
Operating Systems
Discussion of PE2 – 25.02.2021

Michael Engel

Operating Systems – Discussion of PE2 2

2.1 Unix processes: simple alarm clock
• Write a simple alarm clock program.
• The program should ask the user to enter a number using

scanf(3), which represents a delay time in seconds.
• After the number is entered, the program waits for the the

given amount of time (use sleep(3)) and “rings” when the
given time has passed.

• Use a loop so that after the alarm has sounded, the user is
asked for a new time and a new alarm can be started.

Operating Systems – Discussion of PE2 3

2.1 Unix processes: simple alarm clock
#include <stdio.h> // for printf/scanf
#include <stdlib.h> // for exit(3)

int delay;

int main(void) {
 while (1) {
 printf(“Enter alarm delay: “);
 scanf(“%d”, &delay);
 sleep(delay);
 printf(“ALARM!!! \a\a\a”);
 }
 exit(0); After the number

is entered, the
program waits
for the the given
amount of time
(use sleep(3))

Use a loop so that after
the alarm has sounded,
the user is asked for a new
time and a new alarm can
be started

The program
should ask the
user to enter a
number using
scanf

and “rings” when
the given time
has passed

Operating Systems – Discussion of PE2 4

2.2 Multiple alarm clocks
• Support the setting of multiple alarms running concurrently
• After entering a delay for an alarm, create a new child process

using fork(2),
• …which is responsible for waiting the given time and then

sounding the alarm.
• When the alarm has sounded, the child should terminate using

exit(3)
• While the child process is running, the parent process should

already prompt the user for a new alarm delay
• the user can set an additional alarm while a previous one is still

“ticking”
• The parent should print the child process ID
• When a child process sounds an alarm, it should also print its own

process ID

Operating Systems – Discussion of PE2 5

2.2 Multiple alarm clocks
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h> // for fork()

int delay, pid;

int main(void) {
 while (1) {
 printf(“Enter alarm delay: “);
 scanf(“%d”, &delay);
 pid = fork();
 if (pid == 0) { // child process
 sleep(delay);
 printf(“ALARM from pid %d!\a\n”, getpid());
 exit(0);
 } else { // parent process
 printf(“New child: %d\n”, pid);
 }
 }

create a new
child process
using fork(2)

parent should
print the child
process ID

when child process
sounds an alarm, it
should also print its
own process ID

the user can set an
additional alarm while a
previous one is still “ticking”
(because it doesn’t have to
wait for the child!)

Operating Systems – Discussion of PE2 6

2.2 Multiple alarm clocks
$ cc -o 2.2 2.2.c
$./2.2
Enter alarm delay: 10
New child: 95277
Enter alarm delay: 5
New child: 95280
Enter alarm delay: 2
New child: 95281
Enter alarm delay: ALARM from pid 95281!
ALARM from pid 95280!
ALARM from pid 95277!

Delays 10, 5 and 2 secs. were
entered in fast succession.
Thus, the alarm entered last
(2 sec. delay) rings first, then
the middle one and finally the
first one.

But – the output it garbled!
Remember: a parent process and its child processes share
the same I/O channels (file descriptors).
All printf() to stdout, so there can be a process switch when
waiting for input at the “Enter alarm delay:” prompt.
This switches to a child process (that has finished
sleep()ing) – this one then prints its alarm at the current
cursor position on the screen.

Operating Systems – Discussion of PE2 7

2.3 Catch the zombies!
• Observe the processes started by you using the tool ps(1) or top
• You will find that the alarm clock child processes that have already

rung and terminated using exit(3) are still listed as zombie processes

Better use htop – this allows to sort for process state by clicking on “S+”
All child processes (here: 4 children with 60 sec. delay) still sleeping:

Two of four child processes have rung the alarm, the others still sleep:

Operating Systems – Discussion of PE2 8

2.3 Catch the zombies!
• Observe the processes started by you using the tool ps(1) or top
• You will find that the alarm clock child processes that have already

rung and terminated using exit(3) are still listed as zombie processes

Can we get this information using ps?

$ ps ax | grep /2.2 # works for Linux and macOS

This is the
parent process

Operating Systems – Discussion of PE2 9

2.3 Catch the zombies!
• What does the output of (h)top/ps indicate? ➛ manpage…

Operating Systems – Discussion of PE2 10

2.3 Catch the zombies!
• Why is the parent sleeping?

$ cc -o pe2.2 pe2.2.c
$./pe2.2
…
Enter alarm delay: ALARM from pid 95281!
ALARM from pid 95280!
ALARM from pid 95277!

The parent is waiting for the
next input here! So it is
blocked, also indicated as S

Operating Systems – Discussion of PE2 11

2.3 Catch the zombies!
• zombie processes remain in the system as long as the parent process

does not call wait(2) or waitpid(2)
• Solve the problem of zombie processes using waitpid(2)

// …includes omitted…
int delay, pid, st;

int main(void) {
 while (1) {
 printf(“Enter alarm delay: “);
 scanf(“%d”, &delay);
 while ((pid = waitpid(-1, &st, WNOHANG)) > 0) {
 printf("Child pid %d exited\n", pid);
 }
 pid = fork();
 if (pid == 0) { // child process
 sleep(delay);
 printf(“ALARM from pid %d!\a\n”, getpid());
 exit(0);
 } else { // parent process
 printf(“New child: %d\n”, pid);
 }
 }
 exit(0);
}

Operating Systems – Discussion of PE2 12

2.3 Catch the zombies!
• Does this work?

$./2.3
Enter alarm delay: 5
New child: 95978
Enter alarm delay: 5
New child: 95979
Enter alarm delay: 5
New child: 95980
Enter alarm delay: ALARM from pid 95978!
ALARM from pid 95979!
ALARM from pid 95980!
1
Child pid 95980 exited
Child pid 95979 exited
Child pid 95978 exited

Here, we enter a fourth alarm after
the first three have already rung
(and are thus zombies – check it!)
Note that the waitpid() call only
catches the zombies after we have
entered the next alarm delay,
since scanf() waits for input

Operating Systems – Discussion of PE2 13

Some note on scanf…
• Is the use of scanf() critical here?

// …includes omitted…
int delay, pid, st;

int main(void) {
 while (1) {
 printf(“Enter alarm delay: “);
 scanf(“%d”, &delay);
 while ((pid = waitpid(-1, &st, WNOHANG)) > 0) {
 printf("Child pid %d exited\n", pid);
 }
 pid = fork();
 if (pid == 0) { // child process
 sleep(delay);
 printf(“ALARM from pid %d!\a\n”, getpid());
 exit(0);
 } else { // parent process
 printf(“New child: %d\n”, pid);
 }
 }
 exit(0);
}

Scanf stores the result of parsing
the input in the memory address
passed as parameter, so here at
the memory location of the int
variable delay.
Note that this (unless there is a
bug in the kernel/libc
implementation of scanf() is
safe to do!

Operating Systems – Discussion of PE2 14

Some note on scanf…
• When is scanf critical?

#include <stdio.h>
int main(void) {
 int foo;
 char string[10];

 foo = 42;
 while (1) {
 printf(“String: “);
 scanf(“%s”, string);
 printf(“Entered: %s\n”, string);
 }
 exit(0);
}

Here, scanf() causes a security
problem if more characters than fit
in the string (-1 because
terminating zero byte) are entered.
The memory locations after
string are overwritten with the
extra bytes entered!
The kernel/libc has no information
about the length of the buffer for
string, it only sees the pointer!

$./s
string at 0x0x16d5a39ae, foo at 0x0x16d5a39b8
String: Hallo
Entered: Hallo
Value of foo: 42
String: Hallo12345678901234567890
Entered: Hallo12345678901234567890
Value of foo: 959985462

Buffer overflow provoked!
Value of foo is changed!

Operating Systems – Discussion of PE2 15

2.4 Error handling
• If you read the manpages for the various system and libc

calls, you will notice that there is always a section
describing possible errors that are returned in case the call
fails.

• Add error handling code to all system and libc calls your
program makes (you can use perror(3) for this) and add
code to terminate your program in case of an error.

Operating Systems – Discussion of PE2 16

2.4 Error handling: printf
• What can go wrong in our program? ➛ manpage…

// …includes omitted…
int delay, pid, st;

int main(void) {
 while (1) {
 printf(“Enter alarm delay: “);
 scanf(“%d”, &delay);
 while ((pid = waitpid(-1, &st, WNOHANG)) > 0) {
 printf("Child pid %d exited\n", pid);
 }
 pid = fork();
 if (pid == 0) { // child process
 sleep(delay);
 printf(“ALARM from pid %d!\a\n”, getpid());
 exit(0);
 } else { // parent process
 printf(“New child: %d\n”, pid);
 }
 }
 exit(0);
}

int printf(const char * restrict format, …);

RETURN VALUES

These functions return the number of
characters printed (not including the trailing
`\0' used to end output to strings)
…
These functions return a negative value
if an error occurs.

Operating Systems – Discussion of PE2 17

2.4 Error handling: printf
• printf error handling: 2 cases

• not all characters have been output (ret >= 0) ➛ print the rest
• another error occured (ret < 0) ➛ complain! 😀

• We could check errors this way:

int len = 0;
char *s = “Delay : “;
do {
 len = printf(“%s”, s);
 if (len < 0) {
 perror(“printf”);
 exit(1);
 }
 // How many characters remain to print?
 len = strlen(s) - len;
 s += len; // increase pointer to start of string
} while (len > 0);

int printf(const char * restrict format, …);

RETURN VALUES

These functions return the number of
characters printed (not including the
trailing `\0' used to end output to strings)
…
These functions return a negative value
if an error occurs.

Output to the screen will usually not fail
➛ don’t do this for regular printf to screen!

For similar syscalls (e.g. write) to a file or network
socket, this makes more sense…

Operating Systems – Discussion of PE2 18

2.4 Error handling: scanf
// …includes omitted…
int delay, pid, st;

int main(void) {
 while (1) {
 printf(“Enter alarm delay: “);
 scanf(“%d”, &delay);
 while ((pid = waitpid(-1, &st, WNOHANG)) > 0) {
 printf("Child pid %d exited\n", pid);
 }
 pid = fork();
 if (pid == 0) { // child process
 sleep(delay);
 printf(“ALARM from pid %d!\a\n”, getpid());
 exit(0);
 } else { // parent process
 printf(“New child: %d\n”, pid);
 }
 }
 exit(0);
}

int scanf(const char * restrict format, …);

RETURN VALUES

These functions return the number of input items
assigned. This can be fewer than provided for, or even
zero, in the event of a matching failure.

Zero indicates that, although there was input available,
no conversions were assigned; typically this is due to
an invalid input character, such as an alphabetic
character for a `%d' conversion.

The value EOF is returned if an input failure occurs
before any conversion such as an end-of-file occurs.

Operating Systems – Discussion of PE2 19

2.4 Error handling: scanf
int val, n;

int main() {
 do {
 printf(“Number? “);
 n = scanf(“%d”, &delay);
 if (n < 0) {
 perror(“scanf”);
 exit(1);
 }
 } while (n != 1);
 printf(“You entered: %d\n”, val);
}

$./val
Number? 42
Entered: 42

$./val
Number? qqq
Number? Number? Number? Number? Number? Number?
Number? Number? Number? Number? Number? Number?
Number? Number? Number? Number? Number? Number?
Number? Number? Number? Number? Number? Number? …

🧐

Operating Systems – Discussion of PE2 20

2.4 Error handling

int val, n;

int main() {
 do {
 printf(“Number? “);
 n = scanf(“%d”, &delay);
 if (n < 0) { perror(“scanf”); exit(1); }
 if (n != 1) { fflush(stdin); }
 } while (n != 1);
 printf(“You entered: %d\n”, val);
}

• What’s going on here?
➛ scanf() could not parse
 the input
• Original incorrect input string remains in buffer
• This string is read again in the next loop iteration!

$./val
Number? 42
Entered: 42

$./val
Number? qqq
Number? Number? Number? Number? Number?
Number? Number? Number? Number? Number?
Number? Number? Number? Number? Number?
Number? Number? Number? Number? Number?

If the number of parsed inputs is
not the expected one, flush the
standard input (remove all
characters input so far from the
input buffer)!

Operating Systems – Discussion of PE2 21

2.4 Error handling: waitpid
// …includes omitted…
int delay, pid, st;

int main(void) {
 while (1) {
 printf(“Enter alarm delay: “);
 scanf(“%d”, &delay);
 while ((pid = waitpid(-1, &st, WNOHANG)) > 0) {
 printf("Child pid %d exited\n", pid);
 }
 pid = fork();
 if (pid == 0) { // child process
 sleep(delay);
 printf(“ALARM from pid %d!\a\n”, getpid());
 exit(0);
 } else { // parent process
 printf(“New child: %d\n”, pid);
 }
 }
 exit(0);
}

pid_t waitpid(pid_t pid, int *stat_loc, int options);

RETURN VALUES

If … waitpid() returns due to a stopped or terminated child process,
the process ID of the child is returned to the calling process.

If there are no children not previously awaited, -1 is returned with
errno set to [ECHILD].

Otherwise, if WNOHANG is specified and there are no stopped or exited
children, 0 is returned.

If an error is detected or a caught signal aborts the call, a value of
-1 is returned and errno is set to indicate the error.

Operating Systems – Discussion of PE2 22

2.4 Error handling: waitpid
while (1) {
 pid = waitpid(-1, &st, WNOHANG));
 if (pid < 0) {
 if (errno == ECHILD) { printf(“ECHILD\n”); break; }
 perror(“waitpid”); exit(1);
 }
 if (pid > 0) { printf("Child pid %d exited\n", pid); }
 if (pid == 0) { break; } // exit the loop
}

pid_t waitpid(pid_t pid, int *stat_loc, int options);

RETURN VALUES

If … waitpid() returns due to a stopped or terminated child process,
the process ID of the child is returned to the calling process.

If there are no children not previously awaited, -1 is returned with
errno set to [ECHILD].

Otherwise, if WNOHANG is specified and there are no stopped or exited
children, 0 is returned.

If an error is detected or a caught signal aborts the call, a value of
-1 is returned and errno is set to indicate the error.

Operating Systems – Discussion of PE2 23

2.4 Error handling: waitpid
while (1) {
 pid = waitpid(-1, &st, WNOHANG));
 if (pid < 0) {
 if (errno == ECHILD) { printf(“ECHILD\n”); break; }
 perror(“waitpid”); exit(1);
 }
 if (pid > 0) { printf("Child pid %d exited\n", pid); }
 if (pid == 0) { break; } // exit the loop
}

$./2.4
Enter alarm delay: 10
ECHILD
New child: 97138
Enter alarm delay: 10
New child: 97139
Enter alarm delay: 10
New child: 97140
Enter alarm delay: 10
New child: 97141
Enter alarm delay: 10
New child: 97142
Enter alarm delay:
ALARM from pid 97138!

For the first iteration of the loop,
no exited child is there, so we get
ECHILD as return value.
This is not a critical error, so we
can continue running the program.

Operating Systems – Discussion of PE2 24

2.4 Error handling: fork
// …includes omitted…
int delay, pid, st;

int main(void) {
 while (1) {
 printf(“Enter alarm delay: “);
 scanf(“%d”, &delay);
 while ((pid = waitpid(-1, &st, WNOHANG)) > 0) {
 printf("Child pid %d exited\n", pid);
 }
 pid = fork();
 if (pid == 0) { // child process
 sleep(delay);
 printf(“ALARM from pid %d!\a\n”, getpid());
 exit(0);
 } else { // parent process
 printf(“New child: %d\n”, pid);
 }
 }
 exit(0);
}

pid_t fork(void);

RETURN VALUES

Upon successful completion, fork() returns a value of 0
to the child process and returns the process ID of the
child process to the parent process.

Otherwise, a value of -1 is returned to the parent
process, no child process is created, and the global
variable errno is set to indicate the error.

Operating Systems – Discussion of PE2 25

2.4 Error handling: fork
pid = fork();

if (pid < 0) {
 perror(“fork”); exit(1);
}
if (pid == 0) { // child process
 sleep(delay);
 printf(“ALARM from pid %d!\a\n”, getpid());
 exit(0);
} else { // parent process
 printf(“New child: %d\n”, pid);
}

pid_t fork(void);

RETURN VALUES

Upon successful completion, fork() returns a value of 0
to the child process and returns the process ID of the
child process to the parent process.

Otherwise, a value of -1 is returned to the parent
process, no child process is created, and the global
variable errno is set to indicate the error.

Operating Systems – Discussion of PE2 26

2.4 Error handling: fork
pid = fork();

if (pid < 0) {
 perror(“fork”); exit(1);
}
if (pid == 0) { // child process
 sleep(delay);
 printf(“ALARM from pid %d!\a\n”, getpid());
 exit(0);
} else { // parent process
 printf(“New child: %d\n”, pid);
}

$ ulimit -u 1000 # allow only 1000 user processes
$./2.4
ECHILD
New child: 98392
New child: 98393
… lots of lines …
New child: 99063
New child: 99064
fork: Resource temporarily unavailable

You could also try to re-execute
the fork()system call, since
some earlier alarm processes will
finish in the future.
This, however, increases the
system load quite a bit…

Operating Systems – Discussion of PE2 27

2.4 Error handling: sleep
// …includes omitted…
int delay, pid, st;

int main(void) {
 while (1) {
 printf(“Enter alarm delay: “);
 scanf(“%d”, &delay);
 while ((pid = waitpid(-1, &st, WNOHANG)) > 0) {
 printf("Child pid %d exited\n", pid);
 }
 pid = fork();
 if (pid == 0) { // child process
 sleep(delay);
 printf(“ALARM from pid %d!\a\n”, getpid());
 exit(0);
 } else { // parent process
 printf(“New child: %d\n”, pid);
 }
 }
 exit(0);
}

unsigned int sleep(unsigned int seconds);

RETURN VALUES

If the sleep() function returns because the requested time has
elapsed, the value returned will be zero.

If the sleep() function returns due to the delivery of a signal, the
value returned will be the unslept amount (the requested time minus
the time actually slept) in seconds.

Operating Systems – Discussion of PE2 28

2.4 Error handling: sleep
if (pid == 0) { // child process
 int unslept = delay;
 do {
 unslept = sleep(unslept);
 } until (unslept > 0);

 printf(“ALARM from pid %d!\a\n”, getpid());
 exit(0);
} else { …

unsigned int sleep(unsigned int seconds);

RETURN VALUES

If the sleep() function returns because the requested time has
elapsed, the value returned will be zero.

If the sleep() function returns due to the delivery of a signal, the
value returned will be the unslept amount (the requested time minus
the time actually slept) in seconds.

Operating Systems – Discussion of PE2 29

2.4 Error handling: exit
// …includes omitted…
int delay, pid, st;

int main(void) {
 while (1) {
 printf(“Enter alarm delay: “);
 scanf(“%d”, &delay);
 while ((pid = waitpid(-1, &st, WNOHANG)) > 0) {
 printf("Child pid %d exited\n", pid);
 }
 pid = fork();
 if (pid == 0) { // child process
 sleep(delay);
 printf(“ALARM from pid %d!\a\n”, getpid());
 exit(0);
 } else { // parent process
 printf(“New child: %d\n”, pid);
 }
 }
 exit(0);
} void exit(int status);

RETURN VALUES

The exit() and _Exit() functions never return.

Accordingly, we cannot handle any
errors. So a program will always
terminate successfully on Unix!

Operating Systems – Discussion of PE2 30

2.4 Discussion: error handling
• This task only gave a single puny point… why?

• I wanted you to figure out the multitude of different
errors that can actually occur in a Unix process

• …and there are a lot!

• Correct and complete error handling causes significant
overhead in code
• Unfortunately, almost nobody does this!
• C does not have a facility for exception handling

• so error handling is a horrible kludge
• C does not support multiple return values for functions

• e.g. Go allows f,err := os.Open("filename.ext")

