Lazy Process Switching

Jochen Liedtke

Horst Wenske

University of Karlsruhe, Germany
liedtke@ira.uka.de

1 Motivation

Although IPC has become really fast it is still too slow on-cer
tain processors. Two examples motivating even faster IRt al
sections in real-time applications and multi-threadedexsr, are
briefly discussed below.

Critical sectionsin real-time applications suffer from the well-
known priority-inversion problem [7]. Multiple solutionkave
been proposed, e.g. priority inheritance (which is gehenabt
sufficient), priority ceiling [7], and stack-based prigréeiling [2].
All methods need to modify a thread’s priority while the thde
executes the critical section. In the stack-based priaetjing
protocol, for example, a thread has to execute the critiealien
always with the maximum priority of all threads that migheav
tually execute the critical section, regardless of itsioagpriority.

A very natural solution for stack-based priority ceiling &
thread/IPC-based system is to have a dedicated threadipealcr
section. This thread’s priority is set to the (static) a@dlipriority.
Any “client” thread calls the critical section through RPtv¢
IPCs). Priorities are automatically updated through theelying
thread switch. The synchronous IPC mechanism also sesaliz
threads automatically that compete for the critical secti®ro-
vided that simultaneously pending request IPCs are deliver
prioritized order, we have a simple and elegant impleméentaif
stack-based priority ceiling.

However, this method of implementing critical section regsl
very lightweight threads. In particular, IPC should be véasgt.
180 cycles which is the current L4 time on a Pentium lll is tmeo e
pensive. Such costs are acceptable when real synchramizatt
tions are necessary such as entering the invoker into a waitey
if the critical-section thread is blocked on a page faultwdwaer,
typically a critical-section thread can be called direcll80 cycles
are inacceptable in this casknerefore, we need much faster IPC!

For achieving highest performanamulti-threaded servers of-
ten neectustomized policies how to distribute incoming requests
to worker threads. For instance, a server might want to leangl
to 3 requests in parallel but queue further requests. Theralat
solution is one distributor thread which also implementsquest

achieve the required speed. Since a tasks'’s user-leveldfirare
unknown objects for the kernel and execute all in the contéxzt
single kernel thread user-level-thread switchs are ihlésio the
kernel and can entirely execute in user mode. However, tee ov
head required to make user-level threads kernel scheau[abl
more than compensates the above speed gain in a system-that of
fers sufficiently lightweight threads and fast IPC. From previ-

ous experience, we are convinced that the total costs oflexselr
threads in terms of time and total system complexity are much
higher than their gain. Furthermore, having two conceptsnéd
threads and user-level threads, is conceptually inelegashicon-
tradicts the idea of conceptual minimality.

Therefore, our goal is to find an implementation of kernel
threads that offers all speed advantages of user-leveadbréor
intra-task communication.

Let us revisit how an intra-address-space thread switch hap
pens. We assume an atonSendAndWaitForReply IPC which is
typically used for RPC. Client and server variant of thid cif-
fer only marginally. The client thread sends a request torzese
thread and waits for a reply from that server. Corresporiging
the server thread replies to the client thread and waitshi@next
request which may arrive from any client. We show the client
variant:

A— B:
call IPC function, i.e. push A’s instruction pointer ;
if B is a valid thread id AND thread B waits for thread A
then save A’s stack pointer ;
set A’s status to “wait for B” ;
set B’s status to “run”
load B’s stack pointer ;
current thread :=B ;
return, i.e. pop B’s instruction pointer
else
more complicated IPC handling
endif .

There are two reasons why to be execute this code in kernedmod

gueue and 3 worker threads that communicate through IPC with 1, Atomicity. Checking B’s state and the following thread

the distributor. Again, 180 cycles are inacceptafleerefore, we
need much faster |PC!

In general, we see that the availability of fast IPC lets peop
think about fine-grain system componentization. Once thepa
this path they ask for mechanisms that enable even more faie-g
componentization, in particular infinitely fast IPTherefore, we
need much faster |PC!

2 Is User-Level IPC Possible?

Nicely, we seem to need superfast IPC particularly for htaisk
communication which does not include an address-spacehswit
User-level threads which are no kernel objects [1, 6, 5] migh

switch have to be executed atomically to avoid inconsisten-
cies.

2. Kerned Data. Stack pointer, thread status, and “current
thread” are protected data that can only be accessed by the
kernel to prevent user-level code from compromising the
system.

On processors with relatively expensive kernel/user-rresliéch
operations such as x86, the above two reasons increase B co
from 20— cycles to 180 cycles (Pentium I, using systesfesxit
instructions). Therefore, we should find a way to invalidat¢h
reasons, i.e. to execute the above IPC operation entirelysén
mode.



2.1 Atomicity

Ensuring atomicity in user mode is relatively simple as lasy

more expensive than intra-processor communication. Résg
user-level IPC to intra-processor is thus acceptable.)

the kernel knows the executed code. The method goes back to an

idea that Brian Ford [3] proposed in 1995: Let some unmodifi-
able “kernel code” execute in user space so that the kernehcia
specifically to this code if an interruption within this “keal code”
occurs.

In our example, the kernel would simply reset the thread's in
struction pointer to the beginning of the IPC routine if atein
ruption occurs before a real status modification has becdme e
fective. After the system state has been partially modiftad,
kernel would have to either undo those modifications or cetepl
the IPC operation before handling the interruption. Suchethod
cannot ensure atomicity in general; e.qg., it fails if thesjimnable
code experiences a page fault. However, we can easily ingriem
the IPC code such that the described forward-completiomoaet
works:

A— B:
call IPC function, i.e. push A’s instruction pointer ;
save A's stack pointer ;
— restart point —
if B is a valid thread id AND thread B waits for thread A
then — forward point —
set A’s status to “wait for B” ;
set B’s status to “run”
load B’s stack pointer ;
current thread := B ;
— completion point —
return, i.e. pop B’s instruction pointer
else ...
Interruptions including page faults between restart paid for-
ward point occur before the system’s state has really ctdhrigem-
vided that no required registers have been overwritterettiag to
the restart point heals the interruption:

interruption between restart point and forward point:
set interrupted instruction pointer to restart point .

The algorithm is robust against page fatiltspon accessing
thread-control blocks (TCBs): If a page fault occurs wherBTC
B is accessed to check B'’s status the IPC operation simpisrtes
after page-fault handling. We assume taf¢r the forward point,
no legal page faults can occur since both TCBs have beensattes
in the check phase. However, illegal page faults might qaezar.

if a user program jumps directly to the middle of the code @rev
to the middle of an instruction. Consequently, any paget fiaul
this region is illegal and permits to kill the thread.

interruption between restart point and complete point:
if is page fault
then kill thread A
else A's status := “wait for B" ;
B’s status := “run”;
load B’s stack pointer ;
current thread := B ;
set interrupted instruction pointer to completion point
endif .

On a uniprocessor, we have thus guaranteed atomicity witheu
ing privileged instructions. For multiprocessors, the nogk can
be extended to work for threads residing on the same processo
(Cross-processor communication is anyhow an order of niagi

1Some systems might hold TCBs in virtual memory.

2.2 Kernel Data

The kernel data involved are A-TCB and B-TCB variabsick
pointer, status and the system variablurrent thread. We have
to analyze whether these variables must be really protdobea
unautorized user access.

For the time being, assume that the above mentioned IPC code
runs in user mode. Then, the TCB variaktack pointer holds a
thread'suser stack pointer. Remember that A and B both run in the
same address space so that they can arbitrarily modify etaehn o
stacks and perhaps even code. Protection would therefdrgeno
significantly better if A's stack pointer would be protectaghinst
access from BConsequently, the TCB variable stack pointecan
be user accessible.

The status case is a little more complicated. Assume that a
thread’s status can only be “run” or “wait for X”. We have to-an
alyze three cases when thread A maliciously switches thBesad
status: from “run? to “wait for X”, from “wait for X” to “wait for
Y”, and from “wait for X” to “run”.

Whenever A modifies B’s status illegaly we see user-level ef-
fects and system effects. User-level effects within A'sradd
space can be ignored (see above). Effects in different addre
space that indirectly result from user-level effects witifis ad-
dress space are also irrelevant since A has full accessitaitta
even without modifying the thread states. As long as onlgatr
states within the same task are accessible, user-leveltefiee
thus uncritical.

System effects are more serious. Whenever the system state
depends on a threadssatus variable we need provisions ensuring
system integrity. Unauthorized modification o@tus variable
must in no case lead to system inconsistencies. For instédmee
kernel can no longer assume that a threastaifis “run” is always
in the run queue. Similarly, a thread might be in the run queue
although itsstatus says “wait for X”. This run-queue problem can,
e.g., be solved by the lazy-scheduling technique [4] whesein
queue is updated lazily.

A more generally applicable technique is based on the idea
to have akerne twin for each unprotected user-accessible kernel
variable. Before the unprotected variable is used by thedter
the kernel always checks consistency. If unprotected btriand
kernel twin do not match the kernel takes appropriate astion
reestablish consistency. The fundamental problem is t&rohite
whether the recognized inconsistency is legal or not. 1§ ite-
gal the unprotected variable is used to update the protéeterbl
state. If it is illegal the unprotected variable can be retarcted
based on its kernel twin or the current thread can be killed.

For example, we could have an unprotecstadus, variable in
user space and a protected kernel tvatatus; in kernel space per
thread. Whenever the kernel detestatus, # status; it will
reestablish consistency by:

20n this level of abstraction, “run” is used to denote a redyn
thread as well as a thread that currently executes on a morces



status inconsistency:
if status,, = “run” AND status,, is wait for
then insert thread into run queue ;
statusy, := status,
elif status,, is wait for AND status;, = “run”
then delete thread from run queue
statusy, := status,
else kill thread
endif .

The algorithm can be straightforwardly extended to handbeem
thread states than only “run” and “wait for X”. Ignoring perf
mance questions and potential complications due to depeiate
between multiple kernel objects, we can conclude that, iimcpr
ple, some kernel data can be made user-mode accessible.

3 Lazy Switching

The fundamental insight is that twin inconsistencies nedy
be checked on kernel entry. This sounds trivial. Howeverinit-
mediate consequence is that an IPC executing completelsein u
level does not need to synchronize with the kernel.

In particular, this type of IPC can switch threads without di
rectly telling the kernel. The kernel will synchronize, .iexe-
cute the thread switch in retrospect upon the next kerney,eng.
timer tick, device interrupt, cross-address-space IP@age fault.

In general, lazily-evaluated operations pay if more of thmom
cur than have to be evaluated effectively. Correspondjrigly
switching can pay if only a samll fraction of lazy-switchiog-
erations lead finally to real kernel-level process switch8sich
behavior can be expected whenever a second IPC, for exahgple t
reply or a forwarding IPC, happens before an interrupt aecOur
motivating examples “critical region” and “request dibtrtion”
fall into this category provided their real work phase isrsho

3.1 UTCBs and KTCBs

Now let us try to apply the insights of the previous sectiothi
concrete problem:

1. The IPC system-call code is mapped to a fixed address in

CurrentUTCB inconsistency:
if CurrentUTCB,, is in valid utcb region
then NewKTCB := CurrentUTCB,,—>ktcb ;
if NewKTCB is in valid ktcb region and aligned
AND NewKTCB—>utcb = CurrentUTCB,,
then switch from CurrentKTCB to NewKTCB ;
CurrentKTCB := NewKTCB ;
CurrentUTCB,, := CurrentUTCB,, ;
return
endif
endif ;
kill thread (CurrentKTCB) .

3.2 Coprocessor Synchronization

Most modern processors permit to handle floating-pointstegs

and those of other coprocessors lazily. Those resourcebean
locked by the kernel. If another thread tries to access them a
exception is raised that permits the kernel to save the cegsor
register in that TCB which has used the coprocessor so far and
reload the registers from the current TCB. Typically, cay@ssors

can only be locked by kernel-mode software.

Therefore, we have to extend the above CurrentUTCB-
synchronization algorithm to make it coprocessor safe.

We introduce a pair of flag€oprocessorUsed,, ;.. Both flags
are set by the kernel whenever it allocates the coprocessbiet
current thread. ICoprocessorUsed,, is set the kernel locks the co-
processor when switching from this thread to another onerend
sets both flag twins. The user-level IPC code now checks wheth
CoprocessorUsed,, is not set. If it is set user-level IPC is not pos-
sible and a full kernel IPC is invoked.

Of course, Coprocessor,, is not trustworthy. Therefore, we
might see an invalid coprocessor flag when switching through
user-level code from A to B. A potential coprocessor corduosi
between A, B, and other threads of the same task can be ignored
However, we must ensure that the information “one of theaemirr
task’s threads has currently allocated the coprocessmérrgets
lost. Otherwise, the coprocessor confusion could infeetats of
other tasks. Fortunately, this can be done lazily, i.e. aesdy to
be checked when a an UTCB inconsistency is handled:

user address space and can be executed in user mode; atom- Switch from CurrentKTCB to NewKTCB:

icity is guaranteed as described in Section 2.1.

2. We separate each thread’s TCB into a UTCB and a KTCB.

NewKTCB—>CoprocessorUsed := CurrentKTCB—>CoprocessorUsed ;

The UTCB is unprotected and user accessible. The KTCB Remember that user-level IPC never legally switches awam fr
can only be accessed by the kernel. A thread’s UTCB holds a thread that currently uses the coprocessor. As long asall |

its user stack pointer and itsstatus,, . Satus;, is in the KTCB.
Furthermore, the UTCB holds the KTCB address which is
of course not trustworthy. However, the KTCB holds a
backpointer to its corresponding UTCB so that the UTCB'’s
KTCB pointer can be validated (see algorithm below).

3. An unprotected kernel variablEurrentUTCB,, can be ac-

cessed from user mode. It is intended to point to the current

thread’s UTCB. lIts protected twiCurrentUTCB;, lives in
kernel space.

The only variable that triggers synchronizationdarrentUTCB.
Inconsistencies that include ondtatus are ignored because they
are always illegal. Due to lazy scheduling [4fatus inconsisten-
cies can be tolerated.

switches have been legal, the above statement copiesdheatef
ways a 0-flag. However, as soon as we have a coprocessor con-
fusion through an illegally res&oprocessorUsed,,, it copies a 1-

flag and propagates the coprocessor confusion to the neacthre

If later a kernel IPC or other kernel-level thread switchtshés to
another task the coprocessor is deallocated so that thecagsor
confusion can not infect the other task.

4 Prototype Performance

The current prototype takes 12 cycles for the fast IPC path on
Pentium IlII. Slight increases have to be expected wheniatieg
it into a fully-functional L4 version 4 microkernel.



5 Conceptual Summary

Lazy switching enables very fast blocking intra-task |P@een
kernel-implemented threads. This type of IPC can typichly
entirely executed in user mode although it operates on ketne
jects. We hope that lazy switching adds the advantages of use
level threads to kernel-level threads.

The work on lazy switching is ongoing research in its early
stage. Whether all its promising properties can make it &d-re
ity is still open. Further open questions:

1. Can we include the structural modifications required dayl
switching into an existing microkernel at almost no cost?

2. Processors with low kernel/user-switch costs such akalp
obviously do not require lazy switching. Can we find an API
that permits lazy switching on x86 without impose additiona
costs on an Alpha implementation?

3. Can we extend lazy switching to certain cross-addreasesp
process switches?

References

[1] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M.y.ev
Scheduler activations: Effective kernel support for thertlevel man-
agement of parallelism. 143" ACM Symposium on Operating Sys-
tem Principles (SOSP), Pacific Grove, CA, October 1991.

[2] T.P.Baker. A stack-based resource allocation policyéaltime pro-
cesses. In1t" Real-Time Systems Symposium (RTSS). IEEE, Decem-
ber 1990.

[3] B.A. Ford. private communication, December 1995.

[4] J.Liedtke. Improving IPC by kernel design. 14" ACM Symposium
on Operating System Principles (SOSP), pages 175-188, Asheville,
NC, December 1993.

[5] F. Mueller. A library implementation of POSIX threadsder UNIX.
In Winter USENIX Technical Conference, page 29, January 1993.

[6] M. L. Powell, S. R. Kleiman, S. Barton, D. Shah, D. Steimda
M. Weeks. SunOS multithreaded architecture. Wnter USENIX
Technical Conference, page 65, El Cerrito, CA, January 1991.

[7] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inteerie proto-
cols: An approach to real-time synchronizatiofEEE Transactions
on Computers, 39(9), September 1990.



