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1 Introduction

The advent  o f  h igh-speed networks such as
Asynchronous Transfer Mode (ATM), and new
application domains such as multimedia and video-on-
demand are increasing the demands for efficient I/O
data transfers. Reducing or eliminating the cost of
data-copying between applications and operating
system kernel is an important step towards an efficient
I/O system.

There has been a fair amount of work published in the
literature on reducing data-touching overheads. Such
efforts include protocol integrated layer processing [2,
5, 11], high-performance network adapters to eliminate
copying between devices and the operating system
kernel [6], and restructuring operating system software
to minimize data movement [4, 6, 8, 9, 15, 17, 18].
Much of the previous work in this area concentrated on
reducing-data copying for  network protocol
processing, particularly for the TCP network protocol
[16].

We are interested in providing an I/O framework for
the UNIX® operating system that has the following
characteristics:

• The framework should minimize or eliminate all
copying of data presented by user applications for
output, and for data obtained from I/O devices on
input operations.

• The framework should be general and should be
applicable to more than networking protocols.

• The framework should integrate well with the
UNIX opera t ing  sys tem,  w i thou t  ma jo r
modifications to existing UNIX drivers and
Streams modules [1].

• The framework should lend itself to efficient
implementat ion on uniprocessor (UP) and
multiprocessor (MP) systems.

Previous systems have addressed some of the above
issues, but to our knowledge, there is no one system
that meets all of our requirements. For example, there
is a lot of work in the area of reducing network
protocol processing that, in general, is not applicable
to other kinds of I/O [2, 5]. Some systems that
implement a zero-copy mechanism such as [4, 9] do
not meet our requirement for efficient support on MP
systems. The promising work of Druschel and
Peterson is mostly geared to network protocols in a
non-UNIX environment [8]. Finally, most of the
previous systems do not address compatibility with
existing Streams modules.

In this paper, we present an efficient zero-copy
framework for buffer management and exchange
between application programs and the UNIX kernel.
Our solution has the following components:

• A buffer management scheme based on thefast
buffers (fbufs) concept described in [8].

• An extension of the basic fbufs concept to allow
creation of fbufs out of memory-mapped files.

• Extensions to the UNIX Application Programming
Interface (API) in the form of new calls that
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explici t ly pass fbufs when performing I/O
operations, as well as calls to allocate and de-
a l locate  buf fers .  The API  extens ions are
implemented by a new library,libfbufs, plus new
system calls.

• Inside the UNIX kernel, fbufs are compatible with
Streams internal buffers (mblks), fbufs can be
manipulated as mblks by exist ing Streams
modules, and no modifications to the modules are
needed to use the buffers.

• Extensions to the device driver kernel support
routines to allow drivers to allocate and release
fbufs.

• Integration of buffer management with the virtual
memory system for allocating and de-allocating
memory for the buffers, as well as locking/
un lock ing  the  memory  when bu ffe rs  a re
manipulated by the kernel.

A prototype that incorporates the above components
has been implemented in the Solaris™ operating
system.1 The modifications to the kernel were kept to a
minimum—a version of the prototype is implemented
as a loadable module and no Streams module
modifications are needed. The implementation is very
efficient: for example, a 1MB file transfer between two
machines usingftp [15] and an OC3 ATM link
achieved a 40% higher throughout, with 20% less CPU
utilization than a comparable transfer that used a well-
tuned 1-copy TCP implementation (Section 6).

In the next section, we present a brief overview of
related work. In Section 2, we discuss the need to
extend the basic UNIX I/O interface. Section 3
describes the basic scheme, along with the new API
and the various components of the framework. We
describe our experience in using the new interface
extensions in Section 4. Section 5 describes the
implementation within the Solaris operating system.
We report in Section 6 on the performance of the
system using a set of micro and macro benchmarks.
Finally, we present our conclusions in Section 7.

2 Related Work

Several systems have attempted to reduce data
touching overhead when performing I/O operations.

1. This work is exploratory in nature and this description
does not in any way imply that the interfaces described
herein will be incorporated in any publicly available version
of Solaris.

Data touching overheads include those operations that
require processing of the data within a given buffer
such as checksumming or copying from one buffer to
another.  “Raw” d isk I /O in UNIX is  usual ly
implemented with zero-copy, i .e.,  the data is
transferred from disk to user buffers without an
intermediate copy into operating system kernel
buffers.  However,  th is  k ind of  I /O is  h ighly
specialized. Other efforts are generally focused on
network I/O or remote procedure call overhead. There
is little evidence of published work done to integrate
network and disk I/O, for example.

Previous efforts include integrated layer processing [2,
5, 11], elimination of data-copying by careful design of
network adaptors [6], and restructuring operating
system software to minimize data movement [4, 6, 8,
9, 15, 17, 18]. These efforts can be effective because
optimizing a single data-touching operation can
produce a large improvement in performance. Clearly,
data-touching overheads are most significant for large
I/O transfers [12], and reducing data touching costs
can have considerable benefits for such operations as
image and video transfers over high-speed networks.

2.1 Single copy implementations

A single copy implementation requires one pass over
data sent or received from an I/O device (including
checksum computation, if any). Most UNIX I/O
systems perform at least one copy between user
buffers and the kernel. In the case of network I/O, on
the other hand, traditionally two copies (plus a
checksum operation) are needed. Given the semantics
of  UNIX I /O appl icat ion in ter faces and the
underlying protocols (e.g., TCP), single copy
implementations for network operations are not
straightforward. Two recent examples of single copy
implementations that are tailored for the TCP
protocol [16] are described in [6, 18].

When applied to networking protocols, single copy
implementat ions do have several l imitat ions,
including:

• The amount of physical memory used
The amount of physical memory used during a copy
is twice the size of the data object being transferred:
This can be a significant factor for applications that
manipulate large data objects. Copies must be
delayed if sufficient physical memory is temporarily
unavailable [15]. This contrasts with zero-copy
implementations which require only as much
memory as the size of the data object.
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• Insufficient interaction with the protocol layer
Insufficient interaction with the protocol layer in
the construction of outgoing packets: A single copy
implementation copies and computes the checksum
of the user data at the system call level. Copying/
checksumming is done in units that the underlying
protocol can send over the network. The size of the
units is an estimate based on upper bounds
available at that point. Some of the bounds are the
capacity of the largest memory buffers allocatable,
the maximum segment size negotiated by TCP
when the connection was set up, and the largest
protocol window the receiver has advertised.
Unfortunately, the bounds can be too large. In a
congested network or with an overloaded receiver,
the effect (implementation-dependent) of picking a
large value can vary from causing unnecessary
traffic on the network to increasing processing
costs at the sender.

• Delayed checksum calculation
Delayed checksum calculation and its effects on
increasing the latency on acknowledgments: In
both [6] and [18], checksum computation is
combined with a single data copy in each of the
receive and transmit paths. The cost of a combined
copy and checksum operation is comparable to a
copy alone. However, acknowledgments can only
be transmitted after the checksum is calculated.
Since the checksum is calculated only when data is
copied to the appl icat ion,  the latency for
acknowledgments may be increased.

The protocol implementation must be modified to
detect that the application has not read data from
the connection for an extended period of time (e.g.,
because the application is waiting for some other
resource in the system). This implies overhead to
set up additional timers in the best case, and the
actual cost of handling timer expiration in the worst
case. The data handling in the worst case requires
separate checksum and copy operations.

• Checksum failure
Checksum failure results in additional overhead
and/or change in semantics: Since the checksum is
computed while copying the data into the user
buffer, the application buffer may be altered
unexpectedly, and applications that expect to retain
the original data when a read operation fails will
not work correctly. In some implementations, the
application program buffer may have to be cleared
on a checksum failure to prevent corrupted data
from being available to the program or to prevent
unauthorized information transfer.

Note that the above two problems can be alleviated
with hardware support for checksum handling.
However, with hardware checksum support, a more
efficient zero-copy implementation is possible.

2.2 Zero-copy implementations

A zero-copy implementation is one in which data from
I/O devices is directly received in the user buffer
without requiring any access by the kernel (similarly
for output between a user buffer and the devices). Note
that for most network protocol stacks, including TCP,
such a scheme would require checksum computation in
the network adapter while data is being received and
transmitted.

Several zero-copy implementations have been
descr ibed in  the  l i te ra ture  [4 ,  9 ,  17 ] .  The
implementations typically involve the following
virtual memory operations:

• In order to maintain the semantics of the UNIX
write system call, the system must do one of the
following [7]:

Either block the user process from modifying
the buffer being written, or

copy the buffer when a modification is
attempted by the process while output is being
performed (see Section 3.1).

The first option is undesirable because applications
assume that they will continue as soon as the I/O
operations is posted (and not necessarily wait until
it is completed). The second option is costly, as it
requires establishing and removing a copy-on-write
mapping on each write operation and relies on the
application not reusing buffers; in the case of many
legacy applications, an actual copy will occur.

• In order to maintain the semantics of the UNIX
read operation, the physical pages holding the data
received by the kernel are remapped at the virtual
address specified in the read.

Some of these previous systems combine the virtual
memory manipulations with checksum support in the
network adapters. The major limitation of these
systems is in the virtual memory manipulation
overheads:

• In the uniprocessor case, the cost of virtual memory
manipulations can be comparable to data copy. The
performance of schemes that use page remapping
and copy-on-write mappings are limited by the
time it takes to acquire VM locks, change the
mappings in software, and perform any cache and
TLB consistency [15, 8].
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• The overhead  o f  page  re -mapp ing  in
multiprocessor systems can be significantly higher
than in the uniprocessor case due to translation
look-aside buffer shoot-down [7].

A different approach, thefast buffers (fbufs) scheme
[8], advocates sharing of buffers between the user and
the kernel.2 A key aspect of the scheme is the explicit
exchange of buffers when performing I/O operations.
Caching of buffer virtual memory mapping is used to
take advantage of referential locality. Once data has
been exchanged between a the user and the kernel, the
buffer is saved for other data exchanges between the
two domains. Therefore, page table updates are
eliminated in the common case.

To utilize the full potential of the fbufs scheme, system
support for two features is needed:

• Hardware checksum support on output and input
when interacting with a protocol that requires
checksumming the data (e.g., TCP).

• De-multiplexing of incoming data directly into a
pre-mapped user buffer at the device driver level
(see Section 5.4.1).

3 UNIX Fast Buffers

This section presents the motivation and the concepts
tha t  under l i e  the  UNIX fbu fs3 des ign  and
implementation. A new application programming
interface is discussed along with the underlying buffer
management framework and its integration with the
Streams I/O subsystem in UNIX. In addition, we
extend the basic fbufs mechanism to include file (disk)
I/O.

3.1 Why we need to extend the UNIX I/O API

The traditional UNIX input-output interfaces, such as
read and write calls, are based on copy semantics,
where data is (semantically) copied between the kernel
and user-defined buffers. On a read call, the user
presents the kernel with a pre-allocated buffer, and the
kernel must put the data read into this buffer. On a

2. The scheme is generally applicable to a set of domains,
and not just between the user and kernel domains.
3. We will use the term fbufs in the rest of the paper to refer
to our implementation and extensions of the basic fbufs con-
cept [8].

write call, the user is free to reuse the data buffer as
soon as the call returns.

To maintain the above semant ics,  zero-copy
implementa t ions in  UNIX have to  resor t  to
establishing and removing virtual memory mappings
on each operation as described in Section 2. The
per fo rmance  o f  such  page  re -mapp ing
implementations is very dependent on the machine
configuration, the cache architecture, TLB miss
handling costs, and whether the machine is a
uniprocessor or a multiprocessor. The performance
will always be worse than a zero-copy scheme that
does not require page remapping.

It would be highly desirable to simply avoid the
overhead of virtual memory/TLB operations on each I/O
request. The fbufs approach mentioned in Section 2 is
such a scheme, one that does not requireany virtual
memory operations in the common case. As shown in
[8], the fbufs scheme performs much better than a page
remapping scheme on a DECStation™ 5000/200, a
uniprocessor workstation. We suspect the performance
di f ference to  be even more pronounced on
multiprocessor systems, due to TLB shoot-down costs.

We chose to adapt the fbufs scheme to UNIX since it
appeared to be the most promising zero-copy
approach. To use an fbufs-like approach, however, an
interface that explicitly exchanges buffers is needed.
Therefore, we defined new extensions to the UNIX
API that enable a very efficient and general zero-copy
implementation. After we present the general scheme,
we describe the new interfaces in Section 3.3. In
Section 4, we show that the new extended interfaces
are very easy to use and can coexist with the current
interfaces.

3.2 Overview

There is a compelling case for applications to use the
fbufs framework. By passing an fbuf (rather than an
arbi trary buffer)  to the kernel on output,  the
application is guaranteed a saving in data-copying
overheads implicit in the definition of the traditional
write system call. Similarly, by receiving data in an
fbuf on input, the application is guaranteed a saving in
data-copying overheads of the traditional read system
call (see Figure 1).

A UNIX application using fbufs must be aware of the
need to obtain fbufs and of the transfer of ownership
that occurs as part of the I/O operations. Typically, an
application may allocate fbufs, generate data in the
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fbufs, and transfer the fbufs to the kernel as part of
output to some device. A second possibility is for the
application to obtain from the system an fbuf
containing data from a specified device/file. The
application may then process the data and either
transfer the fbuf back to kernel as part of output (to the
same or different device), keep the fbuf, or simply
deallocate it.

FIGURE 1. UNIX I/O API

The traditional UNIX I/O interface supports data exchange
between application and operating system which involves
copying each byte of data. The extensions to the API pro-
vides for the explicit exchange of buffers (containing data)
between application and operating system which eliminates
copying.

Traditional UNIX process UNIX process using fbufs

UNIX Kernel

UNIX Processes

I/O Subsystem

I/O Device

data
copied

buffers
moved

FIGURE 2. Buffer allocation

Fbufs can be allocated by a process or by the I/O subsystem
from the fbufs manager. Once allocated, they can be passed
from a process to the I/O subsystem or vice-versa, or deallo-
cated and returned to the fbufs buffer pool from which they
were allocated. An fbuf is backed by either memory or a
disk file.

poolA poolB

process A

address space

process B

address space

UNIX Kernel

UNIX Processes

UNIX fbufs Manager

I/O Subsystem

disk

file

memory

The following implementation properties of fbufs
facilitate this usage model (Figure 2):

• Each fbuf is either owned by an application
program or the kernel, or is in an fbufs buffer pool.
An fbuf can be transferred from an application
program to the kernel or vice versa. Fbufs carry
with them information about which fbufs’ buffer
pool they should be returned.

• Each fbufs’ buffer pool is associated with an
application program. An application program is
associated with at most one fbuf’s buffer pool. An
application has access to its own pool only, and
cannot compromise the security of the kernel or
any other process in the system.

• No remapping of virtual addresses is required
because the implementation strives to reuse the
same set of buffers for each process. Thus, virtual
memory translations are cached, and no virtual
memory subsystem overheads are incurred in the
common case.

• The I/O subsystem (device drivers, Streams
modules, and file systems) can allocate fbufs and
place incoming data directly in them. Therefore, no
copying between buffers is needed.

Finally, we have extended the original fbufs concept to
memory mapped files by providing an interface that
automatical ly creates fbufs from port ions of
application address spaces that are mapped to UNIX
files.

3.3 Application programming interface

The fbufs application programming interface provides
system calls and library routines to allocate buffers,
read data from a device (file) descriptor, and write data
to a file (device) descriptor. These interfaces are
defined in Table 2.

The uf_read anduf_get interfaces provide input
functions by reading data into a new buffer allocated
by the kernel at an address*bufpp, also allocated by
the kernel. The uf_get interface is an alternative to
uf_read, applicable only to Streams devices, which
inputs as much data as is available at the device, rather
than being limited by a parameter.

In the output function,uf_write , the buffer at address
bufp is transferred to the operating system; from the
perspec t i ve  o f  the  app l i ca t ion ,  an  imp l i c i t
uf_deallocateoccurs before the call returns. The result
of attempting to access or modify the buffer*bufp is
undefined after the call is made.
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The buffer at addressbufp is either allocated explicitly
by a call to the allocator,uf_allocate, or implicitly as
the result of a uf_read or uf_get. In addition,bufp may
be a reference to a buffer within a range of the user
address space mapped to some other device (file) by
using theuf_mmap call.

The calls require the buffer passed to them to be an
fbuf. I f  a non-fbufs buffer is suppl ied by the
application, the framework returns an error. We
considered an alternative definition of invoking the
standard write system call when using uf_write with a
non-fbuf buffer, but decided against it because buffer
ownership, which is intrinsic to the semantics of the
uf_write call, cannot be changed for an arbitrary
buffer. For consistency with the uf_write interface,
uf_read and uf_get also require an fbuf buffer.

4 Programming Using the New API

The new API required by our fbufs framework makes
it necessary to use a slightly different programming
interface from the standard UNIX I/O API. We studied
some typical applications and found that the changes
are usually small and localized and, hence, easy to
implement.

Interface Description

ssize_t uf_read
(int fd, void **bufpp,
size_t nbytes)

Transfer buffer containing data
from device (file) fd with a maxi-
mum size of nbytes from kernel to
user.

ssize_t uf_get
(int fd, void **bufpp)

Transfer buffer containing data
from device (file) fd from kernel to
user.

ssize_t uf_write
(int fd, const void *bufp,
size_t nbytes)

Transfer buffer containing data
from user to device (file) fd.

void * uf_allocate
(size_t size)

Allocate fbuf.

void * uf_deallocate
(void * ptr, size_t size)

Return fbuf.

caddr_t uf_mmap
(caddr_t addr, size_t
len, int prot, int flags,
int fd, off_t off)

Map file fd into the process address
space such that the mapped region
can be used as fbufs.

Table 1: UNIX fbufs API

4.1 The Mechanics

A library, libfbufs, must be linked by applications that
use the framework. The fbufs buffer pool for such an
application is created as part of process initialization.
The I/O subsystem automatically creates associations
between the buffer pool and devices accessed by the
appl icat ion that support  the new framework.
Applications that read data and process it or discard it
can use uf_read. Applications that read, optionally
filter the data, and write the (filtered) data can use
uf_read or  u f_mmap fo l lowed by  u f_wr i te .
Applications that generate data and then write or
discard it may use uf_allocate, followed by uf_write or
uf_deallocate.

Note that an application can use the new API even
when the accessed device does not support the fbufs
framework. The use of fbufs is transparent to the
device when an application uses uf_write. In the
uf_read case, each I/O operation will result in an
allocation of an fbuf, and a data-copy from kernel
buffers to the fbuf performed by the fbufs framework.
The resulting cost of the uf_read in this case is
comparable to the traditional read, while a significant
performance benefit continues to be realized on the
uf_write.

4.2 An example

To illustrate the use of uf_read, uf_write and uf_mmap,
we converted a representative application, the file
transfer programftp , to use the fbufs scheme. The
modifications are gratifyingly trivial: A mere 20 lines
of the approximately 10,000 lines of C code are
affected. The code fragment in Figure 3 shows a read
from a network endpoint, followed by a write to a disk
file that is changed to a uf_read from the network
endpoint and a write to the disk file.

The code fragment in Figure 3 shows the inner loop in
ftp, where a read from a disk file followed by a write to
a network endpoint, is converted to a uf_mmap of the
disk file followed by uf_write.The technique of using
mmap rather than read is one that can be applied with
the standard UNIX interfaces. Accessing a file using a
memory mapping (mmap or uf_mmap) saves one data
copy. However, a data copy is still necessary when the
mapped data is output using write. In our framework,
by combining uf_mmap with uf_write,all  data
copying is eliminated.
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4.3 General techniques

A widely-used model in client-server computing is to
have a port monitor process on the server that accepts
requests on multiple ports. Such a port monitor
typically authenticates the service requester and then
spawns the real service provider task to handle the

FIGURE 3. Using uf_read

The original and modified code fragments from the recvre-
quest routine of the ftp program. A write call is used instead
of a uf_write due to a current implementation limitation
described in Section 5.5.

errno = d = 0;
while ((c = read(fileno(din), buf, sizeof (buf))) > 0) {

if ((d = write(fileno(fout), buf, c)) < 0)
break;

bytes += c;
}

errno = d = 0;
while ((c = uf_read(fileno(din), (void **) &fbuf, FBSIZE)) > 0) {

d = write(fileno(fout), fbuf, c);
uf_deallocate (fbuf, c);
if (d < 0) {

break;
}
bytes += c;

}

Original Code

Modified Code

FIGURE 4. Using uf_mmap

The original and modified code fragments from the sen-
drequest routine of the ftp program.

errno = d = 0;
while ((c = read(fileno (fin), buf, sizeof (buf))) > 0) {

if ((d = write(fileno (dout), buf, c)) < 0)
break;

bytes += d;
}

addr = uf_mmap (NULL, file_size, PROT_READ,
 MAP_SHARED, fileno (fin), 0);

errno = d = 0;
while (bytes < file_size) {

c = (FBSIZE < file_size-bytes) ?
FBSIZE:file_size-bytes;

if ((d = uf_write(fileno (dout), fbuf, c)) < 0)
break;

bytes += d;
fbuf += c;

}

Original Code

Modified Code

service, passing to the service provider the file
descriptor on which communication with the service
requester is to occur. The service provider program
then asserts ownership over the file descriptor (to
correctly receive event notification and signals). This
presents an opportunity for the I/O subsystem to
associate the inherited file descriptor with the fbufs
pool of the service provider task, and thus enjoy the
performance benefits of the new framework for this
style of programming.

Note that some applications, for example, therlogind
program, fork a child process that handles the tasks of
input from the user and output to the network, while
the parent retains responsibility for input from the
network and output to the user. Such applications
require two processes to access the same I/O device
(the TCP stream or socket). While our framework is
capable of supporting this mode (see Section 5.5), we
believe that a better solution is to multi-thread such
applications.

5 Implementation

The implementation is logically divided into three
components: a library, a buffer pool manager, and a
system call component, as shown in Figure 5.

FIGURE 5. UNIX fbufs implementation

The buffer pool manager consists of an application library,
libfbufs, and a kernel pool manager which coordinate allo-
cation and deallocation of fbufs via a shared memory inter-
face. The library invokes the system call component
fbufsys, via a trap, to transfer fbufs between kernel and
application. Device driver interface extensions allow the I/O
subsystem to allocate fbufs in the kernel.

UNIX Kernel

UNIX Application Domain

I/O Subsystem

fbufsyspool mgr

libfbufs

system call (trap)
shared
memory

Device driver interface extensions
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5.1 libfbufs

The libfbufs library, running in the application domain,
provides the fbuf interfaces to UNIX applications. The
application allocator/deallocator interfaces uf_allocate
and uf_deallocate are implemented in the library and
share data structures with the kernel pool manager
(Section 5.2). The uf_read, uf_get, uf_write, uf_mmap
and uf_unmap interfaces are provided as traps to a new
system call with appropriate arguments (Section 5.3).

5.2 Buffer pool manager

Each application program that uses fbufs is associated
with a different instance of the buffer pool manager.
The buffer pool manager is responsible for allocation
of memory, tracking the allocation/deallocation of
individual fbufs, managing mappings between user
and kernel addresses and conversion between fbufs
and Streams mblks.

5.2.1 Allocation of memory

Each buffer pool is composed of a number of
segments. A segment represents a contiguous range of
user addresses that is backed by a filesystem object
capable of supporting the standard mmap interface.
The buffer pool manager is itself a special instance of
such a fi lesystem object and is the supplier of
anonymous memory [10]. The allocation of physical
memory is deferred until the latest possible moment,
until either the application program accesses an fbuf
(causing a page fault), or the application transfers an
fbuf to the kernel, or an I/O subsystem allocates an
fbuf from the pool. The allocation is done in units of
blocks, the size of a block being a tunable parameter.

5.2.2 Tracking allocation/deallocation of individual
fbufs

Internally, fbufs are represented as 5-tuples of
<context, user-address, device, offset, length>. The
memory used to hold the contents of the buffer is
allocated only when the contents are accessed, not
necessarily when the buffer is allocated, nor when the
buffer is passed between domains. The distinction
provides greater power and flexibility to the fbufs
framework, since the representation can be the
foundation for a lazy evaluation of I/O requests
(Section 7).

Fbufs can be allocated and deallocated by the kernel
and the application program. To make this possible, the
buffer manager has a kernel allocator/deallocator
component and a user library allocator/deallocator

component. In both domains, the allocator/deallocator
components access and manipulate a list of free fbufs.
The interesting problem is to make the free list
consistent and the manipulations atomic with respect
to the two domains.

We implement the list as a bit string that is mapped in
both the kernel and the application address space. In
the bit string, a 1 represents a free page and a 0
represents an allocated page. The string is accessed in
units of words (using the native word size of the
architecture), each of which contains page bits. A lock
protects access to each word to manage concurrent
access. The lock on each word is held for only a few
instructions, enough to determine that sufficient free
pages exist to satisfy an allocation request or to set the
bits that represent the pages being freed. The kernel
allocator iterates over the entire range of spin locks,
and if a spin lock is not available on the first try, the
next spin lock is attempted. The allocator retries the
first spin lock only after a pass over the entire range of
spin locks. Since normally only one spin lock is held
by a process at a time, this procedure increases the
probability that the allocation will succeed with
limited busy waiting in the operating system code path.
After a tunable number of iterations on the bitmap
string, the kernel allocator backs off and returns a
failure indication. By limiting the number of memory
words examined for free bits to one, the duration that a
lock is held is made extremely small and using spin
locks becomes feasible.

The kernel deallocator does not have the freedom of
choosing any bitmap string (as does the allocator)
when performing i ts operat ion.  I f  the kernel
deallocator fails to acquire the appropriate spin lock
within a tunable number of iterations it queues
deallocations on an internal deferred free list and
attempts the deallocation at a later point.

Note that contending from the kernel for resources that
can be allocated by a process via spin locks requires
special attention since the application program can be
preempted while holding the lock (or worse, the
application may be malicious or incompetent).
Therefore, the kernel allocator and deallocator take the
special precaution of backing off after a tunable
number of tries to avoid spinning waiting for a blocked
or malicious process.

5.2.3 Locking/unlocking fbuf memory

The UNIX Streams and other kernel modules assume
that the buffers they access are wired in memory and
that the kernel will not have to handle any page fault



10

when accessing the buffers. To avoid the cost of
locking the fbuf memory on each output operation
(and unlocking on each input operat ion), our
implementation locks a subset of the fbufs pool in
memory such that, in the common case, no locking/
unlocking of fbuf memory is needed. To guard against
application allocating fbufs and not freeing them, the
framework limits the total amount of memory that an
application can dedicate to fbufs, and additionally,
unlocks memory pages backing fbufs held by an
application beyond a tunable threshold. A per-process
FIFO unlocking policy is used.

5.2.4 Managing mappings between user and
kernel addresses

In the general case, the user and kernel addresses of the
buffer will be different. The buffer manager maintains
the mappings and makes it possible to determine one
from the other. Particular implementations may be able
to dispense with this functionality as suggested in
Section 5.5

5.2.5 Converting between fbufs and Streams
mblks

The buffer manager also provides mechanisms to
convert between fbufs and buffers of existing I/O
frameworks such as the Streams mblks. This facility
makes it easy to integrate fbufs with existing I/O

FIGURE 6. Tracking UNIX fbufs

Fbufs are tracked by means of a bit string mapped in both
the kernel and the application address spaces. An fbuf that is
marked available in the bit string will always be found in the
fbufs buffer pool. An fbuf marked unavailable in the bit
string is either held by the application or the I/O subsystem
or on the deferred free list.
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drivers, network protocol stacks, and other Streams
modules.

5.3 System calls

There is one new system call, thefbufsys system call
which provides the functionality of the uf_read, uf_get,
uf_write and uf_mmap interfaces. The uf_read, uf_get
and uf_write interfaces interact with the buffer pool
manager to convert between fbufs and Streams mblks.
These interfaces are responsible for passing the
resulting fbufs to the application and the resulting
mblk to the underlying device/file. The uf_mmap
interface creates a new segment in the buffer pool
which is backed by the file being mapped.

5.4 Impact on the I/O subsystem

Device drivers (and other I/O subsystem components)
that take advantage of fbufs must be modified slightly
to deliver the higher performance afforded by the
framework. The changes, which are minor, are
oriented around allocation and management of fbufs.

5.4.1 Differences in the I/O environment

Traditionally, a device driver requests a buffer from the
operating system when I/O is initiated by a process. It
does not care where the buffer comes from and it does
not distinguish between the processes that request the
I/O. In the fbufs case, the device driver must request
buffers from the specific buffer pool that corresponds
to the process for which the I/O is initiated. This is
reflected in the interface to the fbufs based mblk
allocator (Section 5.4.2).

Note that for optimal use, the I/O subsystem must be
able to determine the correct buffer pool to use either
before initiating input, as in the case of disk or tape I/O
(data arrives synchronously or on request from these
devices), or by examining some part of the data
received, as in the case of network or serial line I/O
(data arrives asynchronously on these devices). Disk
and tape device need no special hardware features in
order to be used with an fbufs system; however,
network devices must be able to examine some part of
the data packet and determine the correct buffer pool to
use while the packet is being received. Note that the
scheme is still very useful even if this hardware
support is not available, as discussed in Section 8.

Another change required by the fbufs framework is
due to the fact that a buffer pool ceases to exist when
the owning process exits. Traditional device drivers do
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not have to worry about the buffer pool being
destroyed. On the other hand, when using fbufs, a
device driver must be prepared to release buffers
allocated from a particular buffer pool when requested
by the framework. This requires a small amount of
housekeeping in the device driver implementation.
Note that the device driver can have no use for buffers
that are associated with a process that has exited.

Many systems have separate address spaces for the
operating system and for I/O, i.e., the addresses seen
by I/O devices are typically different from the
addresses seen by the device drivers. Device support
routines are provided by the operating system for
device drivers to translate between the two domains. In
a traditional UNIX system, the addresses of buffers
used in an I/O operation are fairly arbitrary. However,
in an fbufs system, the same buffers are frequently
reused for I/O to the same device. Device drivers can
therefore be optimized to take advantage of this
referential locality by caching translations between
kernel and I/O addresses of fbufs and thus avoiding the
expensive translation routines.

5.4.2 Device driver interface

The fbufs mechanism provides the interfaces shown in
Table 2 for the I/O subsystem to allocate and free
fbufs.

An I/O subsystem component (such as a device driver)
that uses an fbufs pool must register itself with the
fbufs framework. Registering with the framework
returns to the driver a handle on the pool used by the
process. That handle is in turn used when allocating
new fbufs. The device driver calls the uf_deregister
when it is done using the pool. Note that a call-back
routine is established as part of registering with the

Interface Description

void *uf_register
(void *procref, void(*
proc_exit_callback) (void *))

Interface for I/O subsystem
components to initiate use of
fbufs.

void uf_deregister
(void *handle, void (*
proc_exit_callback) (void *))

Interface for I/O subsystem
components to terminate use of
fbufs.

mblk_t *uf_allocb
(void *handle, int size)

Interface for Streams drivers to
allocate fbufs based mblks.

Table 2: UNIX fbufs Device Driver Interface

framework. The call-back routine is supplied by the
device driver and is called by the buffer manager when
the process using this buffer pool exits. The call-back
routine in uf_deregister is used as a reverse handle to
identify the driver to the framework.

Fbufs-based mblks are allocated using uf_allocb, and
they may be deallocated using the standard Streams
routine freeb [1]. When deallocated, the framework
tries to keep the fbuf memory locked and associated
with the same pool it was allocated from.

5.5 Implementation notes and restrictions

The shared nature of the buffers implies that the
framework does not prevent an application from
interfering with its own input/output. This might
happen, for example, if the application modifies an
output buffer after transferring it to the kernel (as in
initiating output). The results are undefined if an
application attempts to modify a buffer after it hands it
to the kernel (basically, it will appear as if the
application had provided incorrect data in the first
place.) In no circumstance will the kernel be affected if
the application clobbers its own data.

The fbufs pool is partitioned by process id to ensure
that  shar ing occurs only between indiv idual
applications and the kernel, not between any arbitrary
applications. Thus, the buffer pool is not inherited
across a fork system call. This scheme can be extended
relatively easily, for example by associating fbufs
pools with process group ids or with keys, to allow sets
of processes to share fbufs. Such an implementation
would allow cooperating processes such as the rlogind
program (described in Section 4.3) to be supported
without requiring their restructuring into multi-
threaded applications. Our current implementation
does not support this functionality because such
support requires modifying a kernel data structure (the
proc structure) which would require the entire
operating system to be recompiled. We wanted to
avoid modifying the kernel proper in this prototyping
effort.

The implementation currently restricts the uf_read and
uf_write calls to work with stream devices only.
Relaxing the restriction to allow their use with other
types of file objects is relatively straightforward.
However, achieving zero-copy performance with some
file system implementations (e.g., UFS) may not be
easy. Therefore, the implementation of uf_read and
uf_write should be extended to work with non-stream
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devices, but perhaps they can perform a copy when the
underlaying device/file system does not lend itself to a
zero-copy implementation.

As noted in Section 5.2, the implementation needs to
be translated between user and kernel fbufs addresses.
One way to eliminate the translation cost is to use the
same virtual addresses for fbufs in the user program
and the kernel. In a 32-bit address space, it is generally
difficult to allocate a variable-sized buffer at the same
virtual address in these two domains. However, it may
be possible in a 64 bit address space to reserve a large
range of addresses for fbufs use in the kernel, as well
as in each application. This range then can be
partitioned for use of applications in a non-overlapping
way by the kernel while eliminating the need for any
address translation.

6 Performance Evaluation

We measured the performance of our framework in
two basic ways, a set of micro-benchmarks to measure
the latency of I/O operations, and a set of macro-
benchmarks to show how throughput and CPU
utilization in real applications are affected by the
improvement in latency.

The hardware configuration we used consisted of two
uniprocessor 50MHz SPARCstation™ 10 workstations,
connected back-to-back via ATM adapters capable of
140Mb/s (line rate). Enough memory was used in each
machine to avoid any paging during the experiments.

Solaris 2.4 was the base operating system on each
system. The ATM device driver was modified to the
minimum necessary to use fbufs. Our modifications
did not include caching of translations between kernel
and I/O addresses as described in Section 5.4.1. We
expect that such a change would further improve the
performance of an fbufs system. Note that no changes
were made to TCP/IP or any other module in the
system.

In every benchmark, the fbufs costs were compared
with the cost of the corresponding operation using the
standard Streams framework.

6.1 Micro-benchmarks

The first metric is a set of micro-benchmarks that
measures the cost of primitive operations. The results of
the micro-benchmarks are presented in graphs of
latency (or time taken for the operation) vs. size of data.

The first benchmark,rw, measures the latency of the
input and output operations. It has four parts: adiscard
mode for fbufs and for Streams, and aloopback mode
for fbufs and for Streams. In the discard mode for
fbufs, an fbuf is allocated, transferred to the kernel via
uf_write, converted to a Streams mblk and freed by the
test driver. In the Streams case for the same mode, data
in a static buffer is passed as a parameter to the write
system call which allocates a Streams mblk, copies the
data into the mblk; the mblk is then freed by the test
driver. These two components provide a measure of
the cost of the output operation using fbufs and
Streams respectively.

The loopback mode for fbufs and for Streams is used
to obtain a measure of the cost of an output operation
followed by an input operation. In the fbufs case, an
fbuf is allocated, transferred to the kernel via uf_write,
converted to a Streams mblk, transferred back to the
application via uf_read, and then freed by the
application by invoking uf_deallocate. The Streams
version of the same mode passes data in a static buffer
to the write system call which allocates a Streams
mblk and copies the data into the mblk. The mblk is
then passed back to the application. When the
application issues a read request, the data is copied
from the mblk into the user buffer, and the mblk is
freed. The cost of the output operation alone (obtained
from the discard mode of the benchmark) can then be
subtracted from the cost of the loopback operation to
determine the cost of input using fbufs and Streams.

FIGURE 7. rw  benchmark

The benchmark operates in two modes. In discard mode, the
application does a write (or a uf_write) on a Streams driver
that frees the resulting Streams message without touching
the data. In loopback mode, the Streams driver passes the
message back to the application which alternates write and
read calls.
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The results are shown in Figure 7. Note that the fbufs
implementation has a fixed cost per operation. On the
other hand, the standard read/write operations incur a
per-byte cost in data-copying that increases the cost of
each operation linearly with the size of the buffer used.

Note the large discontinuity in the latency of the
Streams framework. The jump at around 9216 bytes is
due to the mblk allocator falling back on the default
kernel memory allocation scheme, rather than its own
buffer caches. In contrast, the fbufs framework shows
an almost invariant latency with increasing buffer size.
At the 8192 byte mark, the fbufs framework has 34%
of the latency of the Streams framework. The loopback
case doubles the per-byte cost in the Streams case and
doubles the per-buffer cost in the fbufs case, which at
the 8192 byte mark results in an fbufs latency of just
31% of the comparable Streams framework number.
Clearly, the results are even more encouraging with
larger buffers. Note that even if the Streams buffer
allocator is extended to operate efficiently beyond
9216 bytes, one cannot escape the per-byte copying
costs.

The second micro-benchmark,mapwr, measures the
combination of the mapping of a filesystem object into
an application and using the output operation. In the
fbufs case, it involves opening a file, mapping the file
using uf_mmap to create an fbuf and transferring it to
the kernel, converting it to a Streams mblk, and
deallocating it. In the Streams mode, the benchmark

FIGURE 8. maprw  benchmark

The benchmark does an mmap (uf_mmap) of a large
(~1MByte) file and uses write (uf_write) to output the entire
mapped data to a Streams driver. The resulting Streams
messages are freed by the Streams driver without touching
the data. The file is pre-loaded into the operating system
buffer cache to avoid disk I/O.
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opens a disk file, maps the file using the standard
mmap call and writes the buffer to a Stream. The write
allocates a Streams mblk, copies the file data into the
mblk and passes the mblk down the stream where it is
eventually deallocated. The results of running this
benchmark are shown in Figure 8.

There are some interesting points to be made about the
graph in Figure 8. First, the cost of each operation
increases with the size of the buffer in both the Streams
and the fbufs case. For the fbufs case, the per-byte cost
is due to the fi le system and not to the fbufs
framework. Real I/O from disk is avoided by pre-
loading the disk file contents memory before running
the benchmarks. Second, the large discontinuity in the
latency of the Streams framework is similar to that
seen in Figure 7, and is due to the same reason. Third,
at the 8192 byte mark, which is within the optimal
range of the Streams allocator, the latency in the fbufs
implementation is 68% of the latency of the Streams
implementation.

6.2 Macro-benchmarks

The second metric consists of two macro-benchmarks.
In both cases, the benchmarks use the TCP/IP network
protocols. Note that in order to obtain the full benefit
of a zero-copy implementation, the protocol checksum
must be computed by the network adapter hardware,
and in our prototype we assumed the existence of such
hardware in all experiments below.

Our first macro-benchmark,ttcp, is a de facto TCP/IP
throughput benchmark. We modified the ttcp program
by replacing the read and write calls by uf_read and
uf_wri te cal ls,  respect ively,  to measure TCP
throughput in an fbufs based system. We used the file
transfer programftp  as our second benchmark. The
program was modified as described in Section 4.2 to
use the new interfaces. In the benchmark, a large
(~1MByte) file was transferred from one system to a
sink device on a second system to obtain a measure of
filesystem to network throughput. The file was
pre loaded  in to  memory  be fo re  runn ing  the
benchmarks.

Both ttcp and ftp handled data in 8192 byte buffers.
The available hardware was capable of delivering
140Mb/s ( instead of  the standard 155Mb/s) .
Accounting for data link, network and transport layer
encapsulat ion overhead (AAL5,  IP and TCP
respectively), yields an effective theoretical maximum
hardware throughput of 125Mb/s.
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The results of the fbufs-based benchmarks were
compared with the throughput of Solaris 2.4 TCP/IP in
F igure 9 .  So lar is  2 .4  uses a  St reams-based
implementation that uses a single copy plus checksum
scheme. As can be seen in the figure, ttcp shows a 35%
improvement over the single copy plus checksum
implementation. For ftp, the percentage gain is a hefty
42%.

CPU utilization was measured during the benchmark
runs in order to better gauge the effects of the new
framework. CPU utilization was determined by a util-
ity program that periodically (in this case, every 5 sec-
onds) issues a vmstat system call to obtain the values
of various activity counters while the ttcp benchmark
is running (Table 3).

As can be seen from the table, CPU utilization is
reduced at both sender and receiver ends when using
fbufs. We note that the maximum throughput achieved

Node
Solaris 2.4

CPU Utilization
fbufs

CPU Utilization

receiver 99+% 89%

sender 85% 62%

Table 3: CPU Utilization for ttcp

FIGURE 9. Throughput benchmarks

The benchmark ttcp gives a measure of TCP throughput.
The file transfer program ftp transferred a large (~1MByte)
file from one system to /dev/null on a second to obtain a
measure of disk to network throughput. The file is preloaded
into the memory before running the benchmark. Fbufs have
35% and 42% higher throughput than the 1-copy Solaris 2.4
implementation for ttcp and ftp, respectively.
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is less than the calculated maximum, even though the
CPU utilization is less than 100%. Examining the flow
of packets over the network shows that suboptimal
TCP protocol window and acknowledgment handling
accounts for the idle time on the wire, even though the
CPU is not fully utilized in the fbufs case.

6.3 Performance projections

We demonstrate the relevance of our work to future,
faster systems by projecting the throughput of the ttcp-
ATM benchmark on such systems. The simple model
described in Appendix A extrapolates processing costs
on systems built with faster CPUs coupled to faster
network adapters to demonstrate the effectiveness of
our framework.

In the model, we calculate the network latency and the
average computational cost of an 8KByte data packet
for end-to-end transfer when running the ttcp
benchmark on a future system. The model provides a
method to calculate the projected end-to-end latency.
We can then compute the projected throughput (PT) of
the ttcp benchmark for an fbufs-based system and a
single-copy system.

We assume in our model that future systems will
provide speed-up by a factor ofM for data copying
operations and by a factor ofC for all other operations.
We believe that it is reasonable to assume that network
speeds will scale at least as fast as CPU speeds. Hence,
we limit our projections to values of (C <= Network
speed-up).

The throughput advantage of the fbufs scheme is then
estimated as

Advantage = (PTfbufs – PT1-copy) / PT1-copy

or substituting values obtained from Appendix A,

Advantage = (459 + 280*C/M) / 492 – 1

Consider a future system built around an OC12 ATM
network giving a line rate of 622Mb/s and a network
speed-up factor of ~4. For the simple case of a speed-
up factor of 4,

C = M = 4
Advantage = (459 + 280) / 492 – 1 = 50%

For another view, let us assume a highly aggressive
speed-up factor of 10 for data-copying while using a
factor of 4 for other operations,
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C = 4
M =10
Advantage = (459 + 280 * 4 / 10) / 492 – 1 = 16%

In fact, it is only with a speed-up factor of 34 for data
copying that the advantage of using the fbufs scheme
reduces to 0!

7 Conclusions and Future Work

We have presented an efficient I/O mechanism based
on a buffer exchange mechanism that has the
advantage of being free of MMU manipulations when
compared with page re-mapping schemes. A valuable
extension to the basic idea is that of creating fast
buffers from filesystem files.

A new application programming interface has been
defined to take advantage of the mechanism. We have
shown that programming the new API is simple, and
converting existing applications to use the new
interface is straightforward.

New utility routines for device drivers and operating
system components have been designed. In order to
realize the full potential of the fbufs framework, we
require a device adapter capable of de-multiplexing
incoming data into a pre-assigned user buffer, and a
modified device driver that interacts with the fbufs
allocator. However, even with devices that do not
support this capability, and with unmodified device
drivers, our framework delivers a performance benefit
on the output operation. This is possible because the
framework converts fbufs to Streams mblks during the
output operation making the fbufs usage transparent to
device drivers.

The framework has been prototyped in Solaris, a
commercial implementation of the UNIX operating
system. A set of micro benchmarks and two macro
benchmarks/networking applications have been run to
demonstrate that significant performance gains are
achievable.

We have projected our experimental results to faster
systems (CPUs and network media) to show that the
fbufs- based framework wi l l  have increasing
significance. The fbufs-based scheme continues to
perform better than a copy-based scheme, even when
extremely aggressive improvements in hardware
capabilities for data copying operations are assumed.
As the gap between the speeds of the CPU and

memory systems widens, there is more of a need to
avoid copying data altogether. Note also that as
demonstrated by our results, an fbufs solution is
insensitive to the size of buffers, in contrast to a data-
copying approach in which costs increase linearly with
the size buffer used. Applications and I/O subsystems
that can handle larger data units wi l l  benefi t
increasingly from using fbufs.

We did not directly compare the performance of our
implementation to zero-copy implementations that use
virtual memory remapping (Section 2.2) because we
could not find such an implementation that ran within
the operating system we used. However, it is clear that
such  imp lementa t ions  requ i re  MMU/TLB
manipulations oneach I/O operation. In contrast, our
scheme does not touch the MMU system in the
common case. As CPUs become faster, the relative
cost of MMU manipulations will increase [3], which
will make implementations that touch the MMU on
every operation even less attractive.

Future extensions of this work include using fbufs for
device-to-device data-copying. The semantics of fbufs
API allows implementations to delay filling a buffer on
input operations. If such an fbuf is then output to a
device that can Direct MemoryAccess (DMA) directly
from the input device, a direct device-to-device data
transfer can be performed without the data ever being
copied to main memory. Applications such as video
servers, which typically read from a high bandwidth
data source and write to a sink without actually
accessing the data, would be prime candidates to take
advantage of this lazy evaluation of I/O requests.

Finally, we plan to investigate ways to provide the
benefi ts of  fbufs without modify ing exist ing
applications. One possibility is to use the fbufs
mechanism in the implementation of the standard
UNIX I/O stdio library. Only the implementation of
library need be modified to use the fbufs API.
Applications linked to the library will be unaffected,
yet will notice improved performance.
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10 Appendix A - Performance
Projection Model

The average end-to-end latency (EL) of an 8KByte
data packet over a TCP connection is computed thus

EL = 8KBytes / Throughput

This formula factors in the encapsulation overheads of
the protocols, as well as the cost of acknowledgments
sent on the network. For our test system, we compute
from our test results

ELfbufs = 8KBytes / 113Mb/s = 553µs
EL1-copy = 8KBytes / 83.7Mb/s = 746µs

Network latency (NL) on the other hand is computed
by using the formula

NL = (8KByte + Encapsulation Overhead) /
Throughput

NLcurrent = 9116 Bytes / 140 Mb/s = 497µs

The average computational cost (CC) of 8KBytes of
data on our test system is computed using the formula

CC = 8KByte / Throughput * CPU-Utilization

Our experiments show that the receiver has a higher
utilization than the sender, and we use the higher figure
(since the throughput will always be limited by the
slower side). From our test results we have

CCfbufs = 8KBytes / 113 Mb/s * 89% = 492µs
CC1-copy = 8KBytes / 83.7 Mb/s * 99% = 739µs

In the case of the fbufs-based system, a negligible
fraction of the total cost is due to data-copying, while
in a single copy system, ~280µs are attributable to
data-copying (from tracing a kernel running the
benchmark).

We observe that whenCC > NL, EL ≅ CC, i.e., when the
protocol processing cost on the CPU is greater than the
time taken to send the data over the network medium,
the end-to-end latency is approximately the same as
the protocol processing cost. This is intuitively correct
and analogous to the throughput of a pipelined
processor being l imited to that of i ts slowest
component. We will use this observation to derive EL
for our future systems based on a computed value of
CC.

Network latency for OC12 ATM
NLOC12 = 9116 Bytes / 622 Mb/s = 112µs

Projected computation costs (PC)
PCfbufs = 492µs / C

PC1-copy = (739-280)µs / C + 280 / M

or PC1-copy = 459µs / C + 280 / M

Note that for values of (PC < NLOC12) throughput of
both frameworks will converge to the throughput of
the underlying network (622Mb/s in this case). In that
case, the performance advantage will be in terms of
lower CPU utilization. However, protocol windowing,
interrupt processing costs and acknowledgment
latency become more important when (PC < NLOC12)
making our simple model less reliable.

Since we are using simple extrapolation, we know that
for values of (C <= 622/140) or (C <= 4), i.e., for CPU
speed-up less than or equal to the network speed-up,
the relation (PC > NLOC12) holds true. This allows us to
use the simple estimation for end-to-end latency
(PEL).

PEL = PC
PELfbufs = 492µs / C

PEL1-copy = 459µs / C + 280 / M

Throughput is then projected by:

PT = 8KByte / PEL
PTfbufs = 8KBytes / (492µs / C)

PT1-copy = 8KBytes / (459µs / C + 280 / M)
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