
Lazy Process Switching

Jochen Liedtke Horst Wenske

University of Karlsruhe, Germany
liedtke@ira.uka.de

1 Motivation

Although IPC has become really fast it is still too slow on cer-
tain processors. Two examples motivating even faster IPC, critical
sections in real-time applications and multi-threaded servers, are
briefly discussed below.

Critical sections in real-time applications suffer from the well-
known priority-inversion problem [7]. Multiple solutionshave
been proposed, e.g. priority inheritance (which is generally not
sufficient), priority ceiling [7], and stack-based priority ceiling [2].
All methods need to modify a thread’s priority while the thread
executes the critical section. In the stack-based priority-ceiling
protocol, for example, a thread has to execute the critical section
always with the maximum priority of all threads that might even-
tually execute the critical section, regardless of its original priority.

A very natural solution for stack-based priority ceiling ina
thread/IPC-based system is to have a dedicated thread per critical
section. This thread’s priority is set to the (static) ceiling priority.
Any “client” thread calls the critical section through RPC (two
IPCs). Priorities are automatically updated through the undelying
thread switch. The synchronous IPC mechanism also serializes
threads automatically that compete for the critical section. Pro-
vided that simultaneously pending request IPCs are delivered in
prioritized order, we have a simple and elegant implementation of
stack-based priority ceiling.

However, this method of implementing critical section requires
very lightweight threads. In particular, IPC should be veryfast.
180 cycles which is the current L4 time on a Pentium III is too ex-
pensive. Such costs are acceptable when real synchronization ac-
tions are necessary such as entering the invoker into a wait queue
if the critical-section thread is blocked on a page fault. However,
typically a critical-section thread can be called directly. 180 cycles
are inacceptable in this case.Therefore, we need much faster IPC!

For achieving highest performance,multi-threaded servers of-
ten needcustomized policies how to distribute incoming requests
to worker threads. For instance, a server might want to handle up
to 3 requests in parallel but queue further requests. The natural
solution is one distributor thread which also implements a request
queue and 3 worker threads that communicate through IPC with
the distributor. Again, 180 cycles are inacceptable.Therefore, we
need much faster IPC!

In general, we see that the availability of fast IPC lets people
think about fine-grain system componentization. Once they are on
this path they ask for mechanisms that enable even more fine-grain
componentization, in particular infinitely fast IPC.Therefore, we
need much faster IPC!

2 Is User-Level IPC Possible?

Nicely, we seem to need superfast IPC particularly for intra-task
communication which does not include an address-space switch.
User-level threads which are no kernel objects [1, 6, 5] might

achieve the required speed. Since a tasks’s user-level threads are
unknown objects for the kernel and execute all in the contextof a
single kernel thread user-level-thread switchs are invisible to the
kernel and can entirely execute in user mode. However, the over-
head required to make user-level threads kernel schedulable [1]
more than compensates the above speed gain in a system that of-
fers sufficiently lightweight threads and fast IPC. From ourprevi-
ous experience, we are convinced that the total costs of user-level
threads in terms of time and total system complexity are much
higher than their gain. Furthermore, having two concepts, kernel
threads and user-level threads, is conceptually inelegantand con-
tradicts the idea of conceptual minimality.

Therefore, our goal is to find an implementation of kernel
threads that offers all speed advantages of user-level threads for
intra-task communication.

Let us revisit how an intra-address-space thread switch hap-
pens. We assume an atomicSendAndWaitForReply IPC which is
typically used for RPC. Client and server variant of this call dif-
fer only marginally. The client thread sends a request to a server
thread and waits for a reply from that server. Correspondingly,
the server thread replies to the client thread and waits for the next
request which may arrive from any client. We show the client
variant:A! B :

call IPC function, i.e. push A’s instruction pointer ;
if B is a valid thread id AND thread B waits for thread A

then save A’s stack pointer ;
set A’s status to “wait for B” ;
set B’s status to “run”
load B’s stack pointer ;
current thread := B ;
return, i.e. pop B’s instruction pointer

else
more complicated IPC handling

endif .

There are two reasons why to be execute this code in kernel mode:

1. Atomicity. Checking B’s state and the following thread
switch have to be executed atomically to avoid inconsisten-
cies.

2. Kernel Data. Stack pointer, thread status, and “current
thread” are protected data that can only be accessed by the
kernel to prevent user-level code from compromising the
system.

On processors with relatively expensive kernel/user-mode-switch
operations such as x86, the above two reasons increase IPC costs
from 20– cycles to 180 cycles (Pentium III, using systenter/sysexit
instructions). Therefore, we should find a way to invalidateboth
reasons, i.e. to execute the above IPC operation entirely inuser
mode.



2.1 Atomicity

Ensuring atomicity in user mode is relatively simple as longas
the kernel knows the executed code. The method goes back to an
idea that Brian Ford [3] proposed in 1995: Let some unmodifi-
able “kernel code” execute in user space so that the kernel can act
specifically to this code if an interruption within this “kernel code”
occurs.

In our example, the kernel would simply reset the thread’s in-
struction pointer to the beginning of the IPC routine if an inter-
ruption occurs before a real status modification has become ef-
fective. After the system state has been partially modified,the
kernel would have to either undo those modifications or complete
the IPC operation before handling the interruption. Such a method
cannot ensure atomicity in general; e.g., it fails if the questionable
code experiences a page fault. However, we can easily implement
the IPC code such that the described forward-completion method
works:A! B :

call IPC function, i.e. push A’s instruction pointer ;
save A’s stack pointer ;
— restart point —
if B is a valid thread id AND thread B waits for thread A

then — forward point —
set A’s status to “wait for B” ;
set B’s status to “run”
load B’s stack pointer ;
current thread := B ;
— completion point —
return, i.e. pop B’s instruction pointer

else . . .
Interruptions including page faults between restart pointand for-
ward point occur before the system’s state has really changed. Pro-
vided that no required registers have been overwritten, resetting to
the restart point heals the interruption:

interruption between restart point and forward point:
set interrupted instruction pointer to restart point .

The algorithm is robust against page faults1 upon accessing
thread-control blocks (TCBs): If a page fault occurs when TCB
B is accessed to check B’s status the IPC operation simply restarts
after page-fault handling. We assume thatafter the forward point,
no legal page faults can occur since both TCBs have been accessed
in the check phase. However, illegal page faults might occur, e.g.
if a user program jumps directly to the middle of the code or even
to the middle of an instruction. Consequently, any page fault in
this region is illegal and permits to kill the thread.

interruption between restart point and complete point:
if is page fault

then kill thread A
else A’s status := “wait for B” ;

B’s status := “run” ;
load B’s stack pointer ;
current thread := B ;
set interrupted instruction pointer to completion point

endif .

On a uniprocessor, we have thus guaranteed atomicity without us-
ing privileged instructions. For multiprocessors, the method can
be extended to work for threads residing on the same processor.
(Cross-processor communication is anyhow an order of magnitude

1Some systems might hold TCBs in virtual memory.

more expensive than intra-processor communication. Restricting
user-level IPC to intra-processor is thus acceptable.)

2.2 Kernel Data

The kernel data involved are A-TCB and B-TCB variablesstack
pointer, status and the system variablecurrent thread. We have
to analyze whether these variables must be really protectedfrom
unautorized user access.

For the time being, assume that the above mentioned IPC code
runs in user mode. Then, the TCB variablestack pointer holds a
thread’suser stack pointer. Remember that A and B both run in the
same address space so that they can arbitrarily modify each other
stacks and perhaps even code. Protection would therefore not be
significantly better if A’s stack pointer would be protectedagainst
access from B.Consequently, the TCB variable stack pointercan
be user accessible.

The status case is a little more complicated. Assume that a
thread’s status can only be “run” or “wait for X”. We have to an-
alyze three cases when thread A maliciously switches threadB’s
status: from “run”2 to “wait for X”, from “wait for X” to “wait for
Y”, and from “wait for X” to “run”.

Whenever A modifies B’s status illegaly we see user-level ef-
fects and system effects. User-level effects within A’s address
space can be ignored (see above). Effects in different address
space that indirectly result from user-level effects within A’s ad-
dress space are also irrelevant since A has full access to their data
even without modifying the thread states. As long as only thread
states within the same task are accessible, user-level effects are
thus uncritical.

System effects are more serious. Whenever the system state
depends on a thread’sstatus variable we need provisions ensuring
system integrity. Unauthorized modification of astatus variable
must in no case lead to system inconsistencies. For instance, the
kernel can no longer assume that a thread ofstatus “run” is always
in the run queue. Similarly, a thread might be in the run queue
although itsstatus says “wait for X”. This run-queue problem can,
e.g., be solved by the lazy-scheduling technique [4] where the run
queue is updated lazily.

A more generally applicable technique is based on the idea
to have akernel twin for each unprotected user-accessible kernel
variable. Before the unprotected variable is used by the kernel,
the kernel always checks consistency. If unprotected variable and
kernel twin do not match the kernel takes appropriate actions to
reestablish consistency. The fundamental problem is to determine
whether the recognized inconsistency is legal or not. If it is le-
gal the unprotected variable is used to update the protectedkernel
state. If it is illegal the unprotected variable can be reconstructed
based on its kernel twin or the current thread can be killed.

For example, we could have an unprotectedstatusu variable in
user space and a protected kernel twin,statusk in kernel space per
thread. Whenever the kernel detectsstatusu 6= statusk it will
reestablish consistency by:

2On this level of abstraction, “run” is used to denote a ready-to-run
thread as well as a thread that currently executes on a processor.



status inconsistency:
if statusu = “run” AND statusk is wait for

then insert thread into run queue ;
statusk := statusu

elif statusu is wait for AND statusk = “run”
then delete thread from run queue

statusk := statusu
else kill thread

endif .

The algorithm can be straightforwardly extended to handle more
thread states than only “run” and “wait for X”. Ignoring perfor-
mance questions and potential complications due to dependencies
between multiple kernel objects, we can conclude that, in princi-
ple, some kernel data can be made user-mode accessible.

3 Lazy Switching

The fundamental insight is that twin inconsistencies need only to
be checked on kernel entry. This sounds trivial. However, its im-
mediate consequence is that an IPC executing completely in user
level does not need to synchronize with the kernel.

In particular, this type of IPC can switch threads without di-
rectly telling the kernel. The kernel will synchronize, i.e. exe-
cute the thread switch in retrospect upon the next kernel entry, e.g.
timer tick, device interrupt, cross-address-space IPC, orpage fault.

In general, lazily-evaluated operations pay if more of themoc-
cur than have to be evaluated effectively. Correspondingly, lazy
switching can pay if only a samll fraction of lazy-switchingop-
erations lead finally to real kernel-level process switches. Such
behavior can be expected whenever a second IPC, for example the
reply or a forwarding IPC, happens before an interrupt occurs. Our
motivating examples “critical region” and “request distribution”
fall into this category provided their real work phase is short.

3.1 UTCBs and KTCBs

Now let us try to apply the insights of the previous section tothe
concrete problem:

1. The IPC system-call code is mapped to a fixed address in
user address space and can be executed in user mode; atom-
icity is guaranteed as described in Section 2.1.

2. We separate each thread’s TCB into a UTCB and a KTCB.
The UTCB is unprotected and user accessible. The KTCB
can only be accessed by the kernel. A thread’s UTCB holds
its user stack pointer and itsstatusu. Statusk is in the KTCB.
Furthermore, the UTCB holds the KTCB address which is
of course not trustworthy. However, the KTCB holds a
backpointer to its corresponding UTCB so that the UTCB’s
KTCB pointer can be validated (see algorithm below).

3. An unprotected kernel variableCurrentUTCBu can be ac-
cessed from user mode. It is intended to point to the current
thread’s UTCB. Its protected twinCurrentUTCBk lives in
kernel space.

The only variable that triggers synchronization isCurrentUTCB.
Inconsistencies that include onlystatus are ignored because they
are always illegal. Due to lazy scheduling [4],status inconsisten-
cies can be tolerated.

CurrentUTCB inconsistency:
if CurrentUTCBu is in valid utcb region

then NewKTCB := CurrentUTCBu�>ktcb ;
if NewKTCB is in valid ktcb region and aligned

AND NewKTCB�>utcb = CurrentUTCBu
then switch from CurrentKTCB to NewKTCB ;

CurrentKTCB := NewKTCB ;
CurrentUTCBk := CurrentUTCBu ;
return

endif
endif ;
kill thread (CurrentKTCB) .

3.2 Coprocessor Synchronization

Most modern processors permit to handle floating-point registers
and those of other coprocessors lazily. Those resources canbe
locked by the kernel. If another thread tries to access them an
exception is raised that permits the kernel to save the coprocessor
register in that TCB which has used the coprocessor so far and
reload the registers from the current TCB. Typically, coprocessors
can only be locked by kernel-mode software.

Therefore, we have to extend the above CurrentUTCB-
synchronization algorithm to make it coprocessor safe.

We introduce a pair of flagsCoprocessorUsedu=k . Both flags
are set by the kernel whenever it allocates the coprocessor to the
current thread. IfCoprocessorUsedk is set the kernel locks the co-
processor when switching from this thread to another one andre-
sets both flag twins. The user-level IPC code now checks whether
CoprocessorUsedu is not set. If it is set user-level IPC is not pos-
sible and a full kernel IPC is invoked.

Of course,Coprocessoru is not trustworthy. Therefore, we
might see an invalid coprocessor flag when switching through
user-level code from A to B. A potential coprocessor confusion
between A, B, and other threads of the same task can be ignored.
However, we must ensure that the information “one of the current
task’s threads has currently allocated the coprocessor” never gets
lost. Otherwise, the coprocessor confusion could infect threads of
other tasks. Fortunately, this can be done lazily, i.e. needs only to
be checked when a an UTCB inconsistency is handled:

Switch from CurrentKTCB to NewKTCB:
. . .
NewKTCB�>CoprocessorUsed := CurrentKTCB�>CoprocessorUsed ;
. . .

Remember that user-level IPC never legally switches away from
a thread that currently uses the coprocessor. As long as all lazy
switches have been legal, the above statement copies therefor al-
ways a 0-flag. However, as soon as we have a coprocessor con-
fusion through an illegally resetCoprocessorUsedu, it copies a 1-
flag and propagates the coprocessor confusion to the new thread.
If later a kernel IPC or other kernel-level thread switch switches to
another task the coprocessor is deallocated so that the coprocessor
confusion can not infect the other task.

4 Prototype Performance

The current prototype takes 12 cycles for the fast IPC path ona
Pentium III. Slight increases have to be expected when integrating
it into a fully-functional L4 version 4 microkernel.



5 Conceptual Summary

Lazy switching enables very fast blocking intra-task IPC between
kernel-implemented threads. This type of IPC can typicallybe
entirely executed in user mode although it operates on kernel ob-
jects. We hope that lazy switching adds the advantages of user-
level threads to kernel-level threads.

The work on lazy switching is ongoing research in its early
stage. Whether all its promising properties can make it to real-
ity is still open. Further open questions:

1. Can we include the structural modifications required for lazy
switching into an existing microkernel at almost no cost?

2. Processors with low kernel/user-switch costs such as Alpha
obviously do not require lazy switching. Can we find an API
that permits lazy switching on x86 without impose additional
costs on an Alpha implementation?

3. Can we extend lazy switching to certain cross-address-space
process switches?

References
[1] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy.

Scheduler activations: Effective kernel support for the user-level man-
agement of parallelism. In13th ACM Symposium on Operating Sys-
tem Principles (SOSP), Pacific Grove, CA, October 1991.

[2] T. P. Baker. A stack-based resource allocation policy for realtime pro-
cesses. In11th Real-Time Systems Symposium (RTSS). IEEE, Decem-
ber 1990.

[3] B. A. Ford. private communication, December 1995.

[4] J. Liedtke. Improving IPC by kernel design. In14th ACM Symposium
on Operating System Principles (SOSP), pages 175–188, Asheville,
NC, December 1993.

[5] F. Mueller. A library implementation of POSIX threads under UNIX.
In Winter USENIX Technical Conference, page 29, January 1993.

[6] M. L. Powell, S. R. Kleiman, S. Barton, D. Shah, D. Stein, and
M. Weeks. SunOS multithreaded architecture. InWinter USENIX
Technical Conference, page 65, El Cerrito, CA, January 1991.

[7] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance proto-
cols: An approach to real-time synchronization.IEEE Transactions
on Computers, 39(9), September 1990.


