B NTNU | sioncindrecnoivay

Operating Systems

Theoretical Exercise 3: Solutions and Discussion

Michael Engel

3.1 Resource allocation graphs

Consider a system with four processes P1...P4 which want to access five
exclusive, non preemptible resources R1...R5.

The atomic requests for the resources are arriving in the following order:
P1 - R3,P3—>R1,P4 >R2, P1—->R5 P3—->R3 P4 —->R5 P2->R4

and finally P1 — R1.

a. Draw the resource allocation graph

L —

P1

R1 R2

@ NTNU | sanetandrecnoiogy

P2

R3

R4

R5

Operating systems TE3

3.1 Resource allocation graphs

The atomic requests for the resources are arriving in the following order:
P1 - R3,P3—-R1,P4 ->R2 P1—->R5 P3—-R3 P4 —->R5P2->R4
and finally P1 — R1.

b. Which condition has to be fulfilled for a deadlock to occur?

A circle in the resource allocation graph

L

P1 P2 P3 P4

R1 R2 R3 R4 R5

Norwegian University of .
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS TE3

3.1 Resource allocation graphs

The atomic requests for the resources are arriving in the following order:
P1 - R3,P3—-R1,P4 ->R2 P1—->R5 P3—-R3 P4 —->R5P2->R4
and finally P1 — R1.

c. Is there a deadlock present in the system described above?
Yes, since there is a circle in the resource allocation graph:

P1 ->R1—-P3 >R3> P1
P1 waits for R1, which is already allocated to P3

while
P3 waits for R3, which is already allocated to P1

Norwegian University of .
B NTNU ‘ Sciencgand Technolggy Operatmg SyStemS TE3

3.2 Resource allocation graphs

Three programs Pa, Pb and Pc with functions printing their own name:
 Pa: a1(), a2() and a3() / Pb: b1() and b2() / Pc: ¢1(), c2() and c3()

void al() { int main() {
<possibly block here using wait()> al(); a2(); a3();
printf("al "); }
<possibly signal here using signal()>
) Three semaphores
Sa, Sb and Sc
Desired output: a1 b1 a2 ¢c1 ¢c2 b2 a3 ¢c3

a. To which initial values do you have to set semaphores Sa, Sb and Sc?

- Sa=1,Sb=0,Sc=0

(alternative: Sa =0, Sb = 0, Sc = 0 — requires different initialization)

Norwegian University of .
B NTNU ‘ Sciencgand Technolggy Operatmg SyStemS TE3

3.2 Resource allocation graphs

Three programs Pa, Pb and Pc with functions printing their own name:
 Pa: a1(), a2() and a3() / Pb: b1() and b2() / Pc: ¢1(), c2() and c3()

void al() {

}

<possibly block here using wait()>
printf("al ");
<possibly signal here using signal()>

}

int main() {
al();

a2();

a3();

Desired output: a1 b1 a2 ¢c1 ¢c2 b2 a3 ¢c3

Three semaphores
Sa, Sb and Sc

b. Fill in a table that indicates the required calls to the semaphore
functions wait() and signal() in the respective functions of Pa, Pb and Pc

al a2 | a3 | bl |b2|cl|c2]|c3
wait(...) Sa*| Sa | Sa| Sb | Sb | Sc |Sc~| Sc
signal(...) | Sb | Sc | Sc | Sa | Sa |Sc/~| Sb | -

@ NTNU

Norwegian University of
Science and Technology

Operating systems TE3

* for the
alternative from
slide 5: "-"

3.3 Even more semaphores

How many times does the following short C program print the letter X?
Assume that the semaphore sem is initialized to the value 4.

* 5 times:

int main(void) {
* The first "X" is printed /inside the for loop for (: :) {
 sem is decremented: 4 — 3 printf ("X\n");
* The second "X" is printed inside the for loop wait(&sem) ;
« sem is decremented: 3 — 2 b o
* The third "X" is printed inside the for loop E;E:(@T\n .
* sem is decremented: 2 — 1)

* The fourth "X" is printed inside the for loop

 sem is decremented: 1 — 0

« The fifth "X" is printed inside the for loop

» wait tries to decrement sem, it is already 0 — wait blocks!
* NO process signal()s sem — no further printf is executed!

Norwegian University of .
B NTNU ‘ Sciencégand Technolggy Operatmg SyStemS TE3

3.4 Synchronization using interrupts

On x86 CPUs, interrupts can be disabled and reenabled using the
machine instructions cli and sti. Why is this a significant problem (and, as
a consequence, not allowed to be performed by regular user programs)?

 Disabling interrupts affects all processes!

« The sti/cli instructions are "all or nothing": disable or enable all
possible interrupts of the CPU

* ...not only for the processes that want to synchronize

* In addition, the OS can be affected itself, since it needs interrupts for its
own operation

* e.g. timer, device interrupts
« forgetting to re-enable interrupts hangs the whole system!

Norwegian University of .
B NTNU ‘ Sciencgand Technolggy Operatmg SyStemS TE3

3.4 Synchronization using interrupts

Example: timer interrupts
* The timer interrupt ("tick") handler is triggered every millisecond on x86:

<asm/param.h>:
#define HZ 1000 /* internal kernel time frequency */

* The interrupt handler increments the internal "_jiffies" variable”

(Implemented in kernel/sys call.s)
_timer_interrupt:
// save registers

incl _jiffies
// restore registers
jmp ret from sys call
*e.g. in Linux 0.12 — see https://github.com/Original-Linux/Linux-0.12

* The hardware only has one bit per interrupt to indicate that there was a request.

* If multiple interrupts occur between cli() and sti(), the handler is executed only
once! > jiffies isincremented only once instead of multiple times!
> the system clock "loses time"

Norwegian University of .
B NTNU ‘ Sciencégand Technolggy Operatmg SyStemS TE3 9

https://github.com/Original-Linux/Linux-0.12

