
Operating Systems

Theoretical Exercise 3: Solutions and Discussion

Michael Engel

Operating systems TE3 2

3.1 Resource allocation graphs
Consider a system with four processes P1...P4 which want to access five
exclusive, non preemptible resources R1...R5.

The atomic requests for the resources are arriving in the following order:
P1 → R3, P3 → R1, P4 → R2, P1 → R5, P3 → R3, P4 → R5, P2 → R4
and finally P1 → R1.

a. Draw the resource allocation graph

P1 P2 P3 P4

R1 R2 R3 R4 R5

Operating systems TE3 3

3.1 Resource allocation graphs
The atomic requests for the resources are arriving in the following order:
P1 → R3, P3 → R1, P4 → R2, P1 → R5, P3 → R3, P4 → R5, P2 → R4
and finally P1 → R1.

b. Which condition has to be fulfilled for a deadlock to occur?

A circle in the resource allocation graph

P1 P2 P3 P4

R1 R2 R3 R4 R5

Operating systems TE3 4

3.1 Resource allocation graphs
The atomic requests for the resources are arriving in the following order:
P1 → R3, P3 → R1, P4 → R2, P1 → R5, P3 → R3, P4 → R5, P2 → R4
and finally P1 → R1.

c. Is there a deadlock present in the system described above?

Yes, since there is a circle in the resource allocation graph:

P1 → R1 → P3 → R3 → P1

P1 waits for R1, which is already allocated to P3
while
P3 waits for R3, which is already allocated to P1

Operating systems TE3 5

3.2 Resource allocation graphs
Three programs Pa, Pb and Pc with functions printing their own name:
• Pa: a1(), a2() and a3() / Pb: b1() and b2() / Pc: c1(), c2() and c3()

a. To which initial values do you have to set semaphores Sa, Sb and Sc?

• Sa = 1, Sb = 0, Sc = 0

(alternative: Sa = 0, Sb = 0, Sc = 0 – requires different initialization)

Three semaphores
Sa, Sb and Sc

void a1() {
 <possibly block here using wait()>
 printf("a1 ");
 <possibly signal here using signal()>
}

int main() {
 a1(); a2(); a3();
}

Desired output: a1 b1 a2 c1 c2 b2 a3 c3

Operating systems TE3 6

Three programs Pa, Pb and Pc with functions printing their own name:
• Pa: a1(), a2() and a3() / Pb: b1() and b2() / Pc: c1(), c2() and c3()

b. Fill in a table that indicates the required calls to the semaphore
functions wait() and signal() in the respective functions of Pa, Pb and Pc

3.2 Resource allocation graphs

Three semaphores
Sa, Sb and Sc

void a1() {
 <possibly block here using wait()>
 printf("a1 ");
 <possibly signal here using signal()>
}

int main() {
 a1(); a2(); a3();
}

Desired output: a1 b1 a2 c1 c2 b2 a3 c3

Department of Computer Science – IDI TDT4186 Operating Systems

https://folk.ntnu.no/michaeng/tdt4186_21/
michael.engel@ntnu.no

Theoretical exercises
Spring 2021

Theoretical Exercises 3
Synchronization

Please submit solutions on Blackboard by Thursday, 25.02.2021 12:00h

3.1 Resource allocation graphs (3 points)

Consider a system with four processes P1 . . .P4 which want to access five exclusive, non preemptible resources
R1 . . .R5.
The atomic requests for the resources are arriving in the following order:
P1 ! R3, P3 ! R1, P4 ! R2, P1 ! R5, P3 ! R3, P4 ! R5, P2 ! R4 and finally P1 ! R1.

a. Draw the resource allocation graph that results from this sequence of resource requests.

b. Which condition has to be fulfilled for a deadlock to occur?

c. Is there a deadlock present in the system described above? Explain your answer.

3.2 Semaphores (4 points)

We have three programs Pa, Pb and Pc. Pa contains the functions a1(), a2() and a3(), Pb has the functions b1() and
b2() and finally Pc has the functions c1(), c2() and c3(). When one of these functions is executed, it simply prints its
own function name.
In addition to the functions described, each of the programs also contains a main() function which calls the respective
functions of the program one after the other (Pa: first a1(), then a2() and finally a3(), Pb: b1() then b2(), Pc: c1(),
then c2() and finally c3()). We also have three semaphores Sa, Sb and Sc.
Using one-sided (unilateral) synchronzation, synchronize the processes (running in parallel) belonging to the three
programs described above so that the output on the screen reads as follows:
a1 b1 a2 c1 c2 b2 a3 c3
All functions have the same structure, e.g. for a1():

void a1() {
<possibly block here using wait()>
printf("a1 ");
<possibly signal here using signal()>

}

a. To which initial values do you have to set the semaphores Sa, Sb and Sc?

b. Fill in a table that indicates the required calls to the semaphore functions wait() and signal() in the respective
functions of Pa, Pb and Pc, giving the used semaphore as parameter to the call, e.g. wait(Sb) or signal(Sc).
If no synchronization is required, enter “–” in the table cell.

a1 a2 a3 b1 b2 c1 c2 c3
wait(...)
signal(...)

Sa*
* for the
alternative from
slide 5: "–"Sb Sc Sc Sa Sa Sc/– Sb –

Sa Sa Sb Sb Sc Sc/– Sc

Operating systems TE3 7

3.3 Even more semaphores
How many times does the following short C program print the letter X?
Assume that the semaphore sem is initialized to the value 4.
• 5 times:

• The first "X" is printed inside the for loop
• sem is decremented: 4 → 3
• The second "X" is printed inside the for loop
• sem is decremented: 3 → 2
• The third "X" is printed inside the for loop
• sem is decremented: 2 → 1
• The fourth "X" is printed inside the for loop
• sem is decremented: 1 → 0
• The fifth "X" is printed inside the for loop
• wait tries to decrement sem, it is already 0 → wait blocks!
• no process signal()s sem → no further printf is executed!

int main(void) {
 for (; ;) {
 printf("X\n");
 wait(&sem);
 }
 printf("X\n");
 return 0;
}

Operating systems TE3 8

3.4 Synchronization using interrupts
On x86 CPUs, interrupts can be disabled and reenabled using the
machine instructions cli and sti. Why is this a significant problem (and, as
a consequence, not allowed to be performed by regular user programs)?

• Disabling interrupts affects all processes!
• The sti/cli instructions are "all or nothing": disable or enable all

possible interrupts of the CPU
• …not only for the processes that want to synchronize

• In addition, the OS can be affected itself, since it needs interrupts for its
own operation

• e.g. timer, device interrupts
• forgetting to re-enable interrupts hangs the whole system!

Operating systems TE3 9

Example: timer interrupts
• The timer interrupt ("tick") handler is triggered every millisecond on x86:

<asm/param.h>:
#define HZ 1000 /* internal kernel time frequency */

• The interrupt handler increments the internal "_jiffies" variable*
(Implemented in kernel/sys_call.s)
_timer_interrupt:
 … // save registers

 incl _jiffies
 … // restore registers
 jmp ret_from_sys_call

• The hardware only has one bit per interrupt to indicate that there was a request.
• If multiple interrupts occur between cli() and sti(), the handler is executed only

once! ➛ _jiffies is incremented only once instead of multiple times!
➛ the system clock "loses time"

3.4 Synchronization using interrupts

* e.g. in Linux 0.12 – see https://github.com/Original-Linux/Linux-0.12

https://github.com/Original-Linux/Linux-0.12

