
Operating Systems

Theoretical Exercise 4: Solutions and Discussion
and some tips for PE4…

Michael Engel

Operating systems TE4 2

4.1 Buddy algorithm
A memory management system is allocated using the Buddy algorithm for
a memory with a total size of 512 kB and a minimum block size of 64 kB

Enter the resulting memory layout at t = 2 in the table. If an allocation or
release cannot be performed, indicate this in the respective table.

Department of Computer Science – IDI TDT4186 Operating Systems

https://folk.ntnu.no/michaeng/tdt4186_21/

michael.engel@ntnu.no

Theoretical exercises

Spring 2021

Theoretical Exercises 4
Memory Management

Please submit solutions on Blackboard by Thursday, 11.03.2021 12:00h

4.1 Buddy algorithm (4 points)

A memory management system is allocated using the Buddy algorithm for a memory with a total size of 512 kB and a

minimum block size of 64 kB.

The following tables each describe an initial scenario at time t = 1 before an allocation (A) or a release (R) of a data

block. For each of the memory blocks, the current allocation for t = 1 is given – either an allocation a,b,c, ... or the

assignment of the given 64 kB blocks to a free memory area of given size.

At time t = 2, the given allocation or release is requested. For an allocation, the size of the memory block to allocate

is given.

Enter the resulting memory layout at t = 2 in the table. If an allocation or release cannot be performed, indicate this in

the respective table.

a. Scenario 1:

t Operation Block Size 64 kB 64 kB 64 kB 64 kB 64 kB 64 kB 64 kB 64 kB

1 Initial ! 128 kB a b 256 kB

2 R b —

b. Scenario 2:

t Operation Block Size 64 kB 64 kB 64 kB 64 kB 64 kB 64 kB 64 kB 64 kB

1 Initial ! 512 kB

2 A x 121 kB

c. Scenario 3:

t Operation Block Size 64 kB 64 kB 64 kB 64 kB 64 kB 64 kB 64 kB 64 kB

1 Initial ! 128 kB 64 kB y a

2 R y —

d. Scenario 4:

t Operation Block Size 64 kB 64 kB 64 kB 64 kB 64 kB 64 kB 64 kB 64 kB

1 Initial ! 128 kB 64 kB a b 64 kB 128 kB

2 A z 180 kB

4.2 First fit algorithm (3 points)

Use the first fit strategy to implement the following sequence of memory requests. Note your results by completing the

following table. Each field of the table stands for 1 MB of memory and there are 32 MB of memory available altogether:

The 64kB block b is released, but no combination to a larger block with
a size of a power of 2 is possible.

128 kB | a |64 kB| 256 kB

The 121 kB allocation for x requires a block of size 128 kB.
The remaining blocks must have a size of a power of 2, so we have two
free blocks of 128 kB and 256 kB size, respectively.

x | |128 kB 256 kB

Operating systems TE4 3

4.1 Buddy algorithm
A memory management system is allocated using the Buddy algorithm for
a memory with a total size of 512 kB and a minimum block size of 64 kB

Enter the resulting memory layout at t = 2 in the table. If an allocation or
release cannot be performed, indicate this in the respective table.

Department of Computer Science – IDI TDT4186 Operating Systems

https://folk.ntnu.no/michaeng/tdt4186_21/

michael.engel@ntnu.no

Theoretical exercises

Spring 2021

Theoretical Exercises 4
Memory Management

Please submit solutions on Blackboard by Thursday, 11.03.2021 12:00h

4.1 Buddy algorithm (4 points)

A memory management system is allocated using the Buddy algorithm for a memory with a total size of 512 kB and a

minimum block size of 64 kB.

The following tables each describe an initial scenario at time t = 1 before an allocation (A) or a release (R) of a data

block. For each of the memory blocks, the current allocation for t = 1 is given – either an allocation a,b,c, ... or the

assignment of the given 64 kB blocks to a free memory area of given size.

At time t = 2, the given allocation or release is requested. For an allocation, the size of the memory block to allocate

is given.

Enter the resulting memory layout at t = 2 in the table. If an allocation or release cannot be performed, indicate this in

the respective table.

a. Scenario 1:

t Operation Block Size 64 kB 64 kB 64 kB 64 kB 64 kB 64 kB 64 kB 64 kB

1 Initial ! 128 kB a b 256 kB

2 R b —

b. Scenario 2:

t Operation Block Size 64 kB 64 kB 64 kB 64 kB 64 kB 64 kB 64 kB 64 kB

1 Initial ! 512 kB

2 A x 121 kB

c. Scenario 3:

t Operation Block Size 64 kB 64 kB 64 kB 64 kB 64 kB 64 kB 64 kB 64 kB

1 Initial ! 128 kB 64 kB y a

2 R y —

d. Scenario 4:

t Operation Block Size 64 kB 64 kB 64 kB 64 kB 64 kB 64 kB 64 kB 64 kB

1 Initial ! 128 kB 64 kB a b 64 kB 128 kB

2 A z 180 kB

4.2 First fit algorithm (3 points)

Use the first fit strategy to implement the following sequence of memory requests. Note your results by completing the

following table. Each field of the table stands for 1 MB of memory and there are 32 MB of memory available altogether:

256 kB | a

The 64kB block y is released, so a contiguous area of 256 kB can be combined

No allocation possible, since the 180 kB allocation would require a free
block of at least 256 kB! The first two blocks (128 kB + 64 kB) don’t suffice,
since this would create an allocated part with a size that is not a power of 2.

Operating systems TE4 4

4.2 First fit algorithm
Use the first fit strategy to implement the following sequence of memory
requests. Note your results by completing the following table. Each field of the
table stands for 1 MB of memory and there are 32 MB of memory available
altogether:

Department of Computer Science – IDI TDT4186 Operating Systems

a. release A, (already shown)

b. allocate 4 MB for F , (already shown)

c. allocate 2 MB for A,

d. release B,

e. release E,

f. allocate 7 MB for E,

g. release E,

h. allocate 4 MB for E

Initial layout A A A B B B C C C C C C D D D D D E E E E

Release A B B B C C C C C C D D D D D E E E E

Alloc. F (4 MB) B B B C C C C C C F F F F D D D D D E E E E

Alloc. A (2 MB)

Release B

Release E

Alloc. E (7 MB)

Release E

Alloc. E (4 MB)

4.3 Page replacement (3 points)

Complete the given table using the first-in first-out (FIFO) approach. The age of each page frame is given as support

information, you don’t have to fill it in.

Allocation sequence ! 1 2 3 4 5 6 1 2 3 2

Page frame 1 1 1 1

Page frame 2 2 2 2

Page frame 3 3 3

Page frame 4 4
Age of page frame 1 (optional) 0 1 2 3

Age of page frame 2 (optional) > 0 1 2

Age of page frame 3 (optional) > > 0 1

Age of page frame 4 (optional) > > > 0

a. release A, (already shown)
b. allocate 4 MB for F, (already shown)
c. allocate 2 MB for A,
d. release B,

e. release E,
f. allocate 7 MB for E,
g. release E,
h. allocate 4 MB for E

A A B B B C C C C C C F F F F D D D D D E E E E
A A – – – C C C C C C F F F F D D D D D E E E E

C C C C C C F F F F D D D D D – – – –A A
C C C C C C F F F F D D D D DA A E E E E E E E
C C C C C C F F F F D D D D DA A – – – – – – –
C C C C C C F F F F D D D D DA A E E E E

Operating systems TE4 5

4.3 Page replacement
Complete the given table using the first-in first-out (FIFO) approach. The
age of each page frame is given as support information, you don’t have to
fill it in.

Department of Computer Science – IDI TDT4186 Operating Systems

a. release A, (already shown)

b. allocate 4 MB for F , (already shown)

c. allocate 2 MB for A,

d. release B,

e. release E,

f. allocate 7 MB for E,

g. release E,

h. allocate 4 MB for E

Initial layout A A A B B B C C C C C C D D D D D E E E E

Release A B B B C C C C C C D D D D D E E E E

Alloc. F (4 MB) B B B C C C C C C F F F F D D D D D E E E E

Alloc. A (2 MB)

Release B

Release E

Alloc. E (7 MB)

Release E

Alloc. E (4 MB)

4.3 Page replacement (3 points)

Complete the given table using the first-in first-out (FIFO) approach. The age of each page frame is given as support

information, you don’t have to fill it in.

Allocation sequence ! 1 2 3 4 5 6 1 2 3 2

Page frame 1 1 1 1

Page frame 2 2 2 2

Page frame 3 3 3

Page frame 4 4
Age of page frame 1 (optional) 0 1 2 3

Age of page frame 2 (optional) > 0 1 2

Age of page frame 3 (optional) > > 0 1

Age of page frame 4 (optional) > > > 0

5
6

1
2

35 5 5 3
2
3 3
4 4 4 2 2

1 1 1
6 6 6 6

No replacement here, page 2 is already in memory!

0
3

3
3

2
21

0
0

0

01
1

1
1

2
2

2
2

3
3

3

1
4

Operating systems TE4 6

4.3 Page replacement
Complete the given table using the first-in first-out (FIFO) approach. The
age of each page frame is given as support information, you don’t have to
fill it in.

Department of Computer Science – IDI TDT4186 Operating Systems

a. release A, (already shown)

b. allocate 4 MB for F , (already shown)

c. allocate 2 MB for A,

d. release B,

e. release E,

f. allocate 7 MB for E,

g. release E,

h. allocate 4 MB for E

Initial layout A A A B B B C C C C C C D D D D D E E E E

Release A B B B C C C C C C D D D D D E E E E

Alloc. F (4 MB) B B B C C C C C C F F F F D D D D D E E E E

Alloc. A (2 MB)

Release B

Release E

Alloc. E (7 MB)

Release E

Alloc. E (4 MB)

4.3 Page replacement (3 points)

Complete the given table using the first-in first-out (FIFO) approach. The age of each page frame is given as support

information, you don’t have to fill it in.

Allocation sequence ! 1 2 3 4 5 6 1 2 3 2

Page frame 1 1 1 1

Page frame 2 2 2 2

Page frame 3 3 3

Page frame 4 4
Age of page frame 1 (optional) 0 1 2 3

Age of page frame 2 (optional) > 0 1 2

Age of page frame 3 (optional) > > 0 1

Age of page frame 4 (optional) > > > 0

5
6

1
2

35 5 5 3
2
3 3
4 4 4 2 2

1 1 1
6 6 6 6

No replacement here, page 2 is already in memory!

0
3

3
3

2
21

0
0

0

01
1

1
1

2
2

2
0

3
3

3

1
4

Operating systems TE4 7

PE4: Unix shell
General structure
of a Unix shell:

Initialize

print prompt

read command
line

scan and parse
command line

cd?

yes

no

fork(2)

no

exit?

yes
chdir(2)

exit(3)

input
redirect?

scan/parse results:
• command name "cmd"
• parameter array "args"
• optional filename for input redirect "inf"
• optional filename for output redirect "outf"

no output
redirect?

yes yes

open(inf, O_RDONLY);
close(stdin);

dup();

waitpid(2)

two
processes!

exec…(2)

open(inf, O_WRONLY);
close(stdout);

dup();after exec
finishes

the
command
should be
running

returns
with error?

print error
message

Operating systems TE4 8

PE4: Unix shell parsing
Splitting the command line:

• Today, this would be called a REPL – "Read-Evaluate-Print-Loop"
• Prompt: what the shell prints
• Command name: command to execute (internal or external)
• Optional: zero or more parameters
• Optional: input and output redirect (in arbitrary order)

/home/me > /bin/ls -l /bin /usr/bin > /tmp/listing
/home/me > /bin/sed 's/foo/bar/' < inputfile > resultfile

prompt command
name

param1: "-l" param2: "/bin" param3: "/usr/bin"

input redirection
from "inputfile"

output redirection
to "inputfile"

Operating systems TE4 9

PE4: Unix shell parsing
Parsing by hand is lots of work and error-prone…

• Alternative: one of the strtok(3) libc functions
• From the strtok manpage on strtok_r(3):

char *
strtok_r(char *restrict str, const char *restrict sep, char **restrict lasts);

char line[80];
char *sep = "\\/:;=-";
char *word, *phrase, *brkt, *brkb;

strcpy(test, "This;is.a:test:of=the/string\\tokenizer-function.");

for (word = strtok_r(test, sep, &brkt); // strtok_r has an internal state machine
 word;
 word = strtok_r(NULL, sep, &brkt)) // it stores current pos in string in brkt
{
 printf("So far we're at %s:%s\n", word); // word contains ptr to current part
}

Operating systems TE4 10

PE4: Unix shell parsing
Parsing by hand is lots of work and error-prone…

• Alternative:
strsep(3)

char *
strsep(char **stringp, const char *delim);

First example:
char *token, *string, *tofree;

tofree = string = strdup("abc,def,ghi");
assert(string != NULL);

while ((token = strsep(&string, ",")) != NULL)
 printf("%s\n", token);

free(tofree);

Second example:
char **ap, *argv[10], *inputstring;

for (ap = argv; (*ap = strsep(&inputstring, " \t")) != NULL;)
 if (**ap != '\0')
 if (++ap >= &argv[10])
 break;

Operating systems TE4 11

PE4: Unix shell I/O redirection
Redirecting I/O in Unix works uses the dup(2) or dup2(2) syscall:

• dup copies the file descriptor passed as parameter to the first unused
file descriptor

• to redirect I/O:
• open the file you want to redirect to/from ➛ file descriptor, e.g. refd
• then either close the fd you want to redirect (e.g. stdout = 1) and

• and call dup with refd as parameter
• or call dup2 with the fd you want to redirect and refd as parameters

 int
 dup(int fildes);

 int
 dup2(int fildes, int fildes2);

Operating systems TE4 12

PE4: Unix shell exec calls
There are several different exec functions in libc:

• Depending on your representation of the parameters you parse, some
might be more appropriate than others…

 int
 execl(const char *path, const char *arg0, ... /*, (char *)0 */);

 int
 execle(const char *path, const char *arg0, ... /*, (char *)0, char *const envp[] */);

 int
 execlp(const char *file, const char *arg0, ... /*, (char *)0 */);

 int
 execv(const char *path, char *const argv[]);

 int
 execvp(const char *file, char *const argv[]);

 int
 execvP(const char *file, const char *search_path, char *const argv[]);

