
Operating Systems

Discussion of TE2 – 11.02.2021

Michael Engel

Compilers & OS Discussion TE2 2

2.1 Unix processes
a. Init is the process at the top of the Unix process hierarchy. Describe

the two cases in which a process is a child process of init.

Case 1: a process is directly
 created by the init process
 using fork

This happens at system startup time or when a service is requested that
is defined in /etc/inittab (e.g. a newly attached terminal)

Case 2: a process "loses" its parent
 (parent terminates before child
 using exit/_exit or a crash/signal)

In this case, init takes over the role
of the parent

getty tty2getty tty1getty tty0

init
(pid 1)

init
(pid 1)

getty tty0
login
bash

firefox

exit!

init
(pid 1)

firefox

Compilers & OS Discussion TE2 3

2.1 Unix processes
Case 2: a process "loses" its parent
 (parent terminates before child
 using exit/_exit or a crash/signal)

In this case, init takes over the role
of the parent

init
(pid 1)

getty tty0
login
bash

firefox

exit!

init
(pid 1)

firefox

🤔
???

What happens
if init exits?

An older Linux kill(2) manpage stated:
"The only signals that can be sent to process ID
1, the init process, are those for which init has
explicitly installed signal handlers. This is done to
assure the system is not brought down
accidentally"
Accordingly, killing init would shut down the
system. This is usually prohibited.

Compilers & OS Discussion TE2 4

2.1 Unix processes
b. Describe the function of execvp in your own words

(Hint: read the man page)

There is a whole family of exec… functions which are part of the C
library (libc). All ultimately use the system call execve(2) to create a
new process execute a different process in the current context, but
are more convenient to use.

execvp(3) allows to pass command line arguments as parameter:
int execvp(const char *file, char *const argv[]);

The executable file is searched for in the path specified in the
environment by the $PATH variable. If this is not set, a default
search path is assumed (which one depends on your system).

Compilers & OS Discussion TE2 5

2.1 Unix processes
b. Describe the function of execvp in your own words

(Hint: read the man page)

Example for the use of execvp(3):
The argument list array has the program name as element 0
and the command line parameters as separate strings starting from
element 1, terminated by a NULL pointer

// Define NULL terminated array of char* strings
char* argument_list[] = {"ls", "-l", NULL};

// Now execute the command "ls -l" (ls is searched in $PATH)
execvp("ls", argument_list);

Compilers & OS Discussion TE2 6

2.1 Unix processes
c. Explain the output of the following command in your own words.

(Hint: assume the current directory has at least one pdf file)

ls | grep -c .pdf

The ls command lists the contents of the current directory, one
line per filename.

Grep filters its input according to the given pattern.
From the grep(1) manpage:
"-c, --count
 Only a count of selected lines is written to standard output."

Thus, the command prints the number of pdf files in the current
directory

Compilers & OS Discussion TE2 7

2.1 Unix processes
c. Which data is transferred through the pipeline and what

operation does grep perform here?

ls | grep -c .pdf

The output of ls is passed through the pipeline as text, one
filename per line, separated by a newline (0x0a = '\n') character

The grep command then first filters its input and removes all the
lines not matching the search pattern ".pdf".

Following, the -c option grep tells the command to only print the
number of matching lines ➛ number of pdf files

Compilers & OS Discussion TE2 8

Consider the following line of C code: (Caution: Do not try to
execute this!): for (;;) fork();
a. Describe the program behavior after 1, 2, 3 and n iterations of

the for loop. Assume that all processes (especially the for loop)
are executed in parallel

The program executing this code would
execute fork(2) in an endless loop!
After iteration 1:
1 parent, 1 child process
After iteration 2:
1 parent, 2 children, 1 grandchild
After iteration 3:
1 parent, 3 children, …

2.2 fork

parent

child

1

child

2

child

2

child

3

child

3

child

3

child

3

…and so on…

Compilers & OS Discussion TE2 9

Consider the following line of C code:
(Caution: Do not try to execute this!): for (;;) fork();
b. The behavior of a program like this can lead to problems.

Describe the problems that can occur.

With each iteration of the loop, the number of newly created
processes increases. This does not use more memory for the
processes itself (due to copy-on-write), but for their page tables
(since each process has its own) and the process table entries.

Eventually, the OS will run out of resources and will possibly
crash.

2.2 fork

Compilers & OS Discussion TE2 10

Consider the following line of C code:
(Caution: Do not try to execute this!): for (;;) fork();
• Try to find a way to avoid the problem in Unix (without changing the

program above).

The maximum number of processes in a system can be quite large. On
Linux, you can find this using
$ cat /proc/sys/kernel/pid_max
4194304

In most systems, there is no (or a large) limit for the number of
processes a user is allowed to create. You can check and set the current
limit using the ulimit(1) command (either with parameter -a for "all"
or only -u to only print the number of processes):
$ ulimit -a
…
max user processes (-u) 254718

2.2 fork

