
COMMUNICATIONS OF THE ACM December 1997/Vol. 40, No. 12 87

The traditional path to
software portability among
various hardware platforms
takes a new turn with the

use of slim binaries.

Slim Binaries
T

he power of computers has increased dra-
matically over the past 20 years. Not only
has the performance of processors risen con-
tinuously from one generation to the next
and from architecture to architecture, but
the interval between these performance

steps has also been shrinking steadily. Unfortunately,
computer users often cannot take immediate advan-
tage of these improvements, as they are working
with software optimized for earlier processor gener-
ations. (Consider 16-bit software running on 32-bit
processors). The heightened frequency of new
processor releases makes it increasingly difficult for
software suppliers to furnish adequate program
updates in a timely manner. Even then, software is
usually tailored only toward the most common
implementation of an architecture. For cost reasons
and to avoid user confusion, manufacturers do not
ordinarily provide separate versions of their pro-
grams for different members of a processor family.

At present, we are witnessing a potentially more
disruptive transition than the mere appearance of yet

another generation of an established processor archi-
tecture. Major computer manufacturers are embracing
RISC as their new technology platform, although they
have a large installed base of CISC machines with a
substantial software legacy. In order to offer existing
customers a smooth upgrade path to the new RISC
architectures, these manufacturers often provide soft-
ware emulation of a previous CISC platform on their
new hardware, or even full dynamic translation from
an old instruction set to a new one.

Emulation solves the problem of backward-com-
patibility, but keeps the software tied to the old archi-
tecture. Software developers wishing to give users of
the new architecture the maximum possible perfor-
mance without alienating those who haven’t made the
transition yet will have to provide their products in
both formats simultaneously. Having multiple ver-
sions of a program, however, irritates users. It is also
discouraged by hardware manufacturers, who want to
create the illusion of a unified vendor-specific plat-
form.

This illusion can be conveyed by the provision of
fat binaries, multiple versions of the same program
within a single object file. Providing users with a fat
binary containing executable code for different hard-
ware architectures enables them to substitute com-
puters at their leisure among the supported processor
families without having to worry about software com-
patibility.

Unfortunately, this convenience comes at a price.
As their name suggests, fat binaries are larger than

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 Michael Franz and Thomas Kistler

their counterparts that run on only one architecture.
They are also harder to manufacture, as they require
the simultaneous operation of multiple compilers.
And since each fat binary usually contains only a sin-
gle code image per supported architecture, rather than
separate versions for different implementations of each
architecture, fat binaries still do not solve the problem
of intra-architectural hardware variation.

We have implemented a system taking a wholly
different approach that we call “slim binaries.” The
object files in our system do not really contain native
code for any particular processor at all, but a highly
compact, architecture-neutral intermediate program
representation. The major achievement of our imple-
mentation is that it manages to generate native code
of high quality on-the-fly from this intermediate rep-
resentation, fast enough that it can compete with the
loading of compiled code from a fat binary. Slim bina-
ries not only solve the problem of compatibility
between different architectures, they also allow to
fine-tune the object code towards the specific proces-
sor and operating system version that it will run on.

The Importance of Being Slim
As strange as it may sound at first, the key to the
effectiveness of slim binaries is indeed their slim-ness.
Performance data for off-the-shelf components from
major hardware manufacturers suggests the input and
output speed of computer memories and peripheral
devices is not growing at the same rate as the raw
computational power of microprocessors (Figure 1).
This is shifting the economics of a variety of comput-
ing tasks in such a way that it is becoming increas-
ingly more efficient to recalculate certain
intermediate results than to off-load them to sec-

ondary storage and read them back later.
The central claim of this article is that
code generation belongs to the class of
computing tasks that exhibit this behav-
ior.

Slim-binary encoding is based on the
observation that different parts of a pro-
gram are often similar to each other. For
example, in typical programs there are
often procedures that are called over and
over with practically identical parameter
lists. We exploit these similarities by use
of a predictive compression algorithm that
allows to encode recurring subexpressions
in a program space efficiently while facili-
tating also fast decoding with simultane-

ous code-generation. Our compression scheme is based
on adaptive methods such as LZW [10], but has been
tailored towards encoding abstract syntax trees rather
than character streams. It takes advantage of the lim-
ited scope of variables in programming languages,
which allows to deterministically prune entries from
the compression dictionary, and uses prediction heuris-
tics to achieve a denser encoding.

Adaptive compression schemes encode their input
using an evolving vocabulary. In our encoding, the
vocabulary initially consists of a small number of
primitive operations (such as assignment, addition, and
multiplication), and of the data items appearing in the
program being processed (such as integer i and procedure
P). Translation of the source code into the portable
intermediate representation is a two-step process (Fig-
ure 2). First, the source program is parsed and an
abstract syntax tree and a symbol table are con-
structed. If the program contains syntax or type errors
(including illegal uses of items imported from exter-
nal libraries), they are discovered during this phase.
After successful completion of the parsing phase, the
symbol table is written to the slim binary file. It is
later required for placing the initial data symbols into
the vocabulary of the decoder, and for supplying type
information to the code generator.

The abstract syntax tree is then traversed and
encoded into a stream of symbols from the evolving
vocabulary. The encoder processes whole subtrees of
the abstract syntax tree at a time; these roughly corre-
spond to statements on the level of the source lan-
guage. For each of the subtrees, it searches the current
vocabulary to find a sequence of symbols that expresses
the same meaning. For example, the procedure call P(i
+ 1) can be represented by a combination of the oper-
ation symbols procedure call and addition, and the data
symbols procedure P, variable i, and constant 1.

After encoding a subexpression, the vocabulary is

88 December 1997/Vol. 40, No. 12 COMMUNICATIONS OF THE ACM

30.0

25.0

20.0

15.0

10.0

5.0

0
Jan. 88 Jan. 89 Jan. 90 Jan. 91 Jan. 92 Jan. 93 Jan. 94 Jan. 95

35.0

40.0

11x 11ci 11fx Quadra 700
Quadra 800 Quadra

840AV

6100/60

8100/80AV

8100/100

CPU Index

8600/120

Disk
Index

Figure 1. Performance comparison of
Macintosh computer models

COMMUNICATIONS OF THE ACM December 1997/Vol. 40, No. 12 89

updated using adaptation and prediction
heuristics. Further symbols describing
variations of the expression just encoded
are added to the vocabulary, and symbols
referring to closed lexical scopes are
removed from it. For example, after encod-
ing the expression i + 1, the special sym-
bols i-plus-something and something-plus-one
might be added. Suppose that further
along in the encoding process the similar
expression i + j were encountered, this
could then be represented using only two
symbols, namely i-plus-something and j.
This is more space efficient, provided the
new symbol i-plus-something takes up less
space than the two previous symbols i and
plus. Using prediction heuristics, one
might also add i-minus-something and some-
thing-minus-one to the vocabulary, speculat-
ing on symmetry in the program. This
decision could also be made dependent on
earlier observations about symmetry dur-
ing the ongoing encoding task.

In our implementation, compression
lowers the input/output overhead by so
much that it can almost compensate for
the extra time that is needed for on-the-fly code gen-
eration. The load-time code-generators that we have
constructed are exceptionally fast, orders of magni-
tude faster than the traditional compilers and linkers
they supplant. Again, this is partly a result of reduced
input/output costs. Unlike ordinary compilers and
linkers, our code-generating loader never needs to
generate an output file, while file writing is often even
slower than reading.

Software Modules
We have integrated slim binaries into an environ-
ment that supports software modules with type-safe
separate compilation and dynamic loading. A module
is an encapsulated unit of software that interacts with
other modules through some well-defined interfaces.
Only the interface part of a module is visible from the
outside; the rest is considered private and protected
from accidental misuse. By crafting interfaces care-
fully, one can often even guarantee module invari-
ants. Programming languages such as Mesa,
Modula-2, Ada, and their descendants provide direct
language support for modules.

A module imports functionality from the interfaces
of other modules and exports its own interface. This
leads to a hierarchical module-ordering, where the
intermediate levels simultaneously serve as libraries to
higher-level client modules and as clients to lower-

level library modules. In this model, the operating sys-
tem can be represented as a collection of modules that
are situated at the bottom of the module hierarchy.
User programs extend this pre-existing hierarchy by
adding modules at the top.

The import/export relationships between modules
are resolved in a process called “binding” or “linking,”
which in many modern systems takes place only at the
time of loading. It is then called “dynamic loading,”
which usually also implies that at most one copy of any
library module exists in memory at any one time,
although several client modules (which might even be
part of different application programs) may be using it
concurrently. Another implication of dynamic loading
is that individual modules are procured independently.
One can upgrade an existing module simply by replac-
ing it with another one that fulfills the same interface.

Our implementation provides users with this plug-
and-play functionality of software modules in a run-
time environment based on the Oberon System [12].
Programmers create software modules using the
Oberon programming language [11] and pass them
through a compiler that creates slim binaries as its
output. The resulting object-modules are then imme-
diately dynamically loadable on any of the supported
architectures; generation of the final executable code

parce
source file

interface

source
program

abstract
syntax tree

data
dictionary

object file

write
sequence

update
dictionary

find best
sequence

write
interface

add
symbols

i, j, P := i 1 i+1 P(•) i+1

+

–

•

i

j

P

1

i+1

i+•

P(•)

P(i+1)

Figure 2. Translation from source code into a slim binary

occurs transparently as part of the dynamic loading
process and is invisible to users.

In our system, compilation and dynamic loading
are fully type-safe: illegal uses of imported items are
detected at compilation (encoding) time, and
import/export relationships are again verified at
dynamic loading (code generation) time. We use a
combination of the methods described by Franz [5]
and Crelier [3] to describe intermodule links within
slim binaries, yielding a highly flexible link format
that permits local library interfaces to contain slight
variations across different target platforms. It also
allows the addition of functionality to an existing
software module without affecting any of its depen-
dents, that is, no recompilations are ever necessary
unless a change in a library actually invalidates a client
(for example, by removing a function called by the
client, or by changing its result type).

Extensible Systems
While the original idea of dynamic linking had been
to factor out common functions so that they could be
shared among several application programs, extensi-
ble systems take this idea one step further, allowing
the addition of further modules at the top of a mod-
ule hierarchy at run-time. Application programs can
thereby be augmented by additional functionality in
reaction to user needs. For example, viewing a cer-
tain multimedia document on the World-Wide Web
might require the support of a specific video data-
format. In an extensible system, a software module
providing such support can be downloaded and acti-
vated without users ever noticing that the capabili-
ties of their Web browser had increased.

Not only does our implementation provide this
kind of run-time extensibility transcending even
machine-architecture boundaries, it does so in a type-
safe manner. The Oberon programming language, on
which our system is based, provides explicit support
for extensibility by way of a type extension (subtyp-
ing) mechanism. Type extension enables the defini-
tion of new data types with extended functionality

that are backward-compatible with the data types of
the original application. The ability to mechanically
exclude type-errors greatly simplifies the construction
of extensible systems, which unlike traditional soft-
ware systems have no final form and cannot be sub-
jected to final total analysis.

There has been considerable popular interest in
extensible software systems lately, as general-purpose
operating systems are moving forward to embrace
dynamic linking and compound-document architec-
tures. A compound document is a container that inte-
grates various forms of user data seamlessly, such as
text, graphics, and multimedia. These various kinds
of content are supported by independent, dynamically
loadable content editors (“applets”) that cooperate in
such a way they appear to the end-user as a single uni-
fied application. The user’s software environment can
be augmented by such applets at run-time when
required.

Hence, instead of a single software package that
does everything, users obtain only those components
they actually need. This is ideal as long as users are
authoring new documents all the time, but what hap-
pens if a user wants to work with an already existing
document? How does he or she find out which com-
ponents are needed, and where to obtain these com-
ponents?

Possible solutions, that could also be combined
with each other, include a basic extensible system that
could provide a special fall-back mode to handle cases
of missing components; for instance, by representing
the corresponding parts of the document by non-func-
tional outlines or bitmaps. Beyond that, the system
could attempt to download missing components from
a remote server; this would, of course, require a net-
work connection. And, even more unusual at first
sight, the software components themselves could be
included within the document, leading to fully self-
contained active documents.

Slim binaries facilitate elegant implementations of
the latter two solutions. Since they are independent of
the target architecture on which they will eventually

90 December 1997/Vol. 40, No. 12 COMMUNICATIONS OF THE ACM

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

Slim binaries not only solve the problem of
compatibility between different architectures,
they also allow to fine-tune the object code

towards the specific processor and
operating system version that it will run on.

run, they require only a single version of each compo-
nent to be stored on a central server for downloading-
on-demand scenarios. Further, their compactness
makes downloading particularly efficient. Both of
these qualities also make the inclusion of software
components inside of documents practicable. In fact,
since documents form the basis of information inter-
change, it is entirely feasible to distribute whole appli-
cation packages as documents that represent the
corresponding user interface. In the user’s view, the
application becomes the user interface!

A further potential application area of slim binaries
is the encoding of intelligent agents—software entities
that move from machine to machine and perform local
computing tasks at different sites. The slim binary for-
mat offers the necessary tar-
get-machine independence
for this purpose while
simultaneously providing a
flexible linking scheme that
accommodates minor varia-
tions in library interfaces
without jeopardizing type-
safety when mobile agents
call such libraries. More-
over, the small size of slim
binaries makes the format
particularly attractive when
network transfer of agent
code is required.

Results
Slim binaries have been
available for MC68020-
based Apple Macintosh
computers since late 1993.
Originally a by-product of the first author’s doctoral-
dissertation work [7], the slim binary format mean-
while has become a core technology of ETH’s
popular MacOberon software distribution.
MacOberon is a package that emulates the Oberon
operating environment on the Macintosh platform
[6]. The complete package consists of a core system,
incorporating the central functions such as memory
and file management and a module loader, as well as
a suite of application modules that can be dynami-
cally linked and run from within this environment.

Before the arrival of slim binaries, we used to main-
tain two separate versions of MacOberon, one each for
MC68020- and PowerPC-based Macintoshes. Replac-
ing their respective suites of natively compiled appli-
cation modules by a single set of slim-binary encoded
modules has reduced the total size of our software dis-
tribution quite dramatically (Figure 3). Although it

required the addition of a dedicated code-generating
loader to each of the two core systems, the additional
space required for these code-generating loaders was
insignificant compared to the savings of not having to
duplicate all of the application modules. Almost para-
doxically, we were able to hide the distinction between
the two kinds of Macintosh versions from users alto-
gether by embedding their two core systems into a
single fat binary.

On-the-fly code generation turned out to be so reli-
able that the provision of native binaries could be dis-
continued altogether in MacOberon, resulting in
significantly reduced maintenance overhead for the
distribution package.

The economies of size and maintenance effort

effected by our use of slim binaries don’t end with
MacOberon. They are easily multiplied by adding fur-
ther code-generating loaders. A third of these for the
i80x86 architecture is already available, enabling
WinOberon users (on the Microsoft Windows 95 plat-
form) to use modules from the Macintosh distribution
as if they contained native Intel code. Of course, it is
also possible to generate slim binaries on any of the
supported architectures, as the compiler that produces
them is itself part of the portable application suite.

Hence, slim binaries provide seamless cross-plat-
form portability. By removing the need for multiple
compiled versions of a program, they can also signifi-
cantly reduce the overall space required for storing
software that needs to run on several different hard-

COMMUNICATIONS OF THE ACM December 1997/Vol. 40, No. 12 91

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0
 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1

 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1
1 0

0 1
1 0

0 1
1 0

0 1
1 0

Core Applications (native)

0.5M

0.6M

0.5M

MC680x0

PowerPC

i386

2.2M

2.7M

2.3M

0.8M

0.6M

0.7M

0.6M

MC680x0

PowerPC

i386

(including on-the-fly compiler)
Core Applications (portable)

With Slim Binaries

Without Slim Binaries

Figure 3. Influence of slim binaries on the size of our
software distribution

ware platforms. But interestingly
enough, the representation even
reduces the space requirements for
computer programs on an absolute
scale. Slim binaries are not only more
compact than ordinary compiled code,
but also surpass the information den-
sity effected by popular variants of the
LZW [10] compression scheme when
applied to either object code or to
source code after the removal of pro-
gram comments.

We have summarized these results
(Figure 4) for two program suites from
ETH’s Oberon software distribution:
the Net Package includes a Web
browser, a Telnet application with
VT100 emulation, an email program
based on POP/SMTP, an Internet News reader, and
applications supporting the gopher, finger, and ftp
protocols. The size of this package on the native plat-
forms is around 500-600KB of object code. The Gad-
gets Package on the other hand comprises the
graphical user interface tool-kit of Oberon and is on
the order of 2MB in size.

The initial claim of this article was that reducing
the size of object files allows to exploit the different
growth rates of processor power relative to storage
speeds, so that on-the-fly code generation becomes
viable. Our measurements (Figure 5) compare our
code-generating loader to its respective native coun-
terparts on a variety of hardware platforms (the same
as listed in Figure 1) introduced over a six-year period.
Our benchmark measures the time required for load-
ing all of the applications in the Net Package; the val-
ues referring to slim binaries additionally include the
time of generating the appropriate executable code.

These results suggest that the overhead required
for on-the-fly code generation is largely a function of
processor power, and substantiate our initial claim
that code-generation should be considered an I/O-

bound process. Of course, as
processors become more com-
plex, the techniques required
to generate good code for
them also tend to be more
elaborate. It is an open ques-
tion whether the speed of
processors will grow faster
than the complexity of gener-
ating adequate code for them,

but we are confident this is the case. The code quality
achieved by our current generation of code-generating
loaders is comparable to that of ETH’s latest genera-

tion of Oberon compilers; the two build on a common
family of compiler back-ends [1].

It is also important to note that the absolute delay an
interactive user experiences when code is generated
dynamically is more important than the relative speed in
comparison to traditional loading. On the fastest com-
puters of our benchmarks, it takes about two seconds
to simultaneously load all of the applications contained
in our Net Package from slim binaries. Although this
is still almost twice as much as required for native
binaries, the extra second is within the range that we
have found users to be willing to tolerate. In return for
a minimally increased application-startup time, they
gain the benefit of cross-platform portability without
sacrificing any run-time efficiency.

Further, typical users of our system do not start all
of the applications in the Net Package at the same
time. Quite the opposite. Due to the extensible, mod-
ular structure of our system, the incremental work-
load of on-the-fly code generation is usually quite

92 December 1997/Vol. 40, No. 12 COMMUNICATIONS OF THE ACM

Slim Binary
LZSS Compressed Source Code
LZSS Compressed MC68020 Binary
LZSS Compressed i386 Binary
LZSS Compressed PowerPC Binary
MC68020 Binary
i386 Binary
PowerPC Binary
Source Code

1.00
1.33
1.34
1.45
1.93
2.54
2.75
3.16
3.85

1.00
1.35
1.34
1.39
1.98
2.59
2.73
3.17
3.80

Net Package Gadgets Package

Bar lengths are proportional to file sizes; numbers represent relative sizes

Figure 4. Size comparison between different representations
of the same program suite

11x

11fx

30.0

25.0

20.0

15.0

10.0

5.0

0
Jan. 88 Jan. 89 Jan. 90 Jan. 91 Jan. 92 Jan. 93 Jan. 94 Jan. 95

Slim Binaries

Native Quadra 840

7100/80
8100/100

Figure 5. Time required for loading all of the
applications in the Net Package

small. Most of the applications are structured in such
a manner that seldom-used functions are implemented
separately and linked dynamically only when needed.
Moreover, there are many modules that are shared
among different applications and need to be loaded
only once. Hence, the effective throughput demanded
of our on-the-fly code generator is much smaller than
might be expected when extrapolating from systems
based on statically linked application programs.

Related Work
On-the-fly code generation has traditionally been
used for improving the performance of dynamically
typed object-oriented languages. Implementations
such as Deutsch and Schiffmann’s Smalltalk-80 [4]
and Chambers and Ungar’s Self [2] have benefited
from type information available at run-time that, in
the absence of static typing, could not have been
extracted from source code.

The use of a machine-independent intermediate
representation for achieving portability is also an old
concept. The idea has recently undergone a renais-
sance, as exemplified by the ANDF project of the
Open Software Foundation [9], Sun Microsystems’
Java [8], and our own work [7]. Of these projects, the
OSF-ANDF project is the most conventional, as it
never seems to have contemplated code generation on-
the-fly; the available literature treats code generation
strictly as an off-line process.

The Java project at Sun Microsystems has recently
gained considerable popularity and industry support.
Early implementations of Java were based on the inter-
preted execution of the intermediate representation,
but now just-in-time compilers are appearing. These
compilers operate similarly to our own on-the-fly com-
piler, except they compile individual procedures at the
time of invocation rather than whole modules at the
time of loading. The granularity of our approach is bet-
ter suited for generating optimized code.

The tree-based encoding used inside of slim binaries
is markedly different from the virtual-machine repre-
sentation on which Java is based [8]. It has the appar-
ent disadvantage that it cannot simply be interpreted
byte-by-byte. Rather, every symbol in a slim binary
describes a subtree of an abstract syntax tree in terms of
all the subtrees that precede it in the file. Constructing
a decoder for slim binaries is so complex that it would
be relatively pointless to attach a simple interpreter at
its output. Instead, all of our implementations are
integrating the decoding step with on-the-fly code
generation. The two can be interweaved elegantly.

On the other hand, a tree-based encoding has sev-
eral important advantages over a linear stream of byte-
codes for some virtual machine. It preserves the

control-flow structure of the original program, which
makes it easier to subsequently generate high-quality
native code on-the-fly. For example, modern proces-
sors have several functional units that require a certain
instruction mix in order to operate at top speed. By re-
ordering certain mutually independent instructions, a
better instruction mix may be achieved. A tree-based
encoding maintains the notion of a basic block and
makes it relatively easy to decide if two instructions
are mutually independent. In effect, the tree structure
needs to be laboriously reconstructed from a linear vir-
tual-machine representation before comparable opti-
mizations can be performed.

Further, our tree-based encoding has an advantage,
the effects of which we are only just beginning to con-
template. We have reason to believe that our approach
avoids many of the security issues that are difficult to
solve in Java, or in any virtual-machine representation
for that matter. As explained earlier, we represent a
program by a stream of symbols from an evolving
vocabulary. By the very definition of the encoding
scheme, this vocabulary at all times contains only
those data-reference symbols (for example, procedures
and variables) that can be accessed legally at the cur-
rent position in the program. As stated, this dictio-
nary pruning was introduced originally to minimize
the size of the dictionary and achieve a denser encod-
ing. It does, however, also make it impossible to con-
struct, even by hand, a slim binary that violates the
lexical scoping rules of our source language.

Java’s byte-code instructions are at a much lower
semantic level. Although it is possible to verify that a
given byte-code sequence doesn’t perform any illegal
action, this requires data-flow analysis and a partial
repetition of the compiler’s integrity checks. In effect,
the slim binary format makes this particular data-flow
analysis unnecessary. It also allows for highly efficient
load-time integrity checking, as every node in the
encoded abstract syntax tree is fully typed.

Outlook
Our present implementation of slim binaries is
restrictive as it supports exactly one source language,
Oberon. In this respect, our system presently doesn’t
do much better than abstract-machine-based porta-
bility schemes in which the instruction set of the vir-
tual machine is explicitly crafted to support a
particular source language. While we do not foresee
any difficulties in encoding syntax trees for other
languages, possibly even using the identical format,
the suitability for other languages has yet to be
established by an actual implementation.

The main thrust of our current research is focused
on improving code quality. Our implementations so

COMMUNICATIONS OF THE ACM December 1997/Vol. 40, No. 12 93

far are all based on ETH’s well-established family of
compiler back-ends that produce high quality code
comparable to that of straightforward commercial
compilers [1]. On the newer RISC architectures, how-
ever, these back-ends cannot compete with highly
optimizing compilers. Of further concern to our par-
ticular application of load-time code generation is the
fact that optimizers for certain RISC architectures
may have vastly different run-time characteristics
than the compilers we have been using so far.

Consequently, we are now pursuing a two-tier strat-
egy of code generation. Rather than compiling every
module exactly once when it is loaded and then leav-
ing it alone, we use a background process executing
only during idle cycles that keeps compiling the
already loaded modules over and over. Since this is
strictly a re-compilation of already functioning mod-
ules, and since it occurs completely in the background,
this process can be as slow as it needs to be, allowing
the use of far more aggressive, albeit slower, optimiza-
tion techniques than would be tolerable in an interac-
tive compiler. When background code-generation has
completed, the code-images of the re-generated mod-
ules are substituted for their older counterparts.

Periodic re-optimization of already executing code
allows to fine-tune the code-generator’s output
beyond the level generally achievable by static compi-
lation. Not only does it enable run-time profiling data
from the current execution to drive the next iteration
of code optimization, it also makes it possible to cross-
optimize application programs and their dynamically
loaded extensions and libraries. We are currently
experimenting with global optimization techniques
pioneered by incremental compilers and link-time
optimizers. Among them are register allocation and
code inlining across module boundaries, global
instruction scheduling, and cache optimization.
Extensible systems present new challenges to these
old problems, as no closed analysis is possible due to
the fact that further modules can be added to the
module graph at any time.

We are also working on other aspects of highly
dynamic extensible systems, specifically the problems
posed by run-time code-generation in heterogeneous,
distributed environments connected over unsecure
data links. Our primary concern in this area at the
moment is security, as we are devising ways in which
an extensible system can protect itself from malicious
migrating objects attempting to cause damage.

Finally, we are currently developing a family of
plug-in extensions to the Netscape Navigator and
Microsoft Internet Explorer Web browsers that pro-
vide slim-binary support even outside of the Oberon
environment. Code-named “Juice,” we have imple-

mented two prototypes for the Macintosh and Win-
dows platforms that support interactive, slim-binary-
encoded applets embedded within Web pages. Each
plug-in contains an on-the-fly code generator that is
activated by the browser upon downloading of the
applet. Similar in functionality, but not in the under-
lying technology, Juice is intended to complement
Java. The two kinds of applets can live on the same
page and communicate with each other through the
browser. The Juice plug-ins can be downloaded from
our Web site.

While the road still left to travel is long, it seems
as if slim binaries and related approaches have finally
brought us a step closer to the dream of mass-pro-
duced software components envisioned by MacIlroy so
many years ago.

The greater part of the research described in this article was carried out while both
authors were at Institut für Computersysteme, ETH Zürich, Switzerland.

References
1. Brandis, M., Crelier, R., Franz, M., and Templ, J. The Oberon system

family. Softw.-Pract. Exp. 25, 12 (1995), pp. 1331–1366.
2. Chambers, C., Ungar, D., and Lee, E. An efficient implementation of

SELF, a dynamically typed object-oriented language based on proto-
types. In Proceedings of the OOPSLA ‘89 Conference. ACM, New York, pp.
49–70.

3. Crelier, R. Extending module interfaces without invalidating clients.
Struct. Pro. 16, 1 (1996), pp. 49–62.

4. Deutsch, L.P., and Schiffmann, A.M. Efficient implementation of the
Smalltalk-80 system. Conference Record of the 11th Annual ACM Sympo-
sium on Principles of Programming Languages. (1984, Salt Lake City), pp.
297–302.

5. Franz, M. The case for universal symbol files. Struct. Prog. 14, 3 (1993)
pp. 136–147.

6. Franz, M. Emulating an operating system on top of another. Softw.-
Pract. Exp. 23, 6 (1993), pp. 677–692.

7. Franz, M. Code-Generation On-the-Fly: A Key to Portable Software
(Doctoral Dissertation No. 10497). ETH, Zurich published by Verlag
der Fachvereine, Zürich, 1994.

8. Lindholm, T., Yellin, F., Joy, B., and Walrath, K. The Java Virtual
Machine Specification. Addison-Wesley, Reading, Mass. 1996.

9. Open Software Foundation. OSF Architecture-Neutral Distribution
Format Rationale, 1991.

10. Welch, T.A. A technique for high-performance data compression. IEEE
Comp. 17, 6 (1984), pp. 8–19.

11. Wirth, N. The programming language Oberon. Softw.-Pract. Exper. 18,
7 (1988), pp. 671–690.

12. Wirth, N., and Gutknecht, J. The Oberon System. Softw.-Pract. Exp. 19,
9 (1989) pp. 857–893.

Further information is available from: http://www.ics.uci.edu/~franz/Slim-
Binaries.html

Michael Franz is an assistant professor in the Department of
Information and Computer Science at the University of California
at Irvine.
Thomas Kistler is a Ph.D. student in the Department of Informa-
tion and Computer Science at the University of California at Irvine.

Permission to make digital/hard copy of part or all of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage, the copyright notice, the title of the publication and
its date appear, and notice is given that copying is by permission of ACM, Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior spe-
cific permission and/or a fee.

© ACM 0002-0782/97/1200 $3.50

c

94 December 1997/Vol. 40, No. 12 COMMUNICATIONS OF THE ACM

