked”. Also assume that the threads can execute in any arbitrary
interleavings.

4.1. Can there be a problem when executing this multithreaded code? If yes, show an interleaving resulting in the
problem. If no, explain why not. (5 p.)

4.2. If there is a problem, propose a fix (Note that each critical section requires two different locks, you cannot change
this assumption). (5 p.)

Operating systems – Example exam question solutions 10

4 Deadlocks
4.2 If there is a problem, propose a
fix (Note that each critical section
requires two different locks, you
cannot change this assumption)

Obviously, there is a problem :-).

Solution:
Acquire the locks in order the order
of L1, L2, L3.

Department of Computer Science
Institutt for datateknologi og informatikk – IDI

TDT4186 – operativsystemer
Operating Systems

4 Deadlocks (10 points)

Consider the following code:

1 Semaphore L1=1, L2=1, L3=1;
2
3 // Thread 1:
4 wait(L1);
5 wait(L2);
6 // critical section requiring L1 and L2 locked.
7 signal(L2);
8 signal(L1);
9

10 // Thread 2:
11 wait(L3);
12 wait(L1);
13 // critical section requiring L3 and L1 locked.
14 signal(L1);
15 signal(L3);
16
17 // Thread 3:
18 wait(L2);
19 wait(L3);
20 // critical section requiring L2 and L3 locked.
21 signal(L3);
22 signal(L2);

Initially, all three mutexes are initialized as “not locked”. Also assume that the threads can execute in any arbitrary
interleavings.

4.1. Can there be a problem when executing this multithreaded code? If yes, show an interleaving resulting in the
problem. If no, explain why not. (5 p.)

4.2. If there is a problem, propose a fix (Note that each critical section requires two different locks, you cannot change
this assumption). (5 p.)

Operating systems – Example exam question solutions 11

5 Memory management
5.1 Buddy allocation
Use dynamic memory allocation according to the buddy method. The
second row of each table below shows the current allocation of memory with
a total memory size of 32 MB and a block size of 2 MB. Fill in markings for
the allocated blocks according to the request given along with each table.

Department of Computer Science
Institutt for datateknologi og informatikk – IDI

TDT4186 – operativsystemer
Operating Systems

5 Memory management (10 points)

5.1. Buddy allocation (4 p.)

Use dynamic memory allocation according to the buddy method. The second row of each table below shows
the current allocation of memory with a total memory size of 32 MB and a block size of 2 MB. Fill in markings
for the allocated blocks according to the request given along with each table.

Hint: The four examples are independent of each other. If a memory allocation can not be performed, mark the
respective line accordingly.

Scenario 1: Process C requests 3 MB.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
A A A A B B

Scenario 2: Process D requests 12 MB.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
A

Scenario 3: Process E requests 14 MB.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
B B A A

Scenario 4: Process F requests 7 MB.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
A A A A B B

5.2. Fragmentation (3 p.)

The memory allocation algorithms discussed in the course can result in external and internal fragmentation.
Explain the key points for both terms and name a placement strategy (but not the same strategy twice!) for
which the respective fragmentation effect shows up.

5.3. Virtual memory (3 p.)

Describe shortly what a TLB is and why it is required to build efficient computers using virtual memory.

Department of Computer Science
Institutt for datateknologi og informatikk – IDI

TDT4186 – operativsystemer
Operating Systems

5 Memory management (10 points)

5.1. Buddy allocation (4 p.)

Use dynamic memory allocation according to the buddy method. The second row of each table below shows
the current allocation of memory with a total memory size of 32 MB and a block size of 2 MB. Fill in markings
for the allocated blocks according to the request given along with each table.

Hint: The four examples are independent of each other. If a memory allocation can not be performed, mark the
respective line accordingly.

Scenario 1: Process C requests 3 MB.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
A A A A B B

Scenario 2: Process D requests 12 MB.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
A

Scenario 3: Process E requests 14 MB.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
B B A A

Scenario 4: Process F requests 7 MB.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
A A A A B B

5.2. Fragmentation (3 p.)

The memory allocation algorithms discussed in the course can result in external and internal fragmentation.
Explain the key points for both terms and name a placement strategy (but not the same strategy twice!) for
which the respective fragmentation effect shows up.

5.3. Virtual memory (3 p.)

Describe shortly what a TLB is and why it is required to build efficient computers using virtual memory.

Buddy: always round up to
the nearest power of two!

C C

D D D D D D (D) (D)(A)

Operating systems – Example exam question solutions 12

5 Memory management
5.1 Buddy allocation
Use dynamic memory allocation according to the buddy method. The
second row of each table below shows the current allocation of memory with
a total memory size of 32 MB and a block size of 2 MB. Fill in markings for
the allocated blocks according to the request given along with each table.

Department of Computer Science
Institutt for datateknologi og informatikk – IDI

TDT4186 – operativsystemer
Operating Systems

5 Memory management (10 points)

5.1. Buddy allocation (4 p.)

Use dynamic memory allocation according to the buddy method. The second row of each table below shows
the current allocation of memory with a total memory size of 32 MB and a block size of 2 MB. Fill in markings
for the allocated blocks according to the request given along with each table.

Hint: The four examples are independent of each other. If a memory allocation can not be performed, mark the
respective line accordingly.

Scenario 1: Process C requests 3 MB.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
A A A A B B

Scenario 2: Process D requests 12 MB.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
A

Scenario 3: Process E requests 14 MB.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
B B A A

Scenario 4: Process F requests 7 MB.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
A A A A B B

5.2. Fragmentation (3 p.)

The memory allocation algorithms discussed in the course can result in external and internal fragmentation.
Explain the key points for both terms and name a placement strategy (but not the same strategy twice!) for
which the respective fragmentation effect shows up.

5.3. Virtual memory (3 p.)

Describe shortly what a TLB is and why it is required to build efficient computers using virtual memory.

Department of Computer Science
Institutt for datateknologi og informatikk – IDI

TDT4186 – operativsystemer
Operating Systems

5 Memory management (10 points)

5.1. Buddy allocation (4 p.)

Use dynamic memory allocation according to the buddy method. The second row of each table below shows
the current allocation of memory with a total memory size of 32 MB and a block size of 2 MB. Fill in markings
for the allocated blocks according to the request given along with each table.

Hint: The four examples are independent of each other. If a memory allocation can not be performed, mark the
respective line accordingly.

Scenario 1: Process C requests 3 MB.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
A A A A B B

Scenario 2: Process D requests 12 MB.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
A

Scenario 3: Process E requests 14 MB.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
B B A A

Scenario 4: Process F requests 7 MB.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
A A A A B B

5.2. Fragmentation (3 p.)

The memory allocation algorithms discussed in the course can result in external and internal fragmentation.
Explain the key points for both terms and name a placement strategy (but not the same strategy twice!) for
which the respective fragmentation effect shows up.

5.3. Virtual memory (3 p.)

Describe shortly what a TLB is and why it is required to build efficient computers using virtual memory.

This request cannot be satisfied – no free block of 16 MB size is available!

F F F F

Operating systems – Example exam question solutions 13

5 Memory management
5.2 Fragmentation
The memory allocation algorithms discussed in the course can result in
external and internal fragmentation. Explain the key points for both terms and
name a placement strategy (but not the same strategy twice!) for which the
respective fragmentation effect shows up.

External fragmentation:
• Memory fragments that cannot be used for additional allocations are

created outside of the allocated memory area
• For list-based strategies such as First Fit, Best Fit, ...

Internal fragmentation:
• There is unused memory inside of the allocated memory areas
• e.g. for the Buddy allocator, since all requests are rounded up to the nearest

larger power of two

Operating systems – Example exam question solutions 14

5 Memory management
5.3 Virtual memory
Describe shortly what a TLB is and why it is required to build efficient computers
using virtual memory.

A TLB (Translation Lookaside Buffer) is a cache for page table entries.

Page tables are stored in main memory. Without a TLB (or in case of a TLB miss),
to translate a virtual into a physical address, a page table walk is required to
traverse the page table, which is a tree data structure.

For a page table of depth 3, three main memory accesses for the page table walk
would be required to obtain the translation for a single virtual address translation
➛ unacceptable performance degradation!

TLBs (and caches in general) improve performance due to the locality principle
(you could also explain temporal and spatial locality shortly here if you like)

Operating systems – Example exam question solutions 15

6 Scheduling
An operating system has three processes
P1, P2 and P3.
The processes are activated in the order P1, P2, P3 and are all ready to run at
time t = 0. The compute times in milliseconds (ms) of each process and the starting
time of I/O operations relative to the compute time are given in the following table.

Use the following Gantt diagram to show how the three processes P1, P2, and P3
are processed if the scheduling strategy is round robin with a chosen time slice of
40 ms. Each process performs exactly one I/O operation with the starting time and
duration given in the table. The process switching time can be neglected. Mark the
related process state for each process and time step according to the patterns
shown next to the diagram.

Department of Computer Science
Institutt for datateknologi og informatikk – IDI

TDT4186 – operativsystemer
Operating Systems

6 Scheduling (10 points)

An operating system has three processes P1, P2 and P3.
The processes are activated in the order P1, P2, P3 and are all ready to run at time t = 0. The compute times in
milliseconds (ms) of each process and the starting time of I/O operations relative to the compute time are given in the
following table:

Process P1 P2 P3
Compute time 70 110 90
I/O start 20 30 60
I/O duration 80 30 50

Use the following Gantt diagram to show how the three processes P1, P2, and P3 are processed if the scheduling
strategy is round robin with a chosen time slice of 40 ms. Each process performs exactly one I/O operation with the
starting time and duration given in the table. The process switching time can be neglected. Mark the related process
state for each process and time step according to the patterns shown next to the diagram.
Hint: The first two time units are already filled in.

Department of Computer Science
Institutt for datateknologi og informatikk – IDI

TDT4186 – operativsystemer
Operating Systems

6 Scheduling (10 points)

An operating system has three processes P1, P2 and P3.
The processes are activated in the order P1, P2, P3 and are all ready to run at time t = 0. The compute times in
milliseconds (ms) of each process and the starting time of I/O operations relative to the compute time are given in the
following table:

Process P1 P2 P3
Compute time 70 110 90
I/O start 20 30 60
I/O duration 80 30 50

Use the following Gantt diagram to show how the three processes P1, P2, and P3 are processed if the scheduling
strategy is round robin with a chosen time slice of 40 ms. Each process performs exactly one I/O operation with the
starting time and duration given in the table. The process switching time can be neglected. Mark the related process
state for each process and time step according to the patterns shown next to the diagram.
Hint: The first two time units are already filled in.

100 200 3000

P3

P2

P1

t[ms]

Legende:

Running

Ready

Blocked

Terminated

• • • • • • • •
• • •

• • • • •– – –

– – – – – – – –
– – – – – ––

– – – – – – – –
■■■

■■■
■■■

■■■
■■■

■■■
■
–■■

■
■ ■■

Operating systems – Example exam question solutions 16

7 File I/O
7.1 File reads
Assume the initial contents of file
myfile2 and the execution of the
following block of code. The initial
contents of the file myfile2 are:
foo#bar#baz
What is the output printed by the
program?
The output is "ar#":
• lseek (l. 8) positions the file read

pointer to the fifth character (count
from 0): foo#bar#baz

• read (l. 15) reads 3 chars from the
file starting with "a": foo#bar#baz

• Finally, line 20 sets the string end
to the fourth character in buffer

Department of Computer Science
Institutt for datateknologi og informatikk – IDI

TDT4186 – operativsystemer
Operating Systems

7 File I/O (10 points)

7.1. File reads (5 p.)

Assume the initial contents of file myfile2 and the execution of the following block of code.

The initial contents of the file myfile2 are:

foo#bar#baz

What is the output printed by the program?

1 int fd = open("myfile2", O_RDWR);
2
3 if (fd <= 0) {
4 printf("Error");
5 exit(-1);
6 }
7
8 if(lseek(fd, 5, SEEK_SET) < 0) {
9 printf("Error");

10 exit(-1);
11 }
12
13 char buffer [100];
14
15 if(read(fd, buffer , 3) != 3) {
16 printf("Error");
17 exit(-1);
18 }
19
20 buffer[3] = 0;
21
22 printf("%s\n", buffer);
23 close(fd);

7.2. File writes (5 p.)

Assume the initial contents of file myfile and the execution of the following block of code.

What are the final contents of myfile?

The initial contents of the file myfile are:

Tweedle

Assume that there are no errors with permissions and that there are no newlines.

1 int fd = open("myfile", O_WRONLY | O_APPEND | O_TRUNC) ;
2
3 if (fd < 0) {
4 printf("Error");
5 exit(-1);
6 }
7
8 write(fd, "dee", 3);
9 close(fd);

Operating systems – Example exam question solutions 17

7 File I/O
7.2 File writes
Assume the initial
contents of file
myfile and the
execution of the following block of code. What are the final contents of
myfile? The initial contents of the file myfile are: Tweedle
Assume that there are no errors with permissions and that there are no
newlines.

Here, the O_APPEND flag to open is important:
O_APPEND append on each write

Thus, since the file exists and already has the content Tweedle, the write
call in line 8 appends the buffer contents at the end of the file, resulting in:

Tweedledee

Department of Computer Science
Institutt for datateknologi og informatikk – IDI

TDT4186 – operativsystemer
Operating Systems

7 File I/O (10 points)

7.1. File reads (5 p.)

Assume the initial contents of file myfile2 and the execution of the following block of code.

The initial contents of the file myfile2 are:

foo#bar#baz

What is the output printed by the program?

1 int fd = open("myfile2", O_RDWR);
2
3 if (fd <= 0) {
4 printf("Error");
5 exit(-1);
6 }
7
8 if(lseek(fd, 5, SEEK_SET) < 0) {
9 printf("Error");

10 exit(-1);
11 }
12
13 char buffer [100];
14
15 if(read(fd, buffer , 3) != 3) {
16 printf("Error");
17 exit(-1);
18 }
19
20 buffer[3] = 0;
21
22 printf("%s\n", buffer);
23 close(fd);

7.2. File writes (5 p.)

Assume the initial contents of file myfile and the execution of the following block of code.

What are the final contents of myfile?

The initial contents of the file myfile are:

Tweedle

Assume that there are no errors with permissions and that there are no newlines.

1 int fd = open("myfile", O_WRONLY | O_APPEND | O_TRUNC) ;
2
3 if (fd < 0) {
4 printf("Error");
5 exit(-1);
6 }
7
8 write(fd, "dee", 3);
9 close(fd);

Important: without O_TRUNC!
See the update

on the following slide!

Operating systems – Example exam question solutions 18

7 File I/O
7.2 File writes
Assume the initial
contents of file
myfile and the
execution of the following block of code. What are the final contents of
myfile? The initial contents of the file myfile are: Tweedle
Assume that there are no errors with permissions and that there are no
newlines.
Here, the O_APPEND and O_TRUNC flags to open are important:

O_APPEND append on each write
O_TRUNC truncate size to 0

Thus, when the file is opened for writing, it is truncated (emptied: size = 0).
Afterwards, the write call in line 8 appends the buffer contents at the end of
the (empty) file, resulting in:

dee

Department of Computer Science
Institutt for datateknologi og informatikk – IDI

TDT4186 – operativsystemer
Operating Systems

7 File I/O (10 points)

7.1. File reads (5 p.)

Assume the initial contents of file myfile2 and the execution of the following block of code.

The initial contents of the file myfile2 are:

foo#bar#baz

What is the output printed by the program?

1 int fd = open("myfile2", O_RDWR);
2
3 if (fd <= 0) {
4 printf("Error");
5 exit(-1);
6 }
7
8 if(lseek(fd, 5, SEEK_SET) < 0) {
9 printf("Error");

10 exit(-1);
11 }
12
13 char buffer [100];
14
15 if(read(fd, buffer , 3) != 3) {
16 printf("Error");
17 exit(-1);
18 }
19
20 buffer[3] = 0;
21
22 printf("%s\n", buffer);
23 close(fd);

7.2. File writes (5 p.)

Assume the initial contents of file myfile and the execution of the following block of code.

What are the final contents of myfile?

The initial contents of the file myfile are:

Tweedle

Assume that there are no errors with permissions and that there are no newlines.

1 int fd = open("myfile", O_WRONLY | O_APPEND | O_TRUNC) ;
2
3 if (fd < 0) {
4 printf("Error");
5 exit(-1);
6 }
7
8 write(fd, "dee", 3);
9 close(fd);

This is the corrected version
including O_TRUNC

Operating systems – Example exam question solutions 19

8 File systems
A Unix filesystem has 2 kB (1 kB = 1024 bytes) blocks and 4 byte disk addresses. Each
inode contains 10 direct entries, one singly-indirect entry and one doubly-indirect entry.
8.1. Calculate the maximum possible file size in this file system
10*2 kB + (2048/4)*2 kB + (2048/4) * (2048/4) *2 kB
= 20 kB + 1024 kB + 524288 kB = 525332 kB (or 537939968 bytes or 513.02 MB)

8.2. Suppose half of all files are exactly 1.5 kB in size and the other half of all files are
exactly 2 kB. What fraction of the disk space would be wasted? (Consider only the
blocks used to store data)
Both 1.5 kB and 2 kB files will use 2 kB of space. For each 2 kB file, 0 kB is wasted; for
each 1.5 kB file, 0.5 kB is wasted.
Therefore, the fraction wasted is (0/2)*50%+(0.5/2)*50% = 12.5%.

8.3. Based on the same condition as in the previous item above, does it help to reduce
the fraction of wasted disk space if we change the block size to 1 kB? Justify your
answer.
No. Nothing is changed. Both 1.5 kB and 2 kB files will still use 2 kB of space. For each
2 kB file, 0 kB is wasted; for each 1.5 kB file, 0.5 kB is wasted.
Therefore, the fraction wasted is (0/2)*50%+(0.5/2)*50% = 12.5%, which is unchanged.

Operating systems – Example exam question solutions 20

9 Security
9.1 Unix login
The Unix login program checks whether or not a user has entered the correct
password before taking on the user’s ID and executing the user’s shell.
Explain how it can check passwords this way without storing the user’s
actual password on the system.

login can check either against the encrypted version of a password:
if (compare(encrypt(password), stored_encrypted_password) == CORRECT) …

or it can check against a stored password hash:
if (hash(password), stored_hashed_password) == CORRECT) …

To keep the hash or encrypted password safe from regular users of the
system, login reads a hash or encrypted password from /etc/shadow,
which is not readable by a normal user (login runs with root privileges).

The code examples here are
only pseudocode, of course!

Operating systems – Example exam question solutions 21

9 Security
9.2 System subversion
Suppose an attacker breaks into a Unix machine, obtains root (superuser)
privileges, and manages to keep them for a long period of time (e.g., many
months).
What might the attacker do to learn users’ real passwords, even if they are
not stored on the system?

The attacker could replace login with a malicious version that records the
passwords users enter in a file where the attacker can read them.

Operating systems – Example exam question solutions 22

10 Storage systems
Many RAID devices now ship with the following options:
• RAID 0 - data striped across all disks
• RAID 1 - each disk mirrored
• RAID 5 - striped parity

Given a system with 8 disks of 1 TB each, answer the following questions:

10.1 For each of the three RAID levels, how much usable storage does the
system provide?

• RAID 0: striping, no redundancy ➛ 8 * 1 TB = 8 TB
• RAID 1: mirroring, two copies of a disk ➛ two copies of (4 * 1 TB) = 4 TB
• RAID 5: one parity disk used, 7 disks for data ➛ 7 * 1 TB = 7 TB

Operating systems – Example exam question solutions 23

10 Storage systems
10.2 Assume a workload consisting only of small reads, evenly distributed.
Assuming that no verification is performed on reads, what is the throughput of each
level assuming that a single disk can perform 100 reads/sec?

• RAID 0: 800 reads/sec
• RAID 1: 800 reads/sec – reads can be satisfied from both disks in a pair
• RAID 5: 800 reqs/sec – no need to read the parity (since no verification!), so no

loss of read performance, only space

10.3. Assume a workload consisting only of small writes, evenly distributed. Again,
calculate the throughput assuming that a single disk can execute 100 writes/sec.

• RAID 0: 800 writes/sec
• RAID 1: 400 writes/sec – need to write to both disks in a pair
• RAID 5: 200 writes/sec if you do two reads + two writes to update the parity,

 or 100 writes/sec if you read all of the disks to recalculate the parity

Operating systems – Example exam question solutions 24

10 Storage systems
10.4. For each level, what is the minimum number of disks that may fail
before data may be lost?

• RAID 0: no redundancy ➛ 0 disk failures allowed
 (but data loss is guaranteed at the first lost disk)

• RAID 1: 2 if you happen to lose both disks in a pair
• RAID 5: 2, but data loss is guaranteed on failure of the second disk

10.5. For each level, what is the minimum number of disks that must fail
to guarantee data loss?

• RAID 0: 1
• RAID 1: 5, if you happen to get really lucky and lose one from each pair

before losing the fifth
• RAID 5: 2

