
1

Improving the Address Translation Performance
of Widely Shared Pages

Yousef A. Khalidi
Madhusudhan Talluri

SMLI TR-95-38 February 1995

Abstract:

Operating systems allow multiple processes to share physical objects, e.g., shared libraries, System V shared
memory. Many UNIX® implementations allow processes to use different virtual addresses known as aliases to
map a shared physical page. Each alias traditionally requires separate page table and translation lookaside buffer
(TLB) entries that contain identical translation information. In systems with many aliases, this results in significant
memory demand for storing page tables and unnecessary TLB misses on context switches.

This paper first describes a common-mask scheme that allows translations from many different virtual address
spaces to the same physical address to share a single translation entry. It extends the process context id with a bit
vector that identifies a set of common regions that a process shares with other processes. It requires aliases to
use the same virtual address, but aliases with different virtual addresses are still supported in the conventional
manner. We then study in detail the implementation and performance effects of applying the common-mask
scheme to each level of the translation hierarchy: hardware fully-asociative and set-associative TLBs, memory-
based set-associative software level-two TLBs, and finally hashed page tables.

TLB performance improves as processes incur fewer TLB misses on context switches by sharing TLB entries for
shared pages. On a set of multi-user benchmarks, we show that the common-mask scheme reduces the number
of user TLB misses by up to 50% in a 256-entry fully-associative TLB and a 4096-entry level-two TLB. The mem-
ory used to store hashed page tables is dramatically reduced by requiring a single page table entry instead of sep-
arate page table entries for hundreds of aliases to a physical page. Common-mask hashed page tables use 97%
less memory for an Oracle® Financials database server workload.

The scheme we propose is quite general and applicable in domains other than address translation where multiple
keys map to the same data, e.g., virtually-tagged caches, associative processors, and relational databases.

email address:
yousef.khalidi@eng.sun.com
madhusudhan.talluri@eng.sun.com

A Sun Microsystems, Inc. Business

M/S 29-01
2550 Garcia Avenue
Mountain View, CA 94043

2

Improving the Address Translation Performance of
Widely Shared Pages

Yousef A. Khalidi Madhusudhan Talluri

Sun Microsystems Laboratories
2550 Garcia Avenue

Mountain View, CA 94043

1 Introduction

Computers that support paged virtual memory [24]
typically do address translation through a translation
hierarchy consisting of translation lookaside buffers (TLB)
[6,9,21] in or close to the CPU, optional level-two
hardware or software TLBs, and, finally, page tables in
main memory to store virtual-to-physical address
translations. A TLB is a cache of the recently used
virtual-to-physical translations and reduces average
translation time. The tags in a TLB are the virtual page
numbers (VPN) and process context ids, and the data
consists of physical page numbers (PPN), page
attributes (e.g., protection, reference, and modified
bits). A page table also stores the same translations
and is the backing store for a TLB.

One of the many uses of virtual memory is to allow
multiple processes to use the same physical memory
pages containing shared data and code. Sharing
reduces the working set size [23] of a workload, and
enables the workload to fit in a smaller amount of
physical memory than if each process had a private
copy. Two categories of physical page sharing (Figure
1) are common:

• Read-only sharing of text (code) and data pages.
Different instantiations of the same program (e.g.,

csh, cc) share text pages, and programs share the
same dynamically linked libraries [5] (e.g., libc,
libX, and libnsl). Use of the copy-on-write [27]
optimization is another example where processes
share pages until written to.

• Read-write sharing of data1 (e.g., System V shared
memory). Common applications that exhibit large
amounts of read-write sharing are database
systems, where many server processes share a large
pool of memory representing a buffer cache.

1. Read-write sharing of data is more efficiently supported by
hardware and operating systems if the workload is structured as a
multi-threaded process instead of using multiple processes.

Physical Page PA

Processi

Processj

Processk

<ctxk,VA3>
<ctxi,VA1>

<ctxj,VA2>

Figure 1. Many mappings to the same physical page

3

Many operating systems allow such sharing of
physical objects by supporting the establishment of
multiple virtual-to-physical address translations for a
single physical page. Such virtual addresses are
known as aliases or synonyms. Large commercial and
multi-user systems have hundreds of processes that
reference the same memory object.

Supporting aliases in a computer system has many
problems, especially when there are hundreds of
aliases for a physical page. First, current page table
designs require storing separate page table entries for
each alias, although each entry stores the same
translation information. Such multiple copies are
inefficient to store, update and keep consistent.
Second, TLBs cannot share a single entry for the
physical page and incur unnecessary TLB misses on
context switches [16]—virtually-tagged caches exhibit
similar behavior. Third, virtual addresses used for
aliases must be carefully coordinated in machines
with virtually-indexed caches [18].

To find out the characteristics of aliases in real
systems, we ran the AimIII [12] benchmark
simulating several hundred users, and a version of the
Orac le ® F inanc ia ls da tabase on an 8 -CPU
SPARCServerTM 1000. Some of the results are shown
in Table 1. First, only few of the physical pages in the
system are read-shared, while most pages are private
heap or stack pages. The database system has many
read-write shared pages. Secondly, the few shared
physical pages are widely shared with hundreds of
aliases per physical page. Third, most of the shared
mappings have identical page table entries, differing
only in the context id. Fourth, processes typically
share sets of related pages—pages belonging to the
same file or the same group of files.

The common-mask scheme proposed in this paper is a

Application
mix

Avg. #
mappings

per
physical

page

Avg. #
mappings
per shared
physical

page

Largest #
of

mappings

Idle System 2.29 27.12 131

Aim3 100 users 2.37 32.36 143

Aim3 500 users 2.58 55.20 564

Oracle Finan-
cials 100 users

3.43 105.47 447

Table 1. Mappings per physical page

way to allow a single translation entry to match the
different aliases with multiple tags. The potential
benefits of using this scheme in the translation
hierarchy are many: First, by using a single TLB entry
to map multiple aliases, TLB reach—the maximum size
of virtual memory mapped by a TLB [15]—is
increased, and fewer TLB misses occur. Second, by
using a single page table entry to map multiple
aliases, page tables occupy a much smaller amount of
memory—a significant benefit of which is reduced
CPU cache pollution [20]. Third, alias management in
the operating system simplifies considerably resulting
in a significant reduction in the number of minor page
faults2 and TLB shootdowns [2].

In Section 3, we develop the general approach of how
a single translation entry may be used to store the
mapping information for multiple aliases to a physical
page. In Section 4, we propose one solution, the
common-mask scheme, which limits the sharing to a
few common regions. A common region is a set of
physical pages that a process maps using a fixed
virtual address and a fixed set of permissions for each
physical page in the set. The process context id is
extended with a bit vector that identifies the set of
common regions that a process shares with other
processes. The scheme extends the traditional tag
match function by comparing the process context id,
CTXcpu, with the context id stored in the translation
entry, CTXpte, using a simple logical AND function3

for shared entries, while still requiring the virtual
addresses, VPNpte and VPNcpu, be equal. Aliases that
do not use the same virtual address are still supported
but use different translation entries.

Then we study, in detail, the impact of implementing
the common-mask scheme in TLBs and page tables. In
Section 5, we show how common-mask fully-
associative TLBs may be built. In Section 6, we show
how set-associative TLBs could use the common-mask
scheme. The context id is used as a parameter to the
hash function used to determine the TLB set to
lookup, the common-mask scheme would require a
more complex index function. In Section 7, we extend
hashed page tables [7] with the common-mask scheme
and discuss several indirect benefits of eliminating the
alias translations from the page tables.

We emphasize that the common-mask scheme can be

2. A minor page fault occurs when the CPU references a virtual
address for which a mapping does not exist in the TLB or page
tables, but the physical page is in memory. A major page fault
occurs when even the physical page is not in memory.
3. Traditional TLBs and page tables use the equality function for
matching the context ids.

4

applied to one or more levels in the translation
hierarchy and can coexist with existing mechanisms.
A conventional hardware TLB and a common-mask
hashed page table, a common-mask fully-associative
TLB with a common-mask set-associative level-two
TLB and a conventional forward-mapped or linear
page table are two of the combinations possible. We
also emphasize that the common-mask scheme
continues to work, at speed, for private mappings that
do not use the common-mask scheme; this is
important since only a small portion of the physical
pages in a system are widely shared.

In Section 9, we present some preliminary results and
study the benefit of using the common-mask scheme
in hardware fully-associative and set-associative
TLBs, memory-base software TLBs, and hashed page
tables. We show that the common-mask page tables
uses 97% less memory for a database server running
the Oracle Financials. We also show that the common-
mask scheme can reduce the number of user TLB
misses by up to 50% in a 256-entry fully-associative
TLB and a 4096-entry level-two set-associative TLB for
a variety of multiprogrammed workloads.

In Section 10, we suggest how the common-mask
scheme may be used in other domains—virtually-
tagged caches, relational databases, associative
processors, and general hash tables.

2 Related Work

The problem of aliases and sharing is not new and
there are several ways to address it. First, segments
[25] are the elegant, correct way to address the issue.
Programs specify a segment and offset within the
segment to identify an unique address for the data
location, eliminating the need for aliases. A separate
mechanism provides protection. However, pure
segmented systems have not been popular due to the
complicated address generation logic, and 32-bit
addresses may not always be sufficient to address all
possible segments.

Second, with the coming of 64-bit address spaces,
there are several proposals for single address space
architectures [3 ,10] . A s ingle address space
architecture disallows aliases, and processes sharing
an object use the same virtual address to access the
object. While there are many advantages to the single
address space approach, there are some problems,
including the inability to implement optimizations
such as copy-on-write, incompatibility with existing
software, and garbage collection of the address space.

Our work is not applicable to single address space
machines.

Third, in paged-segmented systems, such as HP® PA-
RiscTM [30], PowerPCTM [31] and IBM® RT PC [22],
the virtual address specifies a (segment-id, offset)
tuple and using the segment table translates into an
effective global virtual address. This again eliminates
aliases but can efficiently support only a limited
number of segments with size and alignment
restrictions. Operating systems can support aliases in
paged-segmented architectures also by having
multiple segments for the shared objects, i.e., segment
aliases. Operating systems, however, may not allow
sharing of portions of objects—e.g., processes read-
share only a part of the program data segment while
the rest of the segment is private. Using segments
properly to eliminate aliases will result in better TLB
and page table performance. Our scheme is only
marginally effective here and is applicable when
sharing segment table entries in global-address space
systems with segment aliases. The use of a protection
look-aside buffer (PLB) [10] can often reduce the
number of segment aliases in a global virtual address
space system when processes share the same pages
with different protections.

Fourth, some private address space systems support a
global bit (e.g., [8]). Setting a global bit in either a TLB
or page table entry allows all processes to share that
entry, e.g., the kernel is often mapped identically in
the address space of every process. A global bit can be
used only if two very restrictive conditions are
satisfied: a) all processes in the system must map the
physical page at a fixed virtual address with some
fixed permissions; and b) no process can use the
virtual address to map any other page or use a
different set of permissions. Our scheme is more
general than the global bit and trivially supports a
global bit.

In forward-mapped page tables (e.g., [11]) it is
possible for multiple processes to share portions of
their page tables by setting the intermediate nodes4 to
point to common nodes in the page table. Yoo and
Rogers describe an operating system implementation
that shares portions of forward-mapped page tables
between processes [20]. Our scheme differs in three
ways: First, forward-mapped page table schemes
require the sharing to be at a granularity of a node in
the page table (e.g., 256K in SuperSPARCTM, 4MB in
MIPS®), and all of the shared portion of the address
space, say 256KB, must be identically mapped in the

4. Some Intel® processors allow even the leaf nodes to specify an
indirect pointer and hence use a single PTE for all the aliases.

5

sharing processes. Our scheme allows sharing of
mappings for an arbitrary set of virtual pages. Second,
their scheme cannot be applied to TLBs as TLBs are
not structured as multi-level tables. Third, their
scheme allows processes to share mappings for objects
mapped at different (but aligned) virtual addresses in
different processes, while our scheme allows sharing
only if the same virtual address is used. We have not
found this limitation on the virtual address to be a
problem because the operating system and user
programs usually can choose virtual addresses that
work with the common-mask scheme. It is important
to note that a common-mask TLB can still be used if
forward-mapped page tables are used to share PTEs.

Recent work by Liedtke also addresses the issue of
storing mappings for shared pages [32]. Liedtke
proposes virtual aliasing—shared mappings store a
new virtual address to reprobe the page table with—
and is attractive when combined with the use of
variable-sized mappings. Our scheme does not
require storing of additional mappings for shared
pages in the page table or affect the TLB miss penalty
but an equivalent data structure is required in the
operating system to keep track of the common-mask
regions. Liedtke also proposes a virtually-indexed
cache that supports unaligned aliases, SF-cache [33],
but does not share a single cache entry as our scheme
does (Section 10.1).

TLB performance is a lso a wel l -studied area
[9,21,28,29] and various schemes proposed to increase
TLB reach include use of superpages [14] and
subblocking [15] that many commercial architectures
use in their TLBs. These techniques improve TLB
performance by increasing the TLB reach of a single
TLB entry by storing mappings for multiple virtual
pages from a single process. These approaches are
complementary to the common-mask scheme and can
be combined to improve TLB performance further.

3 General Approach

In this section, we describe the general approach to
sharing translation entries. In Sections 4 to 7, we show
how to build TLBs and page tables using the common-
mask scheme.

When the CPU requires a virtual-to-physical
translation, it presents the TLB with a context id
(obtained from a hardware CTXcpu register) and a
virtual address (the TLB uses the virtual page number,
VPNcpu, portion assuming a fixed page size). The TLB
searches its entries for an entry whose tag (CTXpte,

VPNpte), matches the required translation using the
function:

.

Figure 2a illustrates a typical TLB entry. For the
example in Figure 1, the three processes require three
separate TLB entries—the processes have different
context ids—and one process cannot use a TLB entry
belonging to another process although it maps the
same data. The goal of our scheme is to allow a single
TLB entry’s tag to match with multiple (CTXcpu,
VPNcpu) tuples.

The naive approach would be to allow multiple tags
for a single data field in each TLB entry—each tag
containing a context number and a VPN (Figure 2b).
This is the way operating systems often support
aliases in operating system data structures, where a
list of aliases is attached to the physical page
descriptor. However, a hardware implementation of a
similar structure is not very attractive for two
important reasons. First, for practical reasons, only a
small fixed number of tags (aliases) can be supported
per TLB entry, whereas in real systems there might be
hundreds of aliases for widely shared pages. Second,
the hardware cos t o f implement ing tags i s
significantly more than implementing the data
portion. Increasing the number of tags is a significant
overhead, and Talluri and Hill [15] show that
decreasing the number of tags has significant
performance advantages. The naive scheme’s

CTXcpu CTXpte=() && VPNcpu VPNpte=()()

CTX(sh) VPN PPN Attributes

Figure 2. TLB entry formats

CTX VPN PPN Attributes

CTX VPN PPN Attributes

CTX VPN

CTX VPN PPN Attributes

CTX

(a) Traditional TLB entry

(b) Multiple-tag TLB entry

(c) Multiple-tag TLB entry (common VPN)

(d) Multiple-tag TLB entry (special CTX)

6

matching function, assuming n tags per TLB entry, is:

One improvement over the naive scheme is to allow
only those aliases that use the same VPN to share a
single TLB entry. This restriction helps by requiring
only a single VPN field in the TLB entry, thus reducing
overhead (Figure 2c). Aliases with different VPNs are
still allowed, but they have to use separate TLB
entries. The operating system or application software
must make an effort to choose proper virtual
addresses for aliases to get any performance benefits.
The TLB entry still requires multiple context number
fields for the aliases, an unacceptable overhead and
limitation for hardware implementations. Using this
improvement, the matching function becomes:

Our scheme generalizes the matching criterion for the
CTX field. Instead of insisting on a strict equality for
matching CTXcpu with CTXpte, we allow the use of
any arbitrary function, while still requiring that
VPNcpu be equal to VPNpte for a match. The match
function for each TLB entry in the common-mask
scheme becomes:

.

There are three interesting features in this simple
solution. First, instead of storing multiple context
numbers in the tag, the TLB entry stores only a single
context number5 and is much easier to implement
(Figure 2d). Second, there is no limitation on the
number of aliases that can share a single entry. Third,
if the function, f, includes the traditional equality
check between CTXcpu and CTXpte, it supports the
more common non-alias mappings in the same
manner as in a conventional TLB.

Therefore, to share a single translation entry for
multiple aliases to a physical page, the same virtual
addresses must be used for the aliases, with the
translations belonging to different processes. The
operating system must provide two mechanisms to
make this sharing happen. First, the operating system
must make a best-effort to allocate aliases to each
shared page at the same virtual address in the sharing
processes (Section 8). Second, CTXcpu for each process
in the system and CTXpte for each shared memory
page must be carefully chosen. Mathematically the
problem can be stated as follows:

5. The context number stored in the shared PTE need not be equal
to any single process’ context number.

CTXcpu CTXptei=() && VPNcpu VPNptei=()()
i 1=

n

∪

CTXcpu CTXptei=()
i 1=

n

∪
 && VPNcpu VPNpte=()

f CTXcpu CTXpte,() && VPNcpu VPNpte=()()

Choose CTXP per process, CTXM per memory
object page, and a functionf such that:

f(CTXPi,CTXMj) =1 for every process Pi that maps
the memory object page Mj with the correct protec-
tions.6

f(CTXPi,CTXMj) = 0 otherwise.

In a real system, the problem of selecting CTXcpu and
CTXpte with P processes and C shared pages is non-
trivial to solve. There can be thousands of processes
and thousands of shared pages. In addition, since the
function f would have to be implemented in hardware
TLB match logic, the function has to be fixed and
determined independent of the process mix. Also note
that the width of CTXcpu and CTXpte is limited to a
few bits—16 to 64 bits. Finally, a real system is
dynamic where processes are created and destroyed,
and memory objects are mapped and unmapped at a
fast pace. This requires an incremental algorithm that
makes the problem harder. Given an O(P * C) bits for
CTXcpu and CTXpte, a simple solution is possible but
the hardware or sof tware to implement i t i s
impractical—a million bit context number might be
needed!

We do not attempt to solve the general problem in this
paper. Instead, we observe that in a typical computer
system there are only a few sets of widely shared
pages that the operating system can recognize. In
Section 4, we propose a solution that only supports a
limited number of common regions, but results in a
simple implementation of f, and a simple algorithm
for assigning CTXcpu and CTXpte.

While this paper concentrates on only the application
of this idea for address translation of widely shared
pages, the same scheme can be applied to many other
domains where multiple keys map to the same data.
The common-mask scheme can be applied to the data
structure or cache used to store the data for that
domain. Examples include virtually-tagged caches,
associative processors and relational databases. Some
domains may be simple or less dynamic than the
address translation scenario and a different algorithm
for selection of f, CTXcpu and CTXpte maybe more
appropriate. Other domains may not require the tag to
be divided into two fields and instead use a generic
matching function: where KEYcpu
is the lookup key and KEYpte is the key associated

6. Aliases can share a TLB entry only if they have the same
attributes as there is only one data field. Aliases that map the page
read-only can share one TLB entry, whereas all the aliases that
map the page read-write can share a different TLB entry.

f KEYcpu KEYpte,()()

7

with the data. We do not explore these options further
in this paper.

4 Common-mask Scheme

In th i s sec t ion , we descr ibe one poss ib le
implementation of the function, f, which results in a
simple hardware implementation and a simple
algorithm for choosing CTXcpu and CTXpte, but is
applicable only for a few shared pages. We then
extend the scheme to common regions, or collections
of pages, which addresses the limitation.

4.1 Description of common-mask scheme

First, the scheme relies on the operating system
identifying n special (collections of) pages for which
PTE sharing is to be used, called common regions—the
pages that are the most widely shared.

Second, CTXcpu, the per-process id, is extended to
include a bit-vector, the common-mask, of n bits—each
bit identifying one of n common regions (Figure 3).
Thus, the context number of the process specifies the
original m-bit context id to be used for non-shared
mappings and, in addition, identifies the shared
regions it maps. The operating system can initialize
and update the common-mask as the process maps
and unmaps objects.

Third, CTXpte for translations to shared pages stores a
bit vector instead of a single process’ context number.
The bit vector specifies which of the n shared regions
this page belongs to.7 A flag identifies whether the
translation is to a shared region or is a conventional
translation entry.

Fourth, a non-zero result from a simple logical AND
of the bit vectors in CTXcpu and CTXpte signals a
match. In other words, if the process maps the
common region i —bit vector in CTXcpu has bit i set—
and the PTE maps a page that belongs to that region—
bit vector in CTXpte has bit i set— the logical AND of
the bit vectors will have a non-zero value—bit i in the
result will be set. Otherwise, the result will be zero.

4.2 Structure of CTX cpu and CTXpte

Figure 3 shows the structure of CTXcpu and CTXpte.
CTXcpu, the m-bit per-process context id is extended
by a n-bit common-mask bit vector. CTXcpu is also the
format of the per-CPU register that identifies the

7. A shared mapping can belong to multiple shared regions as
explained in Section 4.4.

currently running process and is updated by the
operating system during context-switches. CTXpte
replaces the traditional m-bits context id in each TLB
or page table entry. CTXpte in the common-mask
scheme holds either the traditional m-bit context id or
a n-bit common-mask. A shared (S) bit differentiates
between the two. For ease of implementation of the
TLB, n can be set to the same size of m, which is
typically 10-16 bits wide [8, 11]. By setting n = m, this
scheme requires only one addition bit per TLB entry
over typical TLB designs.

Since there is a single CTXcpu register per CPU, the
additional n bits are not a significant overhead. As
each TLB entry has one CTXpte field, limiting the size
of this field results in significant hardware savings.

4.3 The common-mask tag match function

We next define the function f(CTXcpu, CTXpte)
used during tag matching in a common-mask TLB as:

if (CTXpte.S) return (CTXcpu.mask & CTXpte.mask);

else return (CTXpte.id == CTXcpu.id)

Therefore, a TLB entry with the flag S set designates a
page in a shared common region and the matching
function becomes:

.
Otherwise, a TLB entry with the flag S clear maps a
page for a single process (CTXcpu.id) and the tag
comparison uses the traditional matching criterion:

.

This function is simple to implement, but has some
interesting implementation issues that we discuss in
Sections 5 to 7. The function is powerful enough to
support arbitrary sharing of multiple common regions
by thousands of processes using a single translation
entry—all processes that have a bit set in the mask of
CTXcpu can use a single translation entry with the
same bit set in CTXpte’s mask. In Section 8.1, we

CTXcpu IdMask

n bits m bits

CTXpte

max(m,n) bits1 bit

Mask/Id

S =1, rest of CTXpte is an n-bit mask
 S= 0, rest of CTXpte is an m-bit id

(per CPU)

(per TLB entry)

Figure 3. Structure of CTXcpu and CTXpte

S

CTXcpu& CTXpte() && VPNcpu VPNpte=()()

CTXcpu CTXpte=() && VPNcpu VPNpte=()()

8

explain how we choose the masks for CTXcpu and
CTXpte. Finally, the function provides an upward
compatible path by allowing conventional non-shared
translation entries to be treated exactly as before.

4.4 Common regions

A common region specifies a set of physical pages,
with each physical page in the set associated with a
virtual address and attributes. A process is said to
map a common region iff: a) the process maps the
complete set of pages that belong to the common
region; b) each page in the common region is mapped
at the correct virtual address associated with the page
for this common region; and c) each page is mapped
with the correct protections associated with the page
for this common region. If a process maps a common
region, then the bit vector in CTXcpu has the bit that
corresponds to the common region set.

In realistic implementations, the number of allowed
common regions is much smaller than the number of
shared pages and each common region has a large
number of pages. We observe that processes do not
normally share individual pages but share objects
(which are larger than a page). Therefore, common
regions can specify a collection of pages that
correspond to an object (or parts of the object)
accessed with a given set of permissions, e.g., /etc/
passwd file with read permission or the text region of
libc with read/execute permissions.

We further observe that many processes map groups
of objects in the same manner. For maximum
utilization of the limited number of common regions,
we can specify common regions to map a collection of
(parts of) objects, e.g., the common region C0 may
designate <libc mapped at VA1 read-only; libX
mapped at VA2 read-only; libnsl mapped at VA3 read-
only>.

Further, a given physical page can be part of two or
more common regions and still share a single
translation entry, e.g., C0 may designate <libc mapped
at VA1, libnsl mapped at VA2> and C1 may designate
<libc mapped at VA1, libX mapped at VA3>. The page
table entries for pages of libc will have two bits set in
CTXpte—the bits corresponding to common regions
C0 and C1. Processes which map either C0 or C1 will
match on the same CTXpte for libc pages.

By allowing a common region to be defined as a single
page, a single object or as a collection of (parts of)
objects, the operating system has significant flexibility
in either statically or dynamically defining the optimal
set of pages for the limited number of common

regions.

5 Common-mask Fully-associative
TLBs

In fully-associative TLBs, the tags of all the entries are
searched in parallel by tag comparators associated
with each entry. Adding the common-mask scheme to
a fully-associative TLB is relatively simple—change
the tag comparator for each entry to implement the
common-mask match function. When inserting a new
entry into the TLB, any entry in the TLB can be used.

Figure 4 compares a conventional content-addressable
memory (CAM) ce l l wi th one poss ib le
implementation of the CAM cell used in a common-
mask TLB. Figure 5 shows how regular CAM cells can
be put together to compare an 8-bit PID with the
contents of the CAM. PIDi is sent out on the BIT line of
cell i. PIDi is sent out on BIT line. If there is any
mismatch, the precharged MATCH line is discharged.

The second part of Figure 5 shows how the common-
mask CAM cells can be put together to compare
CTXcpu—an 8-bit PID and an 8-bit MASK—with the
contents of the CAM. The PID portion of CTXcpu is
driven on the bit lines as before and the mask portion
of CTXcpu is driven on the MASK lines (no need for
inverted input). The array of cells outputs two signals:
MATCH and MASKMATCH—which is inverted to
produce MASKMATCH. The shared (S) bit indicates
whether the entry stores a mask or a PID, and selects
one of the two match signals to produce the context
match signal. The context match signal should be

VDD
WORD WORD

BIT BIT

MATCH

VDD
WORD WORD

BIT BIT

MATCH

MASKMATCH

MASK

Conventional
CAM cell

Common-mask
CAM cell

Figure 4. Conventional vs. Common-mask CAM cell

9

combined with the VPN match signal to declare a hit/
miss for that TLB entry—not shown here.8

There are three key implementation differences
between building a conventional and a common-mask
TLB. First, conventional CAMs have a single match
line that combines the VPN match and CTX match,
whereas the common-mask scheme requires separate
match lines and circuitry to combine the two. This
complicates the design and layout in custom VLSI
where the pitch of the CAM cell is restricted. Second,
the common-mask TLB requires more transistors per
cell and has more lines crossing the cells, vertically
and horizontally, which increases the area overhead.
Third, the circuitry for combining the different match
signals will add to the critical time slightly, but to
minimize any impact on TLB access time, this circuitry
can be integrated with the drivers that propagate the
MATCH signal.

Since it may be expensive to modify all the TLB entries
to support both conventional and shared mappings,
variations of the above are possible by implementing
different types of tag comparators in the TLB—
conventional-only, common-mask-only, combined
conventional/common-mask (Figure 4). Since a fully
associative TLB has an individual comparator for each
TLB entry, this can be implemented. Alternatively,
separate TLBs can be built with only entries for a
single kind of comparator in each TLB—the TLBs can
be accessed in parallel, and the output of the different
TLBs can be combined with a multiplexor.

The first variation would be a TLB with a mixture of

8. Also not shown here is the standard circuitry in a CAM array—
precharge circuitry, wordline drivers, sense amplifiers, match sig-
nal amplifier—they do not differ from conventional TLB designs.

C7

PID7PID7

C0

PID0 PID0

MATCH-CTX

Conventional context number match

Common-mask context number match

Figure 5. Conventional vs. Common-mask context
matching for fully-associative TLBs

PID7PID7

MASK7

C7

PID0PID0

MASK0

C0 MATCH-CTX
MATCH

MASKMATCH

S

1

0

. . .

. . .

conventional-only and combined common-mask
comparators—only entries with the common-mask
comparators can store shared entries. Typically, since
only a small fraction of the mappings present in the
TLB are of the shared variety, this might be a
reasonable compromise.

Another variation would be to build a comparator
that includes only the logical AND function and does
not support private mappings, a common-mask-only
comparator—a simpler implementation than either
shown in Figure 4. However, this solution will result
in unused resources, as some workloads may not use
shared mappings and cannot use some TLB entries.

Therefore, fully-associative TLBs can implement the
common-mask easily, but it has some area and cycle
time costs which must be considered.

6 Common-mask Set-associative TLBs

In set-associative TLBs, a subset of the tags are read
out from the tag array and compared using the match
function—the number of tags read is the associativity.
Using the common-mask scheme requires two
modifications—the tag comparator logic and the
index function used to select the subset of tag.

Figure 6 compares the implementation of the tag
compare logic [19] in a set-associative TLB for
conventional and common-mask TLBs. The logic is
similar to the CAM design, but the impact is much
smaller since there are only a few comparators in a
TLB and they do not have very t ight layout
constraints. Again, the logic to combine the three
match signals can be integrated with drivers that
propagate the MATCH signal.

Modifying the index function of a set-associative TLB
to include the common-mask is more complicated.
Both CTXcpu and VPNcpu are used, with a hash
function, h(CTX,VA), to select the TLB set for lookup.
Since shared PTEs match multiple CTXcpus, there is no
unique set that will match all contexts that share a
PTE. One solution would be to choose h and CTXcpu
such that h(CTX,VA) is same for all processes sharing
a common region. As mentioned before, we do not
have an incremental algorithm for this. The following
solution uses a multiple probe hash function for
lookups:

• Insertion of a TLB entry with tag <CTXpte, VApte> uses:

If CTXpte.S = 0, then use h(CTXpte.id, VApte)

If CTXpte.S = 1, then use h(0, VApte)

10

• Lookup of <CTXcpu,VAcpu> uses a two-step process:

First index the TLB using h(CTXcpu.id, VAcpu). If
this fails, index using h(0, VAcpu). (Or the reverse
order.)

With the above lookup procedure, the TLB hit time
will be more than one cycle and will negate most of
the benefits of reduction in the number of TLB misses.
A single-cycle hit time is possible in hardware set-
associative TLBs but increases the implementation
cost or the TLB miss ratio:

• A dual-ported TLB can try both hash functions in a
single cycle.

• The TLB can be split into two and accessed in
parallel—one storing conventional entries and
another storing shared entries.

• The hash function could neglect the context
number and always use h(0, VA), but may result in
worse TLB performance on context switches.

The benefits of a hardware implementation of a
common-mask set-associative TLB are not clear.
However, software memory-based set-associative
level-two TLBs [7] can use the two-step lookup
algorithm with a minimal impact on TLB hit time and
benefit from the increased TLB reach from the shared
entries. The TLB hit time for a software managed TLB
is already high and adding a second lookup adds only
a small fraction to the TLB hit time, e.g., a superscalar
processor may be able to execute the code for two
probes in about the same number of cycles as a single
probe.9

Conventional context number match

Common-mask context number match

Figure 6. Conventional vs. Common-mask context
matching for set-associative TLBs

a7

b7
m7

a7a7

b7

a0

b0 m0

a0a0

b0
. . .

Eval

MATCH
MASKMATCH

MATCH-CTX

S

1

0

a7

b7

a7

b7

a0

b0

a0

b0
. . .

Eval

MATCH MATCH-CTX

7 Common-Mask Hashed Page Tables

Page tables benefit the most from sharing of page table
entries for widely shared pages, irrespective of
whether the other levels of the translation hierarchy
share translation entries using the common-mask
scheme or any other scheme. Linear and forward-
mapped page tables can do a limited amount of
sharing [20]. In this section, we first show how the
basic common-mask scheme described in Section 4
can be applied to hashed page tables [7]. Then we
explain the benefits of sharing page table entries in
any page table structure.

The common-mask scheme can be applied in a hashed
page table to use a single page table entry to store the
translation information for all the aliases to a physical
page. We observe that a set-associative TLB is an open
hash table with a fixed number of entries per set
(bucket)—the associativity. A hashed page table
behaves very similar to a set-associative TLB, except
that we allow the hash chains to be arbitrarily long.
Naturally, the common-mask scheme applies to
hashed page tables exactly as described in Section 6
for set-associative TLBs.

Figure 7a illustrates a conventional hashed page table.
The page table contains a set of hash buckets, where
each hash bucket points to a list of nodes—-each node
contains a translation for a (CTX, VPN) tuple. When
the hash table is searched with VPNcpu and CTXcpu,
the hash function h(CTXcpu,VPNcpu) selects one of the
hash buckets. The hash list is searched for a successful
match, using the match function:

.

With the use of the common-mask scheme in the
hashed page table, the new tag match function is:

and the hash table lookup uses a two step algorithm:
a) Index into using h(CTXcpu.id, VAcpu); b) if a) fails,
index using h(0, VAcpu).

Though the page table search requires a two-step
algorithm, the page table lookup time—TLB miss

9. A TLB miss handler which looks in a memory-based set-asso-
ciative TLB consists of a sequence of dependent instructions. On a
superscalar processor, this may result in unused instruction issue
bandwidth. Since the instructions for the second probe in the com-
mon-mask TLB are largely independent of those in the first probe,
they may be able to use the wasted issue bandwidth “for free.”
Note, however, that a significant portion of the time in a TLB miss
handler is due to cache misses and a second probe would certainly
increase the number of cache misses.

CTXcpu CTXpte=() && VPNcpu VPNpte=()()

f CTXcpu CTXpte,() && VPNcpu VPNpte=()()

11

penalty—is not affected much and may instead be
faster! First, a second lookup is required only for
shared translations which form a small fraction of the
total number of page table lookups. Second, a
software hash table lookup algorithm can be easily
modified to execute two probes simultaneously,
through software pipelining, to minimize the increase
in the page table lookup time. Third, by sharing page
table entries, the page tables occupy less memory and
this reduces the average length of the hash chains and
also improves the cache performance—resulting in a
poss ib ly f a s t e r page tab le lookup than in a
conventional page table. If the page table lookup is
slower in a common-mask page table, a level-two
memory-based TLB can reduce the average miss
penalty [6].

The main advantage of using the common-mask
scheme in the page tables, however, is the memory
savings. In the example in Figure 7, there are five
different mappings to the same physical page, e.g., a
text page from /bin/csh. The mappings are all at the
same virtual address, but each is for a different
process. Figure 7a shows how the mappings to the
page might look like in a traditional hashed page
table—one PTE per mapping. Applying the common-
mask scheme results in the page table shown in figure
7b with only a single shared entry. Even increasing the

VPN: 0x200 PPN:176CTX:0,21

VPN: 0x200 PPN:176CTX:0,23

VPN: 0x200 PPN:176CTX:0,27

VPN: 0x200 PPN:176CTX:0,51

VPN: 0x200 PPN:176CTX:0,7

VPN: 0x200 PPN:176CTX:1,93

(a) without using common-mask scheme

(b) with using common-mask scheme

Figure 7. Example of using scheme on page tables

An example of five mappings to the same physical page that dif-
fer in the context number only. In (a), common-masking is not
used, and a separate PTE is needed for each mapping. In (b), there
is only one shared PTE that has the S bit set.

Hash buckets
Page table entry descriptors

number of aliases to a hundred or a thousand, the
page table would continue to store a single PTE that
matches with all the aliases. Reducing the amount of
memory used for page tables improves system
performance in many ways:

• In systems where the amount of memory dedicated
for page tables is fixed, say by limiting the length of
the hash bucket chains, the amount of memory
mapped by the page table increases vastly by using
the common-mask scheme and reduces the number
of minor page faults.

• Cache pollution due to caching the PTEs is reduced
as the page tables are smaller. This effect can be
very significant in improving application CPU
cache performance [20].

• Due to the vastly reduced length of the list of
a l iases a t tached to a phys ica l page , a l ias
management is much more efficient. The operating
system frequently examines all aliases to a page,
e.g., when clearing the modified bit after writing
out a dirty page to backing store. Using the
common-mask scheme, there are fewer PTE
descriptors to traverse on such operations.

• The TLB miss penalty may be reduced as explained
previously in this section.

• For workloads that are limited by the amount of
memory in the system, the savings in page table
memory usage can be used by the application to
improve application performance. This is ,
however, not as important as the above since many
performance critical applications may run on
computers with sufficient memory.

There are two additional, perhaps non-obvious,
advantages to using shared translation entries in any
page table structure:

• The common-mask scheme reduces the number of
TLB consistency operations—e.g., TLB shootdowns
[2]. Consider the following example: the operating
system normally maintains a reference bit per page
that is used when making page replacement
decisions. When the operating system clears the
reference bit of a widely shared page, the reference
bit is also cleared in all (possibly hundreds of)
aliases’ mappings. Each mapping when updated
requires a TLB shootdown to invalidate the
corresponding hardware TLB entries. Using the
common-mask scheme, only a single page table
entry needs to be updated, and when used in
conjunction with a common-mask hardware TLB
only a single TLB shootdown operation is required.

• Sharing of translation entries reduces the number
of minor page faults serviced by the operating

12

system. After a process maps a shared object, the
first references to the pages will result in “minor”
page faults to load the private mappings into the
page table for that process. These minor faults are
eliminated when shared translations are used
because mappings for common regions are
inherited when the memory objects are mapped,
and processes need not fault on first use of the
shared pages. This can result in significant
performance improvement in a system with many
short-lived processes.

8 Operating System Considerations

The virtual memory system in the operating system
must provide some support for the common-mask
scheme to be useful in TLBs and page tables. It
requires the addition of a policy to choose the
common regions and mechanisms to maintain the
common-masks, allocate virtual addresses and a
hashed page table structure.

An operating system policy must choose the set of
physical pages that make up the limited number of
common regions. Some possible solutions are: a) A
static system configuration file can identify the
common regions. The file can be initialized based on
profiling the common workloads for a given system.
b) The system can dynamically define the common
regions by keeping a count of the number of processes
sharing each object and using the common-mask for
the most widely shared objects. c) The system could
allow user-defined common regions that may be
useful in a database system.

Whichever operating system policy is used, it is
important to note that the common-mask scheme is
only an optimization. Conventional aliases are still
supported in the page tables and the TLB. Also,
dynamically changing the common regions definition
is relatively easy—by clearing the correct common-
mask bit in the CTXcpu data structure for all the
processes using the common region, the processes will
demand fault their own private mappings into the
page table. After unloading the shared translations
from the page table and TLB, the bit can be reassigned
to a new set of objects.

There are three key mechanisms that are required in
the operating system to support the common-mask
scheme in either the TLB and/or the page tables: a)
The operating system must be able to determine if a
process has mapped or unmapped any of common
regions, and set/clear common-mask bits in the CTX

registers accordingly (Section 8.1). b) The operating
system must allocate virtual addresses for shared
objects to be compatible with existing common
regions (Section 8.2). c) A hashed page table gives the
operating system maximum flexibility in defining the
common regions (Section 8.3).

It is possible to implement sharing of translation
entries in a linear or a multi-level page table [20]. Even
for those page table formats, similar OS support is
required. An operating system policy is required, as in
the common-mask case, to choose the physical pages
and address spaces whose mappings should be
shared. A mechanism is required to determine if a
process has mapped or unmapped any of shared
regions, as in the common-mask case. Since a non-
hashed page table has strict address alignment
restrictions for sharing of pages, a mechanism is
required to choose the right virtual addresses for
mapping the shared objects. Thus, sharing of
translation entries in any page table format would
require similar operating system support policies and
mechanisms, but the constraints under which they
operate are different. For example, a common-mask
system supports only a limited number of shared
regions whereas a multi-level page table can support
an unlimited number of shared regions; a common-
mask system required shared regions to be mapped at
the same virtual addresses, whereas a multi-level page
table would require the virtual address to be aligned.

8.1 Maintaining the common-masks

As mentioned before, choosing the common-masks is
the most important part of this scheme. In this section,
we explain how the masks are maintained in CTXpte
and CTXcpu. The operating system policy identifies n
common regions for which it will use sharing of PTEs
as explained before. One bit in the common-mask bit
vector is allocated to each common region.

When the operating system loads a translation entry
into the page table and/or TLB, it specifies CTXpte for
the translation. Normally, the translation is tagged
with the context id of the process to which the
translation belongs (CTXpte) and the virtual address
(VPNpte) for which this translation corresponds. In the
common-mask scheme, this remains unchanged
except for translations to pages within a common
region where CTXpte specifies a bit vector of the
common regions to which this shared translation
belongs.

When a process maps an object, mmap, the operating
system checks to see if this process maps any of the n
common regions correctly—at the correct virtual

13

addresses and with the right protections. If so, the
operating system will set a bit in the bit vector of
CTXcpu in its data structures—and in the hardware
register if the process is currently running. As
mentioned before in Section 7, it is important to note
that the process’ mappings are ready in the page table
“for free,” and the process does not have to incur
minor page faults to initialize them.

When a process unmaps an object, munmap, the
operating system checks to see if it belongs to a
common region that this process is sharing. If so, then
it simply clears the bit in the bit vector, CTXcpu. There
are two very important benefits from this action. First,
the translations need not be removed from the page
table or invalidated from the TLB. They need to be
removed from the page table and TLBs only when the
shared region is discarded, which is infrequent. This is
a significant benefit since TLB invalidates, and page
table deletions in a multiprocessor system are
expensive. Second, the current process does not
restrict or interfere with the use of the common region
by any other process in the system. If a process
unmaps an object that is part of a common region,
other processes continue to use that common region
unhindered. Global bits do not have this feature—
processes cannot unmap objects from virtual
addresses for which other processes use the global bit.

8.2 Choosing virtual addresses

Programs mapping objects that belong to common
regions must preferentially be allocated at one (or a
few) special address(es)—each object in a common
region has one or more virtual addresses for which
aliases can use the shared entries. One simple solution
is to maintain a preferred address for each object, and
let the operating system automatically attempt to map
objects at their preferred addresses in all processes.
Note that, in practice, almost all user programs allow
the operating system to pick the virtual address at
which an object is mapped. With 64-bit address
spaces, an operating system will nearly always be able
to choose unique addresses for objects, but may use
the virtual address space in a sparse fashion.

Programs can still request shared objects to be
mapped at specific virtual addresses but may be
unable to benefit from the common-mask TLBs and
page tables when sharing the objects with other
processes. They may instead be given process-private
mappings (they still share the same physical memory
for the objects), or may be allocated a new common
region if enough programs use the same non-standard
address.

8.3 Choosing the page table structure

Hashed page tables are preferred when implementing
sharing of translations because they do not place any
restrictions on the size or alignment of the shared
translations, and any arbitrary page or collection of
pages can be shared. Though sharing of translations
can be implemented in linear and forward-mapped
page tables [20], the sharing can only occur at the
granularity of a page table (e.g., all of a 256K or 4MB
address space has to be shared). Such size and
alignment restrictions reduce the effectiveness of page
table sharing, e.g., shared libraries typically have
some private data that is not shared across processes
(e.g., the global offset table in ELF objects [13]) but is
mapped at a fixed offset from the text segment. This
makes it difficult to find a contiguous, aligned chunk
of virtual address space that is shared identically with
another process. Hashed page tables do not place any
such restrictions and the operating system can share
more pages.

More importantly, for multi-level and linear page
tables, the virtual addresses allocation for the shared
objects results in a sparsely populated address space.
For example, to share translations in a linear page
table, each shared l ibrary would require two
consecutive, aligned 4MB regions of virtual address
space—one for the text and another for the data.
Libraries being small, only a small fraction of each
4MB is used and the rest is reserved. Linear and
forward-mapped page tables are inefficient at
supporting such sparse address spaces making
hashed page tables more attractive.

We would like to emphasize, however, that while
hashed page tables have some advantages in
supporting sharing of page table entries, the common-
mask hardware and level-two TLBs can be used
irrespect ive of the page table s t ructure and
irrespective of whether page entries are shared. Thus,
a common-mask level-two TLB can be used together
with a forward-mapped page table that shares
translations.

9 Performance Evaluation

In th i s sec t ion , we d i scuss the work loads ,
methodology, metrics, and results of the performance
evaluation of the benefits of using the common-mask
scheme in hardware TLBs, level-two TLBs, and page
tables.

14

9.1 Workloads

We use the AimIII and Kenbus [12] standard multi-
user benchmarks, in addition to several benchmarks
constructed by running multiple copies of the some
SPEC [12] programs.10 We used a uniprocessor
SPARCserver 10 with 96MB of main memory for all
our TLB simulations

All the workloads are examples of read-only sharing
of text and library segments. Database programs use
read/write heap sharing and would benefit from the
common-mask TLB. We use the Oracle Financials
database system run on a 8-processor SPARCserver
with 384MB of main memory. We are unable to report
TLB simulation numbers for databases as we could
not get access to a commercial database server that
would run our modified operating system.

9.2 Methodology

We evaluate the performance of a common-mask TLB
using trap-driven simulation [17] implemented in
foxtrot [15]—a Solaris® 2.1 based operating system
that counts the number of user TLB misses for a
workload. Our simulation environment does not
include kernel TLB misses, but includes the effect of
context switches in the multi-programmed workloads.
Kernel TLB misses will certainly influence system
performance, but we cannot guess whether it will
improve or worsen our results without measuring
them.

Our opera t ing sys tem does not inc lude the
mechanisms and policies needed to select common
regions or manage common-masks and virtual
address allocation. We instead assume in our
simulation that an infinite number of common regions
are available, and that all aliases could use the
common-mask scheme. Table 5 shows that most
workloads fit within sixteen statically determined
common regions, and assuming an infinite number of
common regions gives no additional advantage. In a
real system, the common regions may have to be
dynamically adjusted to the workload and may not
exploit all available sharing.

We measure the page table memory demand of the
workloads by taking a snapshot of the state of the
page tables and counting the number of valid PTEs.
The workloads used in this study do not manipulate
their address space aggressively, and its structure does

10. The SPEC programs were compiled to use dynamic linking—
SPEC benchmarks are normally linked statically but most “real-
world” programs on Solaris use dynamic linking to libraries.

not change over the life of the workload. To estimate
the page table memory demands for the common-
mask hashed page tables, we define a set of common
regions for each workload, and use a single page table
entry for each physical page in the common region.
With sixteen common regions, we were able to
eliminate all aliases for these workloads. A typical
UNIX® system has many daemons running and the
workloads map the common regions used by these
daemons for shared libraries. For example, a common
region consisting of libc.so.1, libdl.so.1 and ld.so text
and data segments is used by nearly every process.

9.3 Metrics

We use the percent reduction in the number of user
TLB misses as the metr ic for evaluat ing the
performance of a common-mask TLB compared to a
conventional single-page-size TLB with the same
number of entries, associativity, and replacement
policy, i.e.,

Appendix A includes the absolute number of TLB
misses for the conventional TLBs.

TLB misses are only one par t o f the sys tem
performance, and TLB miss penalty is equally
important. Our simulation environment does not
measure TLB miss penalty, but a critical miss penalty
can be estimated from Tables 6 and 3 as:

where r is the percent reduction in the number of TLB
misses. The critical miss penalty is the TLB miss
penalty for the common-mask page table that exactly
compensates for the reduction in the number of TLB
misses. If the common-mask TLB has 25% fewer TLB
misses, the critical miss penalty is 1.33 times the
original TLB miss penalty. The TLB miss handler may
require two traversals of a common-mask page table
for the shared mappings and the TLB miss penalty is:

where f is the fraction of TLB misses to the shared
pages . SecondScanPena l ty i s smal le r than
FirstScanPenalty as it does not include costs such as
trap entry. FirstScanPenalty may be smaller than the
Original TLB miss penalty as the page tables are
smaller, resulting in shorter search times and better
cache behavior.

missesold missesnew–
missesold

--
 100%×

OriginalTLBmissPenalty
100

100 r–

 ×

FirstScanPenalty f SecondScanPenalty×()+

15

The metric we use to evaluate the memory savings
from using a common-mask hashed page table is the
percentage reduction in the number of page table
entries needed to store the mappings used by the
workload. We do not include in our calculation the
extra storage required to maintain the common region
data structure—a list of processes mapping the
common regions—which is O(number of processes)
sharing a common region.

9.4 Common-mask TLB performance

Tables 2 and 3 show the percent reduction in number
of user TLB misses for 64-,128- and 256-entry fully-
associative TLBs; 128- and 256-entry 4-way set-
associative TLBs using LRU [4]; and RANDOM
replacement, respectively. There are two trends that
the numbers illustrate.

a. Our common-mask TLB simulator executes slower than
our conventional TLB simulator resulting in taking more
CPU quanta to execute. This results in a small extra number
of misses in a common-mask TLB.

Workload
64-

entry
FA

128-
entry
FA

256-
entry
FA

128-
entry
4-way

SA

256-entry
4-way SA

aimIII
(100 users)

21.0% 31.4% 40.1% 30.1% 39.4%

kenbus
(80 users)

-0.3%a 12.0% 30.9% 13.2% 31.3%

kenbus
(50 users)

1.3% 14.8% 32.0% 12.8% 32.9%

doduc
(10 copies)

0.4% 35.0% 48.1% 31.7% 49.5%

mdljdp2
(10 copies)

-1.8%a 7.7% 19.8% 8.0% 23.9%

ora
(10 copies)

21.8% 22.4% 32.4% 23.8% 34.9%

ear
(10 copies)

38.9% 43.1% 56.0% 50.1% 50.3%

mdljsp2
(10 copies)

5.4% 10.1% 30.9% 20.9% 33.4%

fpppp
(10 copies)

4.5% 20.6% 41.1% 74.3% 41.3%

gcc
(10 copies)

-0.1%a 1.7% 20.9% 3.1% 22.0%

Table 2. Percent Reduction in user TLB misses with
common-mask TLB (Random replacement)

First, the common-mask scheme is more effective with
larger TLBs. The 256-entry TLBs are able to hold most
of the working set for a process and a most TLB misses
are due to context switches, whereas the 64-entry
TLBs incur many capacity misses with even a single
process. The common-mask TLB shares some TLB
entries across all the processes, and significantly
reduces the number of TLB misses per context switch
in the large TLBs. In the smaller TLBs, capacity misses
replace some sharable TLB entries and result in a
smaller decrease. The performance of kenbus and gcc
clearly illustrates this effect of capacity misses.

Second, the replacement policy used is important. The
LRU replacement policy is less likely to replace widely
shared TLB entries as it uses the reference history
across all processes to make replacement decisions.
Since RANDOM does not distinguish shared TLB
entries, it is likely to replace even widely shared TLB
entries. This reduces the effectiveness of the common-
mask TLB—Table 3 shows a smaller performance
improvement than in Table 6. The absolute number of
TLB misses is also much higher when using the
RANDOM replacement policy (Appendix A).

Workload
64-

entry
FA

128-
entry
FA

256-
entry
FA

128-
entry 4-
way SA

256-entry
4-way SA

aimIII
(100 users)

32.8% 38.1% 49.9% 38.4% 46.4%

kenbus
(80 users)

2.6% 23.4% 45.0% 20.8% 40.6%

kenbus
(50 users)

3.7% 23.5% 45.5% 21.5% 53.7%

doduc
(10 copies)

21.5% 42.4% 53.4% 41.6% 53.9%

mdljdp2
(10 copies)

10.0% 18.5% 22.7% 18.6% 22.7%

ora (10 copies) 26.7% 40.0% 51.0% 43.8% 49.2%

ear (10 copies) 31.4% 45.1% 72.3% 45.0% 64.8%

mdljsp2
(10 copies)

5.7% 21.2% 31.8% 21.8% 35.4%

fpppp
(10 copies)

17.5% 32.9% 40.8% 76.9% 44.5%

gcc (10 copies) 0.0% 3.4% 31.9% 12.9% 27.8%

Table 3. Percent Reduction in user TLB misses with
common-mask TLB (LRU replacement)

16

Table 4 shows the percent reduction in number of user
TLB misses in a level-two 4096-entry TLB (direct-
mapped and 2-way set-associative). The level one TLB
is a conventional 64-entry fully-associative TLB with
LRU replacement. Multi-level inclusion [1] is not
maintained. The common-mask scheme is very
effective in level two TLBs with 30-60% reduction in
the number of TLB misses. The TLB miss penalty for a
level two TLB miss can be quite significant—a page
fault—which makes the reduction in number of TLB
misses important.

Therefore, we conclude that there are two conditions
to be met for the common-mask scheme to be most
effective in TLBs: a) There must be sharing of physical
objects between the different programs of the
workload. Most programs share library code and
databases share the buffer cache mappings; b) The
TLB reach must be large enough to be able to map a
single program’s, not workload’s, working set11 size.
Recent TLB architectures are increasing the hardware
TLB reach through use o f superpages and
subblocking, decreasing capacity misses and making
it more attractive to implement the common-mask
scheme.

9.5 Common-mask page table evaluation

The common-mask scheme can be used to reduce the
amount of memory used for page tables by combining
the storage for multiple aliases into a single PTE.
Reducing the amount of memory improves system

11. The working set size used in the context of TLB performance
assumes T, the working set parameter, to be equal to the CPU time
quanta. The working set size in a traditional operating system
sense uses a much larger T. Thus, the working set size here is the
number of distinct pages referenced between context switches and
is much smaller than the program working set size resident in main
memory.

Workload 4096-entry
direct-mapped

4096-entry 2-way SA
(RANDOM)

aimIII (100 users) 44% 53.1%

Table 4. Percent Reduction in user TLB misses with
common-mask level 2 TLBs

kenbus (80 users) 38.0% 40.1%

kenbus (50 users) 46.9% 62.6%

gcc (10 copies) 31.4% 45.0%

performance in many ways as described in Section 7.

Table 4 shows the number of page table entries in a
page table with no sharing, the number of PTEs in a
page table using the common-mask scheme and the
percent reduction by using the common scheme. The
fourth column shows the number of common regions
used by this workload. The table shows a significant
reduction in the number of PTEs that the page table
needs to store, up to 97%.

The Oracle Financials database workload includes a
64MB buffer cache shared by 95 processes running on
an 8-processor system—commercial workloads often
use a larger buffer cache with more server processes.
Using separate page tables for each process, results in
about 16MB of memory for the page tables, a 25%
overhead. While memory utilization is not an issue in
database servers, the 16MB of page tables cause a
significant amount of cache pollution and degrade
system performance. A recent study [20] shows a 10%
speedup in the TPC-B benchmark through use of page
table sharing. The common-mask scheme allows a
single copy of the page table entries for the buffer
cache and code pages resulting in much smaller page
tables.

One way to address the database buffer cache page
table problem is to use 64MB superpage mappings
[15]. We would then use a single PTE per process for
the buffer cache and improve TLB performance as
well. The workload, using a superpage mapping for
the buffer cache, still shows a significant amount of

Workload

#PTEs
in a

Hashed
Page
Table

#PTEs in a
Common-

mask
Hashed

Page Table

%
reduction

 in
number
of PTEs

Number
of

common
regions

used

aimIII (100 users) 5555 1455 74% 1

aimIII (500 users) 27555 7055 75% 1

kenbus (50 users) 21800 1493 93% 7

kenbus (80 users) 34880 2363 93% 7

Idle Workstation 13388 3521 74% 16

Oracle Financials 1895155 57862 97% 9

Oracle Financials
(64MB superpage)

338675 41478 88% 9

Table 5. Memory Savings using the common-mask Scheme
for Hashed Page Tables

17

read-sharing among the processes and the common-
mask scheme continues to help significantly in
reducing the page table size. The data base programs
use large text segments, 6MB and 2.5MB, and several
shared libraries that can be mapped by the common
regions.

Since a common-mask system supports only a limited
number of common regions, the number of common
regions used for a workload is important. AimIII
requires only a single common region for its text
segment. Kenbus uses four common regions for each
of four widely used process’ text segments and three
“system” common regions that are already used by
common daemons such as the router and
automounter. The Oracle Financials uses three
common regions, two program text and one buffer
cache, and six system common regions. The idle
workstation was running the X window system and
defines most of the system common regions. Even on
an idle system, the amount of memory needed for the
page tables is reduced by 74%.

10 The Common-mask Scheme in Other
Domains

This paper introduces the common-mask scheme in
the context of address translation to share translation
entries for aliases. However, the scheme we propose
here is quite general and may be applicable in other
domains where multiple keys map to the same data,
i.e., aliases. In this section, we illustrate the use of the
common-mask scheme in a virtually-tagged cache and
a relational database. Note, however, these only
illustrate that the scheme may be used in other
domains and we have not studied the viability of
practical implementations in these domains.

10.1 Common-mask scheme in virtually-tagged
caches

The common-mask scheme can be applied nearly
identically to virtually tagged12 caches that include
the context number in the cache tag. Virtually-tagged
caches have similar problems with multiple aliases to
heavily shared objects, where the cache cannot use
cache lines that belong to another process even though
they may be referring to the same data. This problem
can be solved by matching the context number using
the common-mask scheme, with the operating system
utilizing the same common regions as the ones used
for TLBs and page tables. However, since virtually-

12. There is no duplication of aliases in physical-tagged caches.

tagged caches are usually set-associative, and are
speed-critical, indexing using the multiple hash probe
as described in Section 6 may result in an impractical
design. Note that a system could employ the common-
mask scheme in the TLB, while the caches can
continue to use conventional context number
matching. In other words, though processes can share
TLB entries, they do not share cache lines, and the
cache behaves as if there was no common-masking.

10.2 Common-mask scheme in relational
databases

A relational database is a simple table with each row
containing a set of attribute fields—some of which
form a key. Many databases have multiple keys
associated with the same attribute values. To reduce
dupl i ca t ion and save on s torage , da tabase
administrators design a database schema by splitting
the single large table into multiple tables replacing the
common attribute columns with pointers to a smaller
relation. During query processing, the large table (or a
subset) is reconstructed using a JOIN operation.

For example, an airplane part inventory relation
storing the details of the parts used to custom-build an
airplane could consist of the following schema:
Serial#, Part#, Part Description(long). Each row in the
relation would contain the description of one of the
thousands of parts used. Though the planes are
custom built, many planes (serial numbers) would use
the same par t—e.g . , (P lane1 ,Par t123) and
(Plane2,Part123) may have the same part descriptions.
A better schema would be: Serial#, Part#, PartID in
relation1 and PartID,Part Description in relation2. The
new schema uses much less storage by eliminating the
duplicate part descriptions of the first schema.

Using the common-mask scheme, the keys can be
extended and assigned values such that multiple key
values will match the key stored in a single row of the
database. This eliminates rows in the relation that
store duplicate information associated with different
keys. Hence, instead of using two relations in the
schema, a single relation may be used.

In the above example, we could use the common-
mask scheme for assigning the Serial# and Part# for
the planes and use the single relation schema but still
get the benefit of the reduced storage as in the two-
relation schema. First, divide the parts into common
groups that are often used together in an airplane.
Second, split the Serial# assigned to airplanes into two
fields—a bit vector identifying the common part
groups that were used and a private unique id
(possibly the serial# in the original schema). Now,

18

each row of the relation either contains the description
of a part used in a single plane—the serial# stores the
private id—or contains the description of a part used
in multiple planes—the serial# stores a bit vector in
the relation.

There are two costs associated with this scheme. First,
the keys must be allocated carefully to maximize the
sharing of the database rows. The problem is similar
to the allocation of the common-mask bits in address
translation and it may not be possible to eliminate all
duplicate rows as the key will have a limited number
of bits. Second, the normal index structures and
lookup routines need to be modified to account for the
special multi-valued keys. Relational databases
sometimes use a hashed index structure and the
common-mask scheme is directly applicable in the
hash index also. The common-mask scheme can be
used in any hash table which maps multiple keys to
the same data, for example, a set-associative TLB and
a hashed page table. The hash table, however, needs
multiple probes which can be expensive.

Another domain where the common-mask scheme
may be used is in associative processing and content
addressable memories. Associative processors used in
applications such as natural language processing and
image recognition are typically based on fully-
associative memories and deal with many aliases. It is
possible that the common-mask scheme, perhaps with
a different domain-specific match function, is
applicable in these domains.

In Section 3, we propose the generic approach to
sharing of translation entries, but did not solve the
generic problem as we considered it impractical for
our application. Future work could include finding a
more efficient solution for the generic problem, and
finding a solution for relatively static domains.

11 Conclusions

Many operating systems allow multiple processes to
share the same physical object. This introduces aliases
into the system where different virtual addresses map
to the same physical address. Aliases increase the size
of the page tables, exerting increased pressure on TLBs
and virtually-tagged caches. Use of segments and a
global address space model is one approach to
avoiding aliases. Most UNIX implementations,
however, use a private address space model and allow
for aliases.

In this paper, we present a common-mask scheme that
allows multiple translations from different processes

to the same physical address to share a single
translation entry in a TLB or page table. The scheme
allows for a limited number of common regions that
processes can share. A common region is a set of
physical pages that a process maps using a fixed
virtual address and a fixed set of permissions for each
physical page in the set. The process context id is
extended with a bit vector that identifies a set of
common regions that a process shares with other
processes. TLB and page table entries support shared
entries by storing a bit vector that can identify
common regions instead of a single process context id.
The scheme requires aliases that use the common
region to use the same virtual address, and can only
support a few common regions. Further, the common-
mask TLBs and page tables continue to work with
conventional private mappings exactly as in the
original system.

We show how the common-mask scheme can be
applied to all levels of the translation hierarchy—
hardware TLBs (fully-associative and set-associative),
memory-based TLBs and page tables. The scheme we
propose is quite general and can be applied in
domains other than address translation where
multiple keys map to the same data e.g., virtually-
tagged caches, associative processors [26], relational
databases and any hash table.

We show that the use of the common-mask scheme in
hardware TLBs can substantially reduce the number
of TLB misses in a multi-user workload. We show a
50% reduction in the number of TLB misses for a 256-
entry fully-associative TLB. However, the scheme
does not work very well in TLBs with a small TLB
reach. We expect the common-mask scheme to be
attractive when combined with other techniques that
improve TLB reach—superpages, subblocking, and
larger TLBs. A set-associative common-mask TLB
would require accessing two sets and may increase
TLB hit time due to the lack of an unique index
function for both the shared and private translations
and the benefits of a hardware set-associative
implementation are not clear.

In software-managed memory-based set-associative
TLBs, the common-mask scheme also requires
accessing two sets. However, the increase in hit time is
small as the TLB hit time for a conventional software-
managed TLB is already high and the second probe
adds very little to the hit time.

The most attractive use of the common-mask scheme
is in hashed page tables, where it can dramatically
reduce the amount of memory required to store the
page tables. Using the common-mask scheme reduces

19

the size of the page tables by 97% for a commercial
database server. The smaller page tables have many
indirect benefits—reducing the TLB miss penalty,
reducing cache pollution due to the page tables,
reducing the number of minor page faults and, in
conjunction with a common-mask hardware TLB,
reducing the number of TLB shootdowns.

Acknowledgments

We would like to acknowledge Basem Nayfeh and
Allan Packer of Sun Microsystems for their help in
obtaining performance numbers for this paper, and
Mark Hill of University of Wisconsin-Madison for
suggesting the name, “common-mask”.

References

[1] J. Baer and W. Wang, “On the Inclusion Properties of Multi-
level Cache Hierarchies”,15th Annual International Sympo-
sium on Computer Architecture, June 1988, pp. 73-80.

[2] D. Blacket al., “Translation Look-Aside Buffer Consistency:
A Software Approach”,3rd Symposium on Architectural Sup-
port for Programming Languages and Operating Systems
(ASPLOS-III),April 1989, pp. 113-122.

[3] J. Chase, H. Levy, M. Feeley and E. Lazowska, “Sharing and
protection in a single address space operating system”, Techni-
cal Report 93-04-02. University of Washington, Dept. of Com-
puter Science and Engineering, April 1993.

[4] Y. Deville and J. Gobert, “A Class of Replacement Policies for
medium and high-associativity structures”,Computer Archi-
tecture News,20(1), Mar 1992, 55-64.

[5] R. Gingellet al., “Shared Libraries in SunOS”,Proceedings of
the Summer USENIX Conference, Summer 1987.

[6] J. Hennessey and D. Patterson,Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers, 1990.

[7] J. Huck and J. Hays, “Architectural Support for Translation
Table Management in Large Address Space Machines”,20th
Annual International Symposium on Computer Architecture,
May 1993, pp. 39-50.

[8] G. Kane, “MIPS RISC Architecture”, Prentice Hall, 1989.

[9] M. Milenkovic, “Microprocessor Memory Management
Units”, IEEE Micro, vol. 10, no. 2, April 1990, pp. 70-85.

[10] E. Koldinger, J. Chase, and S. Eggers, “Architectural Support
for Single Address Space Operating Systems,”5th Symposium
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-V), October 1992, 175-186.

[11] SPARC Architecture Manual, Version 8, SPARC International,
Menlo Park, CA, 1991.

[12] SPEC Newsletter, vol. 3 (2), Spring 1991.

[13] System V Application Binary Interface, USL, Prentice-Hall,
1992.

[14] M. Talluri, S. Kong, M. Hill, and D. Patterson, “Tradeoffs in
Supporting Two Page Sizes”,19th Annual International Sym-
posium on Computer Architecture, May 1992, pp. 355-363.

[15] M. Talluri and M. Hill, “Surpassing the TLB Performance of
Superpages with Less Operating System Support”,6th Sympo-
sium on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-VI),October 1994, pp 171-
182.

[16] J. Torrellaset al., “Characterizing the Caching and Synchro-
nization Performance of a Multiprocessor Operating System”,
5th Symposium on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-V), October
1992, 162-174.

[17] R. Uhlig, D. Nagle, T. Mudge, and S. Sechrest, “Trap-driven
Simulation with Tapeworm II”,6th Symposium on Architec-
tural Support for Programming Languages and Operating Sys-
tems (ASPLOS-VI),October 1994, pp. 132-144.

[18] B. Wheeler and B. Bershad, “Consistency Management for
Virtually Indexed Caches”,5th Symposium on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS-V),October 1992, pp 124-136.

[19] S. E. Wilton and N. Jouppi, “An Enhanced Access and Cycle
Time Model for On-Chip Caches”, WRL Research Report 93/
5, 1993.

[20] H. Yoo and T. Rogers, “UNIX Kernel Support for OLTP Per-
formance,”1993 Winter USENIX, January 1993, pp. 241-247.

[21] Douglas W. Clark and Joel S. Emer, “Performance of the
VAX 11/780 Translation Buffer: Simulation and Measure-
ment”,ACM Transactions on Computer Systems,February
1985, pp. 31-62

[22] R.O. Simpson, P.D. Hester, “IBM RT PC ROMP Processor
and Memory Management Unit Architecture”,IBM System
Journal,January 1987, pp. 346-360.

[23] Peter J. Denning, “The Working Set Model for Program
Behavior”,Communications of the ACM, May 1968, pp. 323-
333.

[24] Peter J. Denning, “Virtual Memory”,Computing Surveys,
September 1970, pp. 153-189.

[25] E. J. Organick, “The Multics System: An Examination of its
Structure”, MIT Press, 1972.

[26] IEEE Micro, special issue, “Associative Memories and Pro-
cessors”, Parts 1 and 2, June and December 1992.

[27] Richard F. Rashidet al, “Machine-Independent Virtual Mem-
ory Management for Paged Uniprocessor and Multiprocessor
Architectures”,IEEE Transactions on Computers, August
1988, pp. 896-908.

[28] Bradley Chen, Anita Borg and Norman Jouppi, “A Simulation
Based Study of TLB Performance”,19th Annual International
Symposium on Computer Architecture, May 1992, pp. 114-
123.

[29] David Nagle, Richard Uhlig and Tim Stanley, “Design
Tradeoffs for Software Managed TLBs”,20th Annual Interna-
tional Symposium on Computer Architecture, May 1993, 27-
38.

[30] Ruby B. Lee, “Precision Architecture”,IEEE Computer, Jan-
uary 1989, 78-91.

[31] Ed Silha, “The PowerPC Architecture, IBM RISC/System
6000 Technology, Volume II”, IBM Corporation, 1993.

20

[32] Jochen Liedtke, “A High Resolution MMU for the Realization
of Huge Fine-Grained Address Spaces and User Level Map-
ping”, German National Research Center for Computer Science
Technical Report No. 829, March 1994.

[33] Jochen Liedtke, “A Virtually Indexed Cache memory with
Efficient Synonym Handling”, German National Research Cen-
ter for Computer Science Technical Report No. 791, October
1993.

21

Appendix A

Workload 64-entry FA 128-entry FA 256-entry FA 128-entry 4-way
SA

256-entry 4-way
SA

aimIII (100 users) 32.8% 38.1% 49.9% 38.4% 46.4%

kenbus (80 users) 2.6% 23.4% 45.0% 20.8% 40.6%

kenbus (50 users) 3.7% 23.5% 45.5% 21.5% 53.7%

doduc (10 copies) 21.5% 42.4% 53.4% 41.6% 53.9%

mdljdp2 (10 copies) 10.0% 18.5% 22.7% 18.6% 22.7%

ora (10 copies) 26.7% 40.0% 51.0% 43.8% 49.2%

ear (10 copies) 31.4% 45.1% 72.3% 45.0% 64.8%

mdljsp2 (10 copies) 5.7% 21.2% 31.8% 21.8% 35.4%

fpppp (10 copies) 17.5% 32.9% 40.8% 76.9% 44.5%

gcc (10 copies) 0.0% 3.4% 31.9% 12.9% 27.8%

Table 6. Percent Reduction in user TLB misses with
common-mask TLB (LRU replacement)

22

About the authors

Yousef A. Khalidi is currently a Senior Staff Engineer
and Principal Investigator at Sun Microsystems
Laboratories. His interests include operating systems,
distributed object-oriented software, computer
architecture, and high-speed networking. He is one of
the principal designers of the Spring operating
system, and a co-winner of Sun’s Presidential Award
in 1993. He has a Ph.D. in Information and Computer
Science from Georgia Institute of Technology, where
he was one of the principal designers of the Ra and
Clouds operating systems.

Madhusudhan Talluri is a Staff Engineer at Sun
Microsystems Laboratories. His interests include
computer architecture, operating systems, and virtual
memory. He has worked on the support of superpages
in the UltraSPARC TLB, page tables, and operating
system. He earned a BTech degree in Computer
Science and Engineering from the Indian Institute of
Technology, Madras, India, in 1989, and M.S. and
Ph.D. degrees in Computer Science from the
University of Wisconsin, Madison, in 1991 and 1995,
respectively. He is a member of ACM, IEEE, and IEEE
Computer Society.

23

© Copyright 1995 Sun Microsystems, Inc. The SML Technical Report Series is published by Sun Microsystems Laboratories, a division of Sun Microsys-
tems, Inc. Printed in U.S.A.

Unlimited copying without fee is permitted provided that the copies are not made nor distributed for direct commercial advantage, and credit to the source is
given. Otherwise, no part of this work covered by copyright hereon may be reproduced in any form or by any means graphic, electronic, or mechanical,
including photocopying, recording, taping, or storage in an information retrieval system, without the prior written permission of the copyright owner.

TRADEMARKS
Sun, Sun Microsystems, and the Sun logo are trademarks or registered trademarks of Sun Microsystems, Inc. UNIX and OPEN LOOK are registered trade-
marks of UNIX System Laboratories, Inc. All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC
International, Inc. SPARCstation, SPARCserver, SPARCengine, SPARCworks, and SPARCompiler are licensed exclusively to Sun Microsystems, Inc.
Solaris is a registered trademark of Sun Microsystems, Inc. NFS is a registered trademark of Sun Microsystems, Inc. MIPS is a registered trademark of MIPS
Technologies, Inc. IBM is a registered trademark of International Business Machines Corporation. PowerPC is a trademark of International Business
Machines Corporation. Oracle is a registered trademark of Oracle Corporation. HP is a registered trademark of Hewlett-Packard Company. PA-Risc is a
trademark of Hewlett-Packard Company. Intel is a registered trademark of Intel Corporation. X Window System is a product (but not a trademark) of Massa-
chusetts Institute of Technology. All other product names mentioned herein are the trademarks of their respective owners.

For information regarding the SML Technical Report Series, contact Jeanie Treichel, Editor-in-Chief <jeanie.treichel@eng.sun.com>.
For distribution issues, contact Amy Tashbook, Assistant Editor <amy.tashbook@eng.sun.com>.

