
Events in an RPC Based Distributed System

Jim Waldo
Ann Wollrath
Geoff Wyant
Samuel C. Kendall

SMLI TR-95-47 November 1995

Abstract:

In this report, we show how to build a distributed system allowing objects to register interest in and receive
notifications of events in other objects. The system is built on top of a pair of interfaces that are interesting
only in their extreme simplicity. We then present a simple and efficient implementation of these interfaces.

Next, we show how more complex functionality can be introduced to the system by adding third-party ser-
vices. These services can be added without changing the simple interfaces, and without changing the
objects in the system that do not need the functionality of those services.

Finally, we note a number of open issues that remain, and attempt to draw some conclusions based on the
work.

email addresses:
jim.waldo@east.sun.com
ann.wollrath@east.sun.com
geoff.wyant@east.sun.com

A Sun Microsystems, Inc. Business

M/S 29-01
2550 Garcia Avenue
Mountain View, CA 94043

2

Events in an RPC Based Distributed System

Jim Waldo Geoff Wyant Ann Wollrath Samuel C. Kendall

Sun Microsystems Laboratories
2550 Garcia Avenue

Mountain View, CA 94043

1 Introduction

Distributed systems are generally built using
one of two distinct communication tech-
niques. The first and most common of these
is the distributed analogue of the procedure
call, generally called Remote Procedure Call
(RPC). The other, less common communica-
tion base is the notification from one entity
to the other of the occurrence of an event.

Each of these communication techniques has
its proponents, and each is appropriate for
particular kinds of distributed applications.
In this paper, we will discuss how one can
build a simple event notification system on
top of a remote procedure call system. The
distinguishing characteristic of the system
described is the simplicity of the underlying
protocol for simple event notifications. More
complex kinds of event notifications are con-
structed by the introduction of third-party
objects that can be interposed between sup-
porters of the basic protocol to provide
advanced functionality.

2 RPC Based Distributed
Systems

Distributed systems based on RPCs have
been around for a considerable period of
time [3]. The basic approach is still being
used for the construction of distributed sys-
tems [15][8][13]. Extensions of the approach
introduce remote method invocation on
objects [12][5], support for fine-grained
objects [9], and the automatic location and
activation of objects [11].

Throughout these extensions, the mecha-
nisms of the approach have remained essen-
tially unchanged. A call to a remote entity is
routed through a surrogate in the address
space of the caller. This surrogate is respon-
sible for marshalling the parameters of the
procedure (method, function) into a form
that can be sent across the wire, and trans-
mitting the result of the marshalling across
the wire. On the receiving or server end, a
skeleton receives the transmission, unmar-

3

shals the result into a form that can be under-
stood by the recipient, and then invokes the
local function with the appropriate argu-
ments. Any return values are marshalled by
the server, sent across the wire, and unmar-
shalled by the client surrogate.

This sort of structure lends itself to program-
ming aids. Interface definition languages can
be used to define the form of calls from cli-
ent to server, and compilers for such lan-
guages can produce much, or all, of the
marshalling and unmarshalling code. The
reliance on interfaces to define the communi-
cation paths lends this technique to descrip-
tion in terms of objects, and many of the
languages used to define these interfaces
support a notion of inheritance.

The programming model for an RPC based
system is familiar to most programmers. A
call to a remote object transfers control to
that object, and the calling object blocks
until receiving the return of the RPC. With
the introduction of threads into the client,
only a single thread needs to block. Some
systems allow genuine asynchronous calls,
but in general, the programming model is (by
design) as much as possible like that of pro-
cedural non-distributed systems.

This leads to a model of the client control-
ling the interaction, and the server providing
some service to that client. Servers in this
model are essentially passive entities, wait-
ing for some client to request of them that
they do their thing.

The sort of application that fits into this
model includes such things as distributed
compound documents, in which the various
parts of the document are separate objects.
The user interface to such a document will
call each of the objects, asking it to display
itself on the appropriate device when the
user moves to that part of the document. The

objects themselves react to direct calls from
the controlling interface object, which is in
turn controlled by some user.

3 Event-Based Models

A less common model for distributed sys-
tems is based on the communication model
of event notification. Such systems were pio-
neered by Isis [2], but other exemplars of this
approach to distribution include Teknekron
[14], Zephyr [6], and InterStage [7].

The model for such systems is that some sig-
nificant changes in computational entities
making up the system are identified as
events. An event might be the change in the
price of a stock, or the creation of a new file,
or editing the value of a cell in a spreadsheet.
Classes of such events are identified as kinds
of events that may be significant to others.
These other entities can register interest in
the occurrence of any event of a particular
event kind. If an entity has received such an
interest registration, any time an event of that
kind occurs, it is obliged to send a notifica-
tion to those entities that have registered
interest in that kind of event.

On the surface, such systems allow a much
lighter-weight communication mechanism
for the distributed system. Notifications need
not be synchronous, and indeed, most such
systems are asynchronous in nature. Compli-
cations arise when the ordering of the events
from different objects must be taken into
account; considerable work has been done to
deal with these orderings [1].

The event paradigm seems somewhat for-
eign to the object-oriented approach to soft-
ware. While the computing entities in such a
system could be considered objects, the
exportation of notifications when the state of
one of those objects changes appears to vio-
late the abstraction boundary of the object.

4

The notion of a kind of event appears to
show part of the state of the object, which
violates the object-based paradigm.

Where the RPC model of distributed com-
puting appears to promote a style of passive
objects waiting for some client to request a
service, the event notification based systems
promotes a style in which objects react to the
occurrence of events in their own way. This
allows new objects to be introduced to the
system that react to events in new ways with-
out changing existing objects.

The style of programming in an event notifi-
cation-based system is similar to that cur-
rently popular among developers of user
interface software. Rather than designing the
software in a procedural fashion, objects are
designed to react to input events from a user.

The sorts of applications that fit well into this
model include such things as distributed
workflow systems. In such a system, a
change in one object (say, the adding of an
order to a database) will trigger a notification
to a number of other objects (those having to
do with inventory maintenance, manufactur-
ing scheduling, or credit checking). Each of
the objects that receives the notification will
take an action that is appropriate for the
object; what action is taken is not known by
the object in which the triggering event
occurred.

4 Events in an RPC Based
Distributed Object System

Allowing objects to react to changes in the
other parts of the system is a useful program-
ming paradigm. To introduce the functional-
ity of an event notification system into a
distributed object system based on RPC
requires that we take seriously at least the
following goals:

• Events must be introduced in such a way
that they do not violate the abstraction
boundaries of the objects in the system. In
particular, the introduction of events
should not change the ability of an object
to be totally characterized (from the out-
side) by the set of interfaces that the
object supports;

• If possible, introduction of events should
not introduce a universal namespace. Dis-
tributed systems, especially those that are
large and developed by multiple program-
mers in multiple organizations, should not
require that all developers adhere to the
same naming conventions;

• The basic service should be cheap, both in
terms of implementation effort and run-
time efficiency;

• Complex features should be built on a
simple base;

• If different levels of service are used to
introduce more complex features, those
levels should be completely transparent to
those not directly using the service;

• Events should not be introduced as an
alternative to RPC, but should only be
used to allow functionality that does not
fit well into the RPC programming para-
digm.

To meet these goals, we have developed a
system built around the following basic con-
cepts:

• Identification of kinds of events;

• Registration of interest in a kind of event
happening in some object; and

• Notification of the occurrence of an event.

We will look at each of these in turn.

5

We should note that the only object-specific
aspect of what follows is the restriction
against violating the encapsulation bound-
aries of the computational entities involved.
The same techniques can be used for distrib-
uted systems based on non-object program-
ming approaches.

5 Event Identification

Our system uses fixed-length identifiers for
types or classes of events. These identifiers
are obtained from individual objects by call-
ing methods defined for that purpose.

Such methods are part of interfaces defined
in the usual way.1 For example, suppose an
object supports the exportation of an identi-
fier for an event class that corresponds to
changing the name of the object. The method
that exports this identifier would most natu-
rally occur in the interface that includes the
method called to change the name of the
object.

The identifiers used to name an event class
are not required to be the same from object
to object. All that the system requires is that
any particular object issue a single identifier
for any particular kind of event and different
identifiers for different kinds of events.
However, it is possible that the “same” kind
of event in different objects will be denoted
by different event identifiers, or that identical
event identifiers are used by different objects
to denote events types that are the “same.”
We can, however, characterize what it means
to say that two event identifiers denote the
same kind of event: identifier A and identi-
fier B denote the same kind of event if and
only if A and B are returned from calls to the

1. In our case, the usual way is to use the OMG CORBA
Interface Definition Language (IDL). We will say
more about this later.

same method (perhaps invoked on different
objects).

Making event-kind identifiers relative to the
particular object that exports the event class
avoids the problem of introducing yet
another universal namespace into the infra-
structure for distributed systems. Such
namespaces can be problematic in a distrib-
uted system that has no central authority to
ensure that the same name (identifier) is not
given to multiple entities. Individual objects
can be trusted to make sure that they do not
export the same event class identifier for dif-
ferent event classes, and thus act as a local
authority on event class identifiers.

6 Registering Interest in an
Event Class

Objects that export interfaces that include
methods returning event class identifiers do
not, just by that exportation, allow other
objects to register interest in those event
classes. To do that, the object must export
the Event Generator interface.

A short comment on notation. We use the
OMG CORBA Interface Definition Lan-
guage (IDL) [11] to define our interfaces.
This language allows multiple inheritance of
interfaces (although we have chosen not to
use that feature). We have also adopted the
convention of naming the primary interface
in any moduleT (following the convention
of Modula-3, our implementation language).

The interface that allows registration of
interest in the event classes exported by
some object is shown in Figure 1.

Some explanation is in order. The interface
refers to three other interface definition files.
The interface described in the file “Vanta-
geObj.idl” is one supported by all objects in
the overall system we are constructing. This

6

interface contains a single method that
returns an identifier that (with a high degree
of probability) uniquely identifies the object.
The interface defined in the file “Even-
tID.idl” describes event class identifiers of
the sort discussed in the previous section.
The file “EventCatcher.idl” describes the
interface that is used to deliver notifications,
and will be discussed more fully in the next
section.

The interfaceEventGen::T describes a type
of object that is a subtype of the overallVan-
tageObj::T type. The two methods that

#include “VantageObj.idl”
#include “EventID.idl”
#include “EventCatcher.idl”

module EventGen{

exception UnknownEvent{};
exception NotRegistered{};

interface T : VantageObj::T {

void
register(

in EventCatcher::T
toInform,

in EventID::T
eventOfInterest,

in VantageID::T
whoIsInterested,

) raises (UnknownEvent);

void
unregister(

 in VantageID::T
whoWasInterested,

 in EventID::T
eventOfInterest

)raises
(UnknownEvent,
NotRegistered);

};

};

Figure 1. Interface allowing registration of
interest in kinds of events.

make up the interface allow objects inter-
ested in the occurrence of event classes to
register interest in some event class and to
cancel such a registration of interest.

The register method requires that the caller
supply a reference to the object that will
receive any notifications of events that are
part of this event class, the identifier of the
event class of interest, and an identifier for
the object that is interested in the event class.
On first blush it might appear that identifying
either the object that is expressing interest or
the object to which the notification is to be
sent would suffice. However, the two entities
can be distinct, and certainly play logically
distinct roles in the protocol. The object
expressing interest is the only object that can
cancel the registration of interest. However,
that object may not be the one that is to
receive notifications of occurrences of the
event class. Allowing an object to indicate a
surrogate for event class delivery allows a
third object to enter into the protocol, a fea-
ture that we will exploit later to gain more
complex functionality.

The unregister method cancels a registra-
t ion. This informs the object that has
exported an event class identifier to stop
sending notifications of the event class
occurrence to the party indicated in the origi-
nal registration.

The interface also declares two exceptions
that can be raised by methods in the inter-
face. The first of these,UnknownEvent, will
be raised by either method when an attempt
is made either to register interest in an event
class, or to cancel registration of interest in
an event class using an identifier that is
unknown to the object receiving the call.

The second exception,NotRegistered, can
be raised by theunregister method if some
object attempts to cancel the registration of

7

interest in an event class without having first
registered interest in that event class.

It would be possible in all the cases in which
an exception is raised to try to “do the right
thing,” either ignoring the request (in those
cases in whichUnknownEvent is raised), or
by simply returning as if everything is all
right (in the case in whichNotRegistered is
raised). However, it is more likely that the
client will know the right thing to do in such
exceptional circumstances than that the
server will be able to unilaterally determine
the correct action, so we chose to return the
exception.

7 Notifications

To receive a notification of the occurrence of
an event, an object not only needs to have
registered interest in that event class, but
must export the interface that allows receipt
of notifications. This interface, contained in
the file “EventCatcher.idl,” is shown in Fig-
ure 2.

A notification, according to this interface, is
simply a message indicating that some event
has occurred. Identification of the event class

#include “VantageObj.idl”
#include “EventID.idl”

module EventCatcher{
exception NoInterest{};

interface T : VantageObj::T {

void
notify(

in VantageID::T from,
in EventID::T whatEvent
) raises (NoInterest);

};
};

receive event occurrence notificationsFigure 2. Interface for objects that can receive
event occurrence notifications.

is made by the combination of the object
identifier of the object in which the event
occurred and the event class identifier of that
event as exported by that object.

The interface also defines a single exception,
NoInterest. This will be raised when an
object receives notification of an event class
which it does not care about. Raising this
exception will allow the object that sent the
notification to know that it need not send
notifications of this event class to that recipi-
ent in the future.

A common feature of other notification sys-
tems is the ability to return information other
than the occurrence of an event as part of the
notification. We have not done this, as part of
our goal is using notifications only in situa-
tions where RPC will not do. If an object that
receives a notification wants to know more
about the state of the object in which the
event occurred, it can obtain that information
by making other method calls to that object.

Having all notifications described with a sin-
gle signature also means that it is simple to
insert third parties into the chain of notifica-
tions. If different event classes generated dif-
ferent k inds o f in format ion in the i r
notifications, it would not be simple to write
an agent that accepted notifications and then
handed them off to others.

8 Implementing the Simple
Interfaces

While we use the OMG CORBA IDL to
describe the interfaces in our system, we do
not use a CORBA-based distributed object
management facility (DOMF) in our imple-
mentation. Our implementation language is
Modula-3 [10], and our distribution substrate
is the Network Objects package distributed
with the DEC SRC version of that language
[4], enhanced to support automatic activation

8

of distr ibuted objects. This gives the
CORBA functional i ty needed for our
research in a simple form, integrated into our
implementation language.

As with most RPC based systems, much of
the code needed to send a message from one
object to another is generated by a compiler
that takes as input IDL specifications and
gives as output source files in the target lan-
guage. To translate from IDL into Modula-3,
our compiler creates objects that derive from
the Network Object (NetObj) base type.
This introduces an additional exception,
NetObj.Error , to al l of the methods
declared in an IDL file. This exception is
thrown if any of the calls made cannot com-
plete because of problems with the underly-
ing object communication. Thus, even
though the methods declared for the event
generator and event catcher objects return no
values and produce no values that must be
saved by the client of the calls, the methods
are not asynchronous, and return of control
from such a call without the production of an
exception indicates that the call succeeded.

When fed the interface definitions seen
above, the IDL compiler will produce a
Modula-3 interface for the typesEvent-
Gen.T andEventCatcher.T. The task left to
the programmer is to implement objects that
support these interfaces. Implementations
may add other functions that can be called
locally. The implementations that follow
provide objects that can be utilized by other
objects within an address space to keep track
of event class registrations. One of these
objects will receive notifications, while the
other keeps track of which notifications to
send when an instance of an exported event
class occurs.

The Modula-3 interface for the simple
implementation of the event generator object
is shown in Figure 3.

This interface extends that produced by the
IDL compiler for ourEventGen::T inter-
face. This interface declares an opaque type
T (referred to outside of this module as
EventGenImpl.T) that is a subtype of the
typePublic (referred to outside of this mod-
ule asEventGenImpl.Public). An opaque
type is one whose structure is revealed else-
where; all we know of the type from this
declaration is that it has at least all of the
methods (and any other structure) defined for
thePublic type.

TypePublic is declared as a subtype of the
EventGen.T type, whose definition was pro-
duced by the IDL compiler. Objects of type
EventGen.T must support theregister and
unregister methods. In addition to those
methods, this interface defines three other
methods that all objects that are of type
EventGenImpl.Public (which includes

INTERFACE EventGenImpl;
IMPORT EventGen;
IMPORT VantageID;
IMPORT VantageObj;
IMPORT EventID;

TYPE T <: Public;

TYPE Public = EventGen.T OBJECT
METHODS

addEvent(
newEvent : EventID.T);

delEvent(
delEvent : EventID.T);

trigger(
fireEvent : EventID.T)

RAISES
{EventGen.UnknownEvent};

END; (* object *)

PROCEDURE New(
owner : VantageObj.T): T
RAISES {};

END EventGenImpl.

Figure 3. Modula-3 interface for objects that
generate event notifications.

9

objects that are of typeEventGenImpl.T)
must support.

The first of these new methods isaddEvent,
which simply tells the object taking care of
event class registrations and notifications
that the event identified with the indicated
event class identifier is one that is exported
by this object. The second method,delEv-
ent, will end the ability of objects to register
interest in a particular event class and will
also keep any notifications of that event
class’s occurrence from being sent. The final
method,trigger, tells theEventGenImpl.T
object that an event with the indicated identi-
fier has occurred, thus causing it to send a
notification to any object that has registered
interest in that event class.

The interface also includes aNew procedure,
which creates an instance of theEventGen-
Impl.T object. This procedure can take an
argument that indicates that the object cre-
ated should consider itself part of a larger,
compound object and should therefore return
the object identifier of its owner when asked
for its object ID.

These additional methods are not available
to clients who only know that the object is of
typeEventGen.T. They are part of the par-
ticular implementation. There is nothing
about theEventGen.T interface that requires
these functions. Other approaches to imple-
menting theEventGen.T interface could use
other functions.

It should be noted that the programming
model used in this system is one of program-
ming language level objects being joined as
aggregates to form a single distributed
object. Thus, when we speak of object iden-
tifiers, we speak of identifiers that are used to
differentiate clusters of programming level
objects. This is not a system in which there
are “objects all the way down.” Instead,

objects within the programming language
may be hidden as part of the implementation
of objects as seen from the point of view of
the distributed system.

The interface to the event catcher implemen-
tation is similar in that it declares an opaque
type as a subtype of a public, abstract type
that in turn inherits from the type that is gen-
erated from the IDL interfaceEvent-
Catcher::T. The resulting interface is shown
in Figure 4.

TheEventCatcherImpl.T type will imple-
ment all of the methods of both theEvent-
Catcher.T type (which includes only the
notify method) and theEventCatcher-
Impl.Public type. This latter type includes
two methods,register andunregister.

As with the simple implementation of the
EventGen.T object, this implementation of
theEventCatcher.T object is meant to pro-
vide functionality to a larger cluster of
objects that wishes to receive notification of
events from other objects. So like theEvent-
GenImpl.T interface, there is aNew func-
tion that takes as an argument the containing
local object.

The register method allows local objects
that are using the service provided by the
EventCatcherImpl.T object to tell the
EventCatcherImpl.T that the object wishes
to register interest in some event class occur-
ring in some third object. This method
requires that the object of interest be indi-
cated, both by a handle that can be used to
call the object and by its object identifier,
and that the event class of interest be identi-
fied. In addition, this method requires the
caller to pass in a closure; this closure
includes the procedure to be called on receipt
of notification, along with a structure that
contains data to be used by that procedure.

10

On receipt of aregister call, theEvent-
CatcherImpl.T object will register interest
in the indicated event class with the indi-
cated object. It will also set up internal struc-
tures to insure that a thread will be spawned
on receipt of a notification of that event that
will run the closure handed in. Exceptions
returned to any of these calls are passed
along to the caller.

INTERFACE EventCatcherImpl;
IMPORT EventCatcher;
IMPORT EventGen;
IMPORT EvClosure;
IMPORT NetObj;
IMPORT VantageID;
IMPORT VantageObj;
IMPORT EventID;

TYPE T <: Public;

TYPE Public = EventCatcher.T
OBJECT

METHODS
register(

objOfInterest : EventGen.T;
objOfInterID : VantageID.T;
eventOfInter : EventID.T;
onNotify : EvClosure.T

) RAISES {
EventGen.UnknownEvent,
NetObj.Error};

unregister(
objOfInter : VantageID.T;
eventOfInter : EventID.T;

) RAISES {
EventGen.UnknownEvent,
EventGen.NotRegistered,
NetObj.Error};

END; (* object *)

PROCEDURE New(
owner : VantageObj.T): T
RAISES {};

END EventCatcherImpl.

Figure 4. Modula-3 interface for objects that
receive event notifications.

Similarly, theunregister method will call
the unregister method in theEventGen.T
object that was originally called during reg-
istration. Any exceptions raised during the
attempt to cancel the registration of interest
will be passed along to be handled by the
local caller.

9 Implementation Results

Implementation of the simpleEventGen-
Impl.T andEventCatcherImpl.T object
types took 1,078 lines of Modula-3 code
(including comments), of which 604 had to
be written by hand and 474 were generated
either by the IDL to Modula-3 compiler (450
lines) or by expansions of Modula-3 generic
object types (24 lines). Tests were run on a
SPARCstationTM 10 with a single 36 MHz.
processor and 96 megabytes of memory run-
ning SunOSTM 4.1.3.

The test program created anEventGen.T
object that exported 10 event class identifiers
and anEventCatcher.T object. The test con-
sisted of ten i terat ions of theEvent-
Catcher.T object registering interest in each
of the event classes, triggering each of the
event classes (and thus triggering a notifica-
tion) in theEventGen.T object, and then
canceling the registration of interest in each
event class. Times for the methods were kept
separately. The closure registered as the noti-
fication handler simply returns without doing
anything; however, a separate user-level
thread is spawned for each closure.

The test was run in two configurations. In the
first, both theEventGen.T object and the
EventCatcher.T object were in the same
process. In the second, the objects were in
different processes on the same machine.
Each test was run multiple times, but varia-
tions in the results from different runs of the
same test were too small to be significant.

11

When both objects were in the same address
space, 100 event class interest registrations
took .045 seconds; 100 triggers, notifica-
tions, and notification handlers took .21 sec-
onds; and 100 cancellations of interest took
.016 seconds.

When the two objects were in separate
address spaces, the times, as expected, were
considerably slower. In this configuration,
100 registrations took .53 seconds; 100 trig-
gers, notifications, and notification handlers
took 1.04 seconds; and 100 cancellations of
interest took .48 seconds.

These timings, and the small amount of code
needed to implement the objects involved,
give us reason to believe that we have met
the goals stated earlier of defining a system
that is both easy to implement and efficient.

10 Limitations of the Simple
Approach

The simple approach to events and notifica-
tions meets a number of the goals we set out
earlier for an event and notification system
based on RPC. The way in which event
classes are identified keeps the system from
violating the abstraction boundary of an
object, and keeps us from having to intro-
duce a universal namespace for identifying
event classes. As the sample implementation
shows, the system can be implemented in a
way that is cheap in terms of implemenation
effort and runtime costs.

The simple approach does have some serious
limitations. The CORBA approach to distrib-
uted object computing includes a model of
objects that allows them to be active (cur-
rently loaded into a process and having at
least one thread of control) or inactive (not
associated with any process or thread, but
with any persistent state on some form of
stable store). Further, when a call is directed

to an object that is inactive, the system will
activate the object. We follow this model.
Activation of an object is a heavyweight
activity, though. For notification of some
events activation might be justified. How-
ever, there are other circumstances in which
the delivery of a notification is not time criti-
cal and should not cause an activation; the
notification should be postponed until the
object is activated to service some other call.
In our simple approach to notification deliv-
ery, there is no way for the system to allow
this kind of “lazy” delivery.

Another limitation of the simple approach is
the delivery guarantees that can be made for
a notification. Currently there are none, and
an object that is unable to deliver a notifica-
tion to another object is left to deal with the
failure itself. There is no way for the recipi-
ent to indicate that it desires some level of
guarantee, nor is there an easy way to pro-
vide such delivery guarantees when they are
requested.

Rather than change the basic protocol to deal
with these problems, we address them by
introducing a variety of third-party agents
into the system. This is in keeping with our
design goal of building complex features on
top of a simple base. These agents must also
meet the goal that their use should be trans-
parent to those who are not directly involved
in using the service. We will now turn to the
design of some of those services.

11 Notification Storage

One way of dealing with the problem of
objects being activated to handle notifica-
tions that don’t warrant that amount of effort
is to interpose a notification storage agent
between the object generating the notifica-
tion and the object receiving the notification.
This storage object can then implement vari-
ous policies concerning when to pass the

12

notification on to the object that originally
expressed interest in the event class.

Such a notification mailbox would need to
support the interface defined in “Event-
Catcher.idl.” Once it did so, however, that
object would look like any other event
catcher object to an object that sent notifica-
tions. This is in keeping with our earlier goal
of allowing complex functionality to be
introduced in a fashion that is totally trans-
parent to those not directly using the service.

One such notification storage object that we
have already defined and implemented is a
specialization of theEventCatcher::T
object. This object is defined by the IDL
interface shown in Figure 5.

Since this interface describes a type that is a
subtype of theEventCatcher::T type, an
EventBox::T object will look just like any
otherEventCatcher::T object to anEvent-
Gen::T object.

The additional methods defined in the inter-
face allow an object (itself anEvent-
Catcher::T) to tell theEventBox::T object
that it wishes to have its notifications stored.
The first method,requestHold, initiates such
a notification storage. TheEventBox::T
object is told the object identifier of the
object that is requesting the storage, the
event class identifier of the notification to be
stored, and the object identifier of the object
from which the notification will originate. In
addition, the method requires that the
requestor indicate to whom the notification
should be forwarded, and the maximum
number of these notifications to hold.

An object wishing to use this service will
need to make two calls to register interest in
an event class. The first call will be made to
the EventBox::T object’s requestHold
method, asking it to store notifications of a

particular event class from a particular
object. The second call will be to theregis-
ter method in the object that will generate
the notification. This call will be made with
the EventBox::T object being supplied as
the destination of the notifications. This was
the reason that call distinguishes between the
object that is interested in the event class’s
occurrence and the object that is to receive
the notification. Since there may be other
third-parties in the chain, we also allow this
distinction to be made in the call to the
requestHold method in theEventBox.

#include “EventCatcher.idl”
module EventBox {

exception UnknownClient{};
exception EventNotRegistered{};
exception

NotifierNotRegistered{};

interface T : EventCatcher::T {
void
requestHold(

in VantageID::T holdFor,
in EventID::T eventID,
in VantageID::T holdFrom,
in EventCatcher::T

forwardTo,
in long maxToHold
);

void
cancelHold(

in VantageID::T holdFor,
in EventID::T eventID,
in VantageID::T holdFrom
) raises (UnknownClient,

EventNotRegistered
);

void
emptyBox(

in VantageID::T boxOwner
) raises (UnknownClient);

};
};

Figure 5. IDL interface for an event notification
mailbox.

13

The calls to the two objects could be made in
the opposite order. However, such an order-
ing makes it possible that a notification could
be sent to theEventBox::T object before the
requestHold asking for storage of that noti-
fication was complete.

ThecancelHold method simply informs an
EventBox::T object that its services are no
longer desired for a combination of client,
event class, and event producer. This method
will raise an exception if the client is
unknown to theEventBox::T object, or if
the client has not requested that the indicated
event class notifications be held.

The final method,emptyBox, simply causes
all of the stored notifications being held for
the object with the indicated object identifier
to be delivered. This method will raise an
exception if the object identifier is unknown
to theEventBox::T object.

This storage object implements a fairly sim-
ple form of notification storage and delivery.
Like a bank of mailboxes, this sort ofEvent-
Box::T object will store notifications. An
individual client can ask for its mailbox to be
emptied, at which time all of the notifications
stored on its behalf will be delivered. The
EventBox::T object will then continue to
store new notifications for that client until it
asks for its mailbox to be emptied again.

There are other possibilities for delivery
schemes. For example, the storage object
could have a call that turned on delivery,
causing all held notifications to be delivered
as well as also delivering any new notifica-
tions immediately until another method was
called, telling the storage object to return to a
mode where it holds notifications. These dif-
ferent options will only be visible to the
object that is asking for its notifications to be
stored, and never to the object that is sending
the notification.

Implementation of this notification storage
type required another 1,131 lines of Modula-
3, 688 lines of which had to be written by the
programmer, and the remainder of which
were written by the IDL compiler or by
expansion of generic types. As before, this
number includes comment and blank lines.

12 Other Third-Party Services

While the notification storage server is the
only third-party service that we have con-
structed so far, it is easy to think of other ser-
vices that could be inserted transparently
into the stream of event notifications in a
similar way.

Perhaps the most obvious of these is a notifi-
cation store-and-forward service that could
relieve the object-generating event notifica-
tions of the responsibility of dealing with
failures in sending these notifications. Such a
service would need to support the interface
EventCatcher::T, enhanced to allow clients
of the service to register information con-
cerning the recipients of notifications and to
specify reliability guarantees and other pol-
icy issues.

An implementation of such a service could
receive a notification, attempt to pass it on to
the intended recipient, and if that notification
failed, back off for some period of time and
try to send the notification again. The time
between notification attempts could increase
each time the notification failed, until such a
time as the service simply gives up, perhaps
informing the object for which it was send-
ing the notification.

Another service that could be provided
would be an object that acted as a dispatcher
for other objects that generate notifications.
Rather than keeping track of all of the
objects that have registered interest in get-
ting a notification of some event class, an

14

object could pass responsibility for this task
to some third-party object. When some event
occurs, only the third-party would need to be
informed by the object in which the event
occurred. All other objects would be sent a
notification from the dispatching object.
Indeed, such an agent could also supply
store-and-forward functionality as outlined
above.

One could easily imagine a distributed sys-
tem in which each machine on the system
had a single, well-known notification dis-
patcher (perhaps implementing some store-
and-forward policy) and a well-known noti-
fication storage service. Such a system
would have all notification messages go
from the object in which the event occurred
to the local dispatcher, from that dispatcher
to the various notification storage services,
and from those services to the (again local)
objects that had originally registered interest.
Such a design would isolate the network traf-
fic for notifications to be between the spe-
cialized services.

Yet another service is one that can track the
occurrence of events in objects and generate
new events in response. Such an event moni-
tor object could be made arbitrarily complex,
generating different event classes for various
sequences of events in different objects.

Other sorts of third-party services can be
postulated; this is left as an exercise to the
reader. What is important is that these ser-
vices can be introduced so that objects using
the basic protocols are unaware of the exist-
ence of those objects. This allows new ser-
vices to be introduced without changing the
objects that are not direct clients of (but may,
perhaps, be recipients of) the service.

13 Remaining Issues

While the system described in this paper is
powerful and flexible, there are still some
open issues concerning the use of events and
notifications in an RPC based distributed
system.

Perhaps the simplest of these is the question
of whether noti fications should carry
sequence numbers. Currently, an object
receiving multiple notifications of an event
class from an object has no way of knowing
the order of those notifications. However,
since notifications carry no information other
than that the event occurred, there is no need
to order the notifications received, for there
is no difference between the notification for
the nth occurrence of an event class and the
notification of some other occurrence of that
event class.

Sequencing might be an issue when notifica-
tions are held in a notifications storage
server, however. Since a server like the one
we have implemented is told a maximum
number of notifications to hold, it is possible
that an object will miss some notifications
because the server has discarded them. Add-
ing a sequence number to the information
passed by a notification would allow the cli-
ent of such a notifications storage server to
determine how many notifications were dis-
carded.

We believe that such functionality, if neces-
sary, should be added to the notification stor-
age serv ice ra ther than to the bas ic
notification interface. However, future expe-
rience may change this view.

This does not address the detection of dupli-
cate notifications, which is another reason
for introducing sequence numbers. If such
detection is needed, we can easily add a way

15

of delivering an event sequence number to
the protocol.

A second issue has to do with cleaning up
registrations of interest when the object that
made the registration disappears (for what-
ever reason) without cancelling that registra-
tion. The current implementation will not
find this out. The best that can be done is that
the object sending the notification can find
out that the object is unreachable. This, how-
ever, could be due to repeated bad luck with
the network. Just retaining the registration
means that over t ime, the amount of
“orphaned” registrations could grow with-
out bound.

A final issue is a more theoretical concern.
One general principle of object-oriented pro-
gramming is that interfaces not related by
inheritance should be independent at least to
the extent that an object may support one
interface without supporting the other. Yet
our approach to events and notifications
appears to violate this principle. An object
that supports only theEventGen::T inter-
face but does not support any interface that
contains a method which returns an event
class identifier does not seem very interest-
ing. In the same way, it would seem that any
object which supports an interface that con-
tains a method that returns an event class
identifier should support theEventGen::T
interface.

There are a number o f unsat is fy ing
approaches to this issue, including requiring
any interface that contains a method return-
ing an event class identifier to derive from
the EventGen::T interface. We are more
inclined to the view that this kind of depen-
dency between interfaces shows that there is
more to interface relationships than can be
captured in an inheritance hierarchy.

14 Conclusions

We have shown how a system of events and
notifications can be built on top of simple
interfaces in a distributed system built on the
paradigm of RPC for communication. The
interfaces used are very simple, allowing
cheap implementations that are efficient.

We have also shown how more complex
functionality can be introduced into the sim-
ple system by introducing third-party serv-
ers. These servers can be added to the system
in such a way that those who merely receive
their services (as opposed to those who make
use of those services) need not be aware of
them. Further, the addition of such services
can be made in a way that does not add any
complexity to the basic interfaces.

A number of lessons can be learned from this
exercise. The first is that RPC and event noti-
fications can co-exist in a distributed system,
especially if one is careful to make sure that
each does only the work for which it is best
suited. Another is that changes in abstract
state can be exported without violating the
object metaphor. Finally, we have demon-
strated how complex services can be built on
top of simple interfaces by introducing third-
party objects that support the complexity.

16

15 References
[1] Babaoglu, Ozalp and Keith Marzullo.
“Consistent Global States of Distributed
Systems: Fundamental Concepts and
Mechanisms” in Sape Mullender (ed.),
Distributed Systems, Second Edition,
Addison-Wesley (1993).

[2] Birman, K.P. and T.A. Joseph.
“Exploiting Virtual Synchrony in Distrib-
uted Systems,” inProceedings of the
Eleventh Symposium on Operating Sys-
tems Principles, Austin, Tx. (1987).

[3] Birrell, A. D. and B. J. Nelson.
“Implementing Remote Procedure
Calls.” ACM Transactions on Computer
Systems 2 (1978).

[4] Birrell, Andrew, Greg Nelson, Susan
Owicki, and Edward Wobber, “Network
Objects,”Digital Equipment Corporation
Systems Research Center Technical
Report115 (1994).

[5] Dasgupta, P., R. J. Leblanc, and E.
Spafford. “The Clouds Project: Designing
and Implementing a Fault Tolerant Dis-
tributed Operating System.”Georgia
Institute of Technology Technical Report
GIT-ICS-85/29 (1985).

[6] DellaFera, C. Anthony, Mark W.
Eichin, Robert S. French, David C. Jedlin-
sky, John T. Kohl, and William E. Som-
merfeld, “The Zepher Notification
Service,” Proceedings of the Winter
USENIX Conference (1988).

[7] Edelson, Daniel. “Enterprise Wide
Distributed Programming with InterStage:
An Overview,” talk presented at the 1994
USENIX C++ Advanced Topics Work-
shop, Boston, MA. (1994).

[8] Hutchinson, N. C., L. L. Peterson, M.
B. Abott, and S. O’Malley. “RPC in the x-
Kernel: Evaluating New Design Tech-
niques.”Proceedings of the Twelfth Sym-

posium on Operating Systems Principles
23, no. 5 (1989).

[9] Khalidi, Yousef A. and Michael N.
Nelson. “An Implementation of UNIX on
an Object-Oriented Operating System.”
Proceedings of the Winter USENIX Con-
ference (1993). Also Sun Microsystems
Laboratories, Inc. Technical Report SMLI
TR-92-3 (December 1992).

[10] Nelson, Greg (ed.),Systems Pro-
gramming with Modula-3, Prentice Hall
(1991).

[11] The Object Management Group.
“Common Object Request Broker: Archi-
tecture and Specification.” OMG Docu-
ment Number 91.12.1 (1991).

[12] Parrington, Graham D. “Reliable
Distributed Programming in C++: The
Arjuna Approach.”USENIX 1990 C++
Conference Proceedings (1991).

[13] Shirley, J,A Guide to Writing DCE
Applications, O’Reilly & Associates
(1992).

[14] Skeen, Dale. “An Information Bus
Architecture for Large-Scale, Decision-
Support Environments”,Proceedings of
the Winter USENIX Conference (1992).

[15] Zahn, L., T. Dineen, P. Leach, E.
Martin, N. Mishkin, J. Pato, and G.
Wyant.Network Computing Architecture.
Prentice Hall (1990).

17

About the Authors

Jim Waldo is a Senior Staff Engineer at Sun
Microsystems Laboratories, East Coast Divi-
sion, working in the area of reliable large-
scale distribution systems. Prior to joining
Sun, he worked in distributed systems and
object-oriented software development at
Apollo Computer (later Hewlett-Packard),
where he was one of the original designers of
what has become the Common Object
Request Broker Architecture (CORBA).

Ann Wollrath is a Member of Technical
Staff at Sun Microsystems Laboratories, East
Coast Division, working in the area of reli-
able large-scale distribution systems. Prior to
joining Sun, she worked in the Parallel Com-
puting Group at MITRE Corporation, inves-
tigating optimistic execution schemes for
parallelizing sequential object-oriented pro-
grams.

Geoff Wyant is a Staff Engineer at Sun
Microsystems Laboratories, East Coast Divi-
sion, working in the area of reliable large-
scale distribution systems. Prior to joining
Sun, he worked at CenterLine Software and
Apollo Computer (later Hewlett-Packard),
where he was involved in the original design
and implementation of the Network Com-
puter System.

Samuel C. Kendallwas a Member of Tech-
nical Staff at Sun Microsystems Laborato-
ries, East Coast Division, working in the area
of reliable large-scale distribution systems.
Before joining Sun, Sam worked on C and
C++ programming environments at Center-
Line Software, and on the first compiler for
C*, a data-parallel cousin of C++, at Think-
ing Machines Corporation. Sam is now an
independent consultant.

© Copyright 1995 Sun Microsystems, Inc. The SML Technical Report Series is published by Sun Microsystems Laboratories, a divi-
sion of Sun Microsystems, Inc. Printed in U.S.A. This report was originally published in the proceedings of the USENIX 1995 Techni-
cal Conference on UNIX and Advanced Computing Systems, New Orleans, Louisiana, January 16–20, 1995.

Unlimited copying without fee is permitted provided that the copies are not made nor distributed for direct commercial advantage, and
credit to the source is given. Otherwise, no part of this work covered by copyright hereon may be reproduced in any form or by any
means graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an information retrieval system,
without the prior written permission of the copyright owner.

TRADEMARKS
Sun, Sun Microsystems, and the Sun logo are trademarks or registered trademarks of Sun Microsystems, Inc. UNIX is a registered
trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. All SPARC trademarks,
including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International, Inc. SPARCstation, SPARC-
server, SPARCengine, SPARCworks, and SPARCompiler are licensed exclusively to Sun Microsystems, Inc. All other product names
mentioned herein are the trademarks of their respective owners.

For information regarding the SML Technical Report Series, contact Jeanie Treichel, Editor-in-Chief <jeanie.treichel@eng.sun.com>.
For distribution issues, contact Amy Tashbook Hall, Assistant Editor <amy.hall@eng.sun.com>.

