
1

A Study of the Structure and Performance
of MMU Handling Software

Yousef A. Khalidi
Vikram P. Joshi
Dock Williams

SMLI TR-94-28 June 1994

Abstract:

Modern operating systems provide a rich set of interfaces for mapping, sharing, and protecting memory. Different
memory management unit (MMU) architectures provide different mechanisms for managing memory translations.
Since the same OS usually runs on different MMU architectures, a software “hardware address translation” (hat)
layer that abstracts the MMU architecture is normally implemented between MMU hardware and the virtual mem-
ory system of the OS. In this paper, we study the impact of the OS and the MMU on the structure and performance
of the hat layer. In particular, we concentrate on the role of the hat layer on the scalability of system performance
on symmetric multiprocessors with 2-12 CPUs. The results show that, unlike single-user applications, multi-user
applications require very careful multi-threading of the hat layer to achieve system performance that scales with
the number of CPUs. In addition, multi-threading the hat can result in better performance in lesser amounts of
physical memory.

email addresses:
yousef.khalidi@eng.sun.com
vikram.joshi@eng.sun.com
dock.williams@eng.sun.com

A Sun Microsystems, Inc. Business

M/S 29-01
2550 Garcia Avenue
Mountain View, CA 94043

2

A Study of the Structure and Performance
of MMU Handling Software

Yousef A. Khalidi

Sun Microsystems Laboratories, Inc.

2550 Garcia Avenue

Mountain View, CA 94043

Vikram P. Joshi Dock Williams

SunSoft

2550 Garcia Avenue

Mountain View, CA 94043

1 Introduction

Modern operating systems, such as Chorus® [1],
MACH® [9], NTTM [4], Solaris®/UNIX® SVR4
[5], and Spring [7] provide a rich set of interfaces
for mapping, sharing, and protecting memory.
Typically, these systems allow portions of files (or
more generally, memory objects) to be mapped
simultaneously in different address spaces at dif-
ferent virtual addresses, with perhaps different
protection attributes. These systems also provide
other Virtual Memory (VM) mechanisms such as
copy-on-write, and zero-fill on-demand that are
heavily used in program start-up and execution.
All these features lead to rather complex VM sys-
tem implementations.

Most modern operating systems are portable to
different hardware architectures. Portability
requires careful separation of the machine-inde-
pendent code from machine-dependent code, and

keeping the OS as machine-independent as possi-
ble. These requirements necessitate a layer of
software to abstract the memory management unit
(MMU) architecture and to isolate the bulk of the
VM system from the particulars of the hardware.
A software “hardware address translation” (hat)
layer is normally implemented between the VM
system and the MMU hardware.

This paper is concerned with the structure and
performance of the so-called hat layer. Specifi-
cally, we are interested in studying the following
two aspects of this layer:

• The functionality needed in the hat layer as
dictated by, on one hand, the requirements of
the OS, and on the other hand, the diversity of
MMU architectures.

• The impact of the hat layer on the scalability of
the OS on medium scale symmetric multipro-
cessors (2-12 CPUs) using multi-user bench-
marks.

3

The following approach was taken in this study:
We surveyed several modern portable operating
systems. The operating systems included micro-
kernel as well as more traditional monolithic sys-
tems, and ranged from research prototypes to
“industrial-strength” systems. We then used the
common machine-independent VM features of
these systems to define the interfaces and required
functionality of the hat layer. Subsequently, we
chose a typical hat layer on a commercial multi-
threaded OS and examined its performance with a
set of multi-user and compute-intensive bench-
marks on medium scale multiprocessor systems
(2-12 CPUs). We conducted several experiments
and used the results of the experiments to guide
our changes of the implementation.

The results show that careful multi-threading of
the hat layer is required to achieve system perfor-
mance that scales with the number of CPUs for
multi-user applications. Also, preliminary results
show that multi-threading the hat can allow the
system to perform better when less physical mem-
ory is available, due to parallel handling of minor
page faults and more aggressive page table
reuse.1

This paper is structured as follows: Section 2 sur-
veys some work related to the subject of the
paper. Section 3 derives a set of requirements that
affect the structure of the hat layer. Section 4 then
presents the structure of a typical hat layer. In
Section 5, the performance of a particular hat
implementation is studied through a series of
experiments with various benchmarks on medium
scale multiprocessor systems. Lessons learned
from this study and future work are presented in
section 6.

2 Related Work

Most modern operating systems have a clean sep-
aration between the machine-dependent and inde-

1. Minor faults occur when the required page is in memory, but the
page table does not contain the required translation to the page.
Copy-on-write faults are also included in this category.

pendent portions of the system. The literature
describes several implementations of machine-
dependent MMU hat layers2 [1, 4, 5, 10].
Although hat implementations normally do sup-
port multiprocessor systems, to our knowledge
there is no published material that describes the
performance aspects of the hat layer and the scal-
ability of the implementations on multiprocessor
systems.

Other related material includes a large body of lit-
erature on MMU hardware structures (see [6] for
a good survey), and software page table issues
(e.g., [3, 8]). In general, previous work concen-
trated on the structure of the MMU as it affects
performance on uniprocessor systems. With the
notable exception of [6], previous works did not
consider multi-user benchmarks to any great
extent.

3 Requirements

The structure and the interface of the hat layer are
dictated by a number of requirements. Such
requirements fall into two broad categories:
requirements imposed by the operating system (in
particular, the VM system); and requirements
imposed by the hardware (in particular, by MMU/
TLB/cache architecture).

3.1 OS requirements

We studied several modern operating systems,
specifically Chorus, MACH, NT, Solaris/UNIX
SVR4, and Spring. All of these systems share the
following features:

1. Each system runs on several machine architec-
tures, including uniprocessor and multiproces-
sor systems. Each of the systems has been
ported to at least three MMU architectures.

2. Other names used for the software module that handles the
MMU include Chorus’s GMI, MACH’s pmap, and NT’s HAL.
Solaris, UNIX SVR4, and Spring all use the term “hat,” and actu-
ally share very similar implementations of this module.

4

2. There is a clear separation between the
machine-independent and machine-dependent
parts of the system. In particular, the VM
system is by and large written without assum-
ing a particular MMU or machine architecture.

3. There is a rich set of interfaces for mapping,
sharing, and protecting memory. A given mem-
ory object (e.g., a file) may be mapped simulta-
neously in different address spaces at different
virtual addresses, with perhaps different pro-
tection attributes. The fundamental VM opera-
tions can be abstracted as follows:
map(address_space, memory_obj,

address, length, mobj_offset,
protection_attributes)

unmap(address_space, address,
length)

change_protections(address_space,
address, length,
new_protections)

Figure 1 shows some memory mappings that
are possible using these VM operations.

4. There is a need to keep track of which pages
are modified (dirtied), and which are refer-
enced. The VM normally requires some sup-
port from the machine-dependent portion of
the system for maintaining the modified and
referenced bits.

Figure 1. Example of possible memory mappings

address space 1 address space 2

file 1

file 2

3.2 MMU requirements

A wide variety of MMU architectures are used by
modern operating systems. Despite this wide vari-
ety of architectures, some characteristics can be
observed:

1. Some MMUs impose a specific page table
structure that is accessed by the hardware
when handling translation lookside buffer
(TLB) misses. In general, this hardware-
imposed page table is only a cache of all trans-
lations, and intervention of system software is
necessary if the hardware fails to locate a
desired translation in the page table.

2. Some MMUs require the software to handle all
TLB misses. Such MMUs do not impose a spe-
cific page table structure. However, for perfor-
mance reasons, they do require fast software
TLB miss handling. Fast software TLB han-
dling usually implies the need for (software)
page tables that are fast to access.

3. Some MMU and machine architectures require
other cache and TLB handling from the soft-
ware. For example, in multiprocessor systems,
TLB shoot-down might be required when
unmapping pages. In virtually-indexed caches,
appropriate cache flushing might be needed.

4. Some MMUs require the software to manage a
limited number of address space contexts or
segment registers.

5. Finally, some machine architectures require
managing separate I/O or graphics MMUs that
are used to set up translations to and from
device space. Depending on the machine archi-
tecture, the I/O translations maybe restricted to
the kernel address space, or they may map the
device space to any user address.

4 HAT Structure

The requirements of Section 3.1 result in a set of
operations that the hat layer should provide. Sec-
tion 4.1 describes such a hat interface. In turn, the
interface of the hat layer coupled with the MMU
requirements of Section 3.2 dictate a set of data
structures that the hat layer should implement.
The data structures can be divided into two parts:

5

machine-independent structures that are needed to
support the interface of the hat layer (Section 4.2),
and data structures that depend on the particular
MMU/machine architecture (Section 4.3).

4.1 Interface

The interface to the hat layer is usually simple,
and can be abstracted as follows:

1. Load translations from an address space to a
set of pages.

2. Unload translations to a set of pages from all
address spaces (and CPUs).

3. Unload translations of a set of virtual addresses
from one address space (and all CPUs).

4. Change the protection on a set of virtual
addresses from one address space (and all
CPUs).

5. Set/Clear reference and dirty bits.

4.2 Machine-independent data structures

Most hat operations involve address spaces and/or
individual pages, and there is a hat-specific data
structure to represent each address space and page
in the system. Since a given page maybe mapped
at more than one virtual address simultaneously,
each page structure includes a list of all active
mappings to the page. Moreover, since an address
space may have translations active in more than
one MMU simultaneously, a list of MMU specific
information (one per MMU) is needed per address
space. Figure 2 graphically shows the relation-
ships among the hat data structures. Much of the
complexity of the hat layer lies in efficiently
arranging and manipulating these data structures.

Note that although hat layers from different oper-
ating systems may have a somewhat different
structure than the general structure shown in Fig-
ure 2, the information maintained by a different
hat implementation is basically the same. For
example, some implementations may not have a
list of MMU descriptors, but instead may allocate
a fixed array of descriptors. Figure 2 closely

resembles the hat layer implementations used in
Solaris, UNIX SVR4, and Spring.

4.3 Machine-dependent data structures

In addition to the data structures described in the
previous section, the hat layer maintains the
MMU page tables (if any are required). For exam-
ple, some MMUs such as the one used in Super-
SPARCTM [2] require a page table per address
space organized as a three-level tree. The “MMU
descriptor” in Figure 2 would in this case contain
a pointer to such a three-level table.

The hat layer may implement a page table that
acts as an extended cache for the TLB even if the
MMU does not require such a page table. For
example, the MMU in the R4000® [9], has a soft-
ware-controlled TLB and the hardware does not
specify a “page table” structure. However, fast
lookup by the software is very important for effi-
cient TLB miss handling and, therefore, the hat
layer may implement a page table of translations
anyway. This page table is then searched by a fast
trap handler on TLB misses. If the translation is

address
space
descriptor

MMU
desc

MMU
desc

MMU
desc

page frame
descriptor

pte pte pte pte

to different
address space
desc

Figure 2. Basic hat data structures

Each address space descriptor has a list of MMU descriptors,
where each MMU descriptor includes an MMU specific page
table for the address space when using this particular MMU. The
size of this list is≤ thε number of MMUs in the system. Each
page frame descriptor has a list of all translations to the page
(indicated as page table entries, pte’s, in the figure). Each transla-
tion belongs to one address space in a particular MMU.

6

not found by the handler, a higher-level fault is
declared, and the VM system takes over the task
of locating the translation.

For machines that require support for I/O or
graphics MMUs, the “MMU descriptors” of Fig-
ure 2 may also contain a pointer to the I/O device-
specific page table (which may have an organiza-
tion different from the MMU page table format).

Finally, the hat may also maintain some other
machine-dependent data structures, for example,
free memory pools of page table structures.

4.4 Synchronization

The simplest implementation of a hat layer can
synchronize several simultaneous requests by
using one global hat lock. Each hat call acquires
this lock, executes the operation, then releases the
lock. Multiple threads are serialized using the glo-
bal lock and no parallelism of hat operations is
possible. On uniprocessor systems or very small
multiprocessors, this is an acceptable solution.

More sophisticated implementations may use sev-
eral locks to allow more than one hat operation to
execute in parallel. In the remainder of this sec-
tion we look into some of the issues related to
multi-threading the hat layer. We investigate the
impact of the various synchronization schemes on
performance in the next section.

Most hat operations fall into one of two classes:

1. Operations that modify one or more page table
entry (pte’s) on a page descriptor mapping list
(e.g., unloading the translations to a page, or
updating the reference and modified bits from
the TLB on some MMUs). These operations
usually change some of the state flags in the
page frame descriptor as well.

2. Operations that modify one or more mappings
in an address space (e.g., loading or unloading
a virtual address to a page translation).

Note that some hat operations end up falling into
both categories. As can be seen from Figure 2,

there are several data structures that need to be
protected:

• Each page frame descriptor and its pte map-
ping list.

Since operations that fall into category (1)
above usually access at least one pte and the
page frame descriptor itself, it is sufficient to
provide one mutual exclusion lock per page
frame descriptor that also protects the mapping
list.

• Each address space descriptor.

Since the number of MMU descriptors for a
given address space does not change very often
(and is bounded by the number of MMUs in
the system), using a reader/writer lock to coor-
dinate accesses to the list using the following
semantics is appropriate: a reader lock is held
to traverse the list, while a writer lock is
needed to add or remove from the list.

• Each MMU descriptor.

Operations of category (2) above traverse the
MMU descriptor list of a given address space
(after acquiring a reader’s lock on the address
space descriptor), then modify the state of an
MMU descriptor (which contains among other
things any hardware-dependent page tables).
To allow parallel operations on the same
address space, a mutual exclusion lock is pro-
vided per MMU descriptor.

• Free resource lists.

The hat layer usually maintains some free
resource lists, and accessing these lists needs to
be protected by appropriate mutual exclusion
locks (such free resource lists may include
memory blocks that represent machine-depen-
dent page table components).

Due to memory considerations, allocating a
mutual exclusion local variable (mutex) per
descriptor may not be feasible. (For example, on a
64MB machine with 4KB page size, reserving 4
bytes for a mutex per page frame descriptor con-
sumes 64KB of memory just for the space taken
by the mutex variables.) To conserve space, the
per-frame descriptor and per-MMU descriptor
locks can be logical locks instead of actual

7

mutexes. A monitor-like implementation then
would use:

• a per descriptorbusy andwanted flags, and

• a global descriptor mutex for page frame
descriptors, and another for MMU descriptors.

The implementation of the lock is straightfor-
ward: after acquiring the appropriate global
mutex, the per-descriptor busy flag is checked. If
the flag is set, then the wanted flag is set and the
thread sleeps on a condition variable.3 When the
busy flag is clear, the thread sets it (to indicate
that it has acquired the lock) and releases the glo-
bal mutex.

An alternative implementation is to use an array
of global mutexes, where each mutex in this array
controls a set of descriptors. A simple mapping
function is then used to choose a mutex given a
descriptor (e.g., by hashing the address of the
descriptor).

5 Performance Evaluation

5.1 Scalability on MP systems

In evaluating the performance of the hat layer, we
wanted to answer the basic question of how the
structure of the hat layer affects the scalability of
multiprocessor systems?

To answer this question, we started with an actual
implementation of a multi-threaded operating sys-
tem and its hat layer. Specifically, we used the
Solaris operating system, a multi-threaded operat-
ing system that runs on a variety of machines and
MMUs, including uniprocessor and multiproces-
sor systems. The particular release of the system
we used (Solaris 2.1) had a fully multi-threaded
kernel, but used a single lock around all hat oper-
ations. Although considerable effort went into
multi-threading the VM system, the file system

3. A per-descriptor condition variable is usually needed anyway,
so this scheme adds only two flags per-descriptor.

and other traditional parts of the OS, a single lock
around the hat layer was initially thought to be an
acceptable solution to protect the hat data struc-
tures.

The next section describes the benchmarks used
to evaluate the scalability of the system. We con-
ducted several experiments (Section 5.3) and used
the results of the experiments to guide our
changes of the implementation.

5.2 Benchmarks

We chose four benchmarks that exercised differ-
ent portions of the system. Table 1 summarizes
the benchmarks. Kenbus1 and TPC-B are macro-
benchmarks that characterize the capacity of a
system in a multi-user environment, while
SPECrate_int92 is mostly a CPU benchmark.
Kenbus1 is based on the SPEC SDM (System
Development Multi-Tasking) suite [12]. It mea-
sures the throughput of the system by simulating
different users executing around eighteen UNIX
commands, including the C compiler and other
commands. TPC-B is a standard database bench-
mark.

SPECrate_int92 measures CPU capacity
(throughput) of a system as opposed to CPU
speed. The benchmark consists of running multi-
ple copies of the SPEC92 suite to determine the
capacity of the system [12].

As its name implies, Microbench is a micro
benchmark that measures various OS operations
such as forking a process, and page fault han-
dling. It attempts to measure individual opera-
tions under contention by increasing the load as
the number of CPUs increase. The version we
used is based on the BSD benchmark suite.
Microbench is useful in understanding the effects
of various changes on the behavior of individual

8

operations and in guiding the effort of tuning the
operating system.

5.3 Experiments

We conducted most of our experiments on a
SPARCcenterTM 2000, a shared bus symmetric
multiprocessor [11]. The machine we used had 12
50Mhz SuperSPARC CPUs each with a 1MB sec-
ond-level cache. We varied the amount of physi-
cal memory from 128MB to 512MB depending
on the experiment. We also used a 4 CPU
SPARCserverTM 600 series machine for some
Microbench experiments as described below. Sev-
eral runs were used for each data point.

Starting with the single global mutex, we ran a
profiled version of the OS that calculated the
amount of lock contention when running TPC-B
benchmark on an 8 CPU system with 512MB of
memory. The results showed that the hat layer
lock was found busy (held) between 16-20% of
the total times it was acquired. Calculating the
total wait time on the single hat mutex showed
that this lock had by far the longest total wait time
of all locks in the OS. This clearly showed that
the hat lock was a bottleneck in at least this data-
base benchmark.

We proceeded with multi-threading the imple-
mentation of the hat layer as described in Section
4.4: we used a lock per page frame descriptor, a
lock per MMU descriptor, and a global lock for
the MMU free resource list. (The address space

Benchmark Type Description

Kenbus1 macro Represents UNIX/C
usage in an R&D envi-
ronment.

TPC-B macro A database benchmark
SPECrate_int92 CPU Measures CPU through-

put of an MP system as
opposed to CPU speed.

Microbench micro Measures individual sys-
tem operations under
contention.

Table 1. Benchmarks used

descriptor already had a readers-writers lock as
part of the VM system, so we used this lock to
control traversals of the MMU descriptor list.)
The per-page frame and per-MMU descriptor
locks were logical locks implemented as
described before in Section 4.4, using per-
descriptor busy and wanted flags and two global
mutexes (page_mutex and mmu_mutex). We used
a third global mutex for the machine-dependent
resource pool of the hat (hat_resource_mutex).

Measuring lock contention on the multi-threaded
hat using the same TPC-B benchmark in an 8
CPU configuration showed contention values of
6-9% for page_mutex, 2-3% for mmu_mutex, and
<1% for hat_resource_mutex. Although the total
number of mutex lock operations increased by
38%, the total wait time on hat-related locks went
down by 49%.

Next, we evaluated the micro effects of multi-
threading the hat. Specifically, we ran
Microbench using the single-lock hat and the
multi-threaded hat on several CPU configura-
tions. As described in Section 5.2, Microbench
attempts to calculate the cost of individual opera-

 12 CPUs 2 CPUs 4 CPUs 8 CPUs-5%

5%

15%

25%

35% fork
exec
page fault
brk

%
 im

pr
ov

em
en

t f
ro

m
 o

ve
r

lo
ck

 h
at

Figure 3. Microbench using 512MB of memory

Four categories were measured: “fork” includesfork and
vfork with sizes ranging from 0 to 1MB, “exec” includes
exec andvexec of a null process with sizes also ranging from
0 to 1MB. “Page fault” includes minor (non-disk related) faults,
plus copy-on-write faults. “Brk” results in allocating more zero-
filled memory to the requesting process.

9

tions under contention. We concentrated on four
operation categories that involved the hat: fork-
ing, execing, handling minor page faults, and
increasing the memory allocated to a process
(“brk” operation). For each category we averaged
several operations. For example, “fork” is actu-
ally the average of fork and vfork operations,
where each operation is executed for sizes 0B,
10KB, and 1MB. Figure 3 shows the results as a
percentage decrease of the operation cost relative
to the operation cost in the single lock implemen-
tation. With the exception of the “brk” operation
for the 2 CPU case, the multi-threaded implemen-
tation is faster for all configuration and the perfor-
mance difference increases as the number of
CPUs increase up to 8 CPUs. Beyond 8 CPUs,
other kernel locks start to reduce the effectiveness
of the multi-threaded hat for the fork and exec
calls.

To evaluate the macro effect of multi-threading
the hat, we ran the TPC-B benchmark on an 8-
CPU machine with 512M of memory. The results
are shown in Figure 4. Multi-threading the hat
makes a very pronounced difference on the scal-
ability of this database benchmark

Figure 5 shows the results after running the
Kenbus1, another macro benchmark. Although
this benchmark does not scale with the number of
CPUs as well as TPC-B, the positive effects of the
multi-threaded hat implementation are clearly
seen nonetheless. Examining the lock contention
data for this experiment showed that the dip in
performance when using 12 CPUs is not due to
the hat layer. Multi-threading the hat layer
allowed the system to scale to a larger number of
CPUs and exposed other kernel lock bottlenecks.

Figure 6 shows the results of running the
SPECrate_int92. As we expected, our changes to
the hat had little impact on this mostly CPU inten-
sive benchmark.

Next, we were interested in seeing the effect of
multi-threading the hat while varying the amount
of physical memory. We conducted a series of

experiments using Microbench on a 1-4 CPU
SPARCServer 600 system, while varying the
amount of physical memory from as low as 16MB
to 128MB. The results are shown in figures 7 and
8. There was no significant paging activity during
any of the Microbench runs.

1 2 4 8
Number of CPUs

100%

200%

300%

400%

500%

600%

700%

800%

P
er

ce
nt

ag
e

in
cr

ea
se Single lock

Multi-threaded

Figure 4. TPC-B using 512MB of memory

Comparison of TPC-B benchmark performance using 1-8
CPUs. The multi-threaded implementation scales almost lin-
early, while the single-thread implementation does not scale
well beyond 2 CPUs.

1 2 4 8 12
Number of CPUs

100%

200%

300%

400%

P
er

ce
nt

ag
e

in
cr

ea
se

Single lock

Multi-threaded

Figure 5. Kenbus1 using 512MB of memory

Comparison of Kenbus1 performance using 1-12 CPUs. Note
that the drop between 8 and 12 CPU is due to the multi-
threaded hat layer exposing other kernel lock bottlenecks.

10

It is interesting to note the comparison of perfor-
mance between the 128MB single lock vs. 16MB
multi-threaded implementations (left-most col-
umn in figure 8). For this micro benchmark,
multi-threading the hat enables better perfor-
mance at 16MB than a single-lock implementa-

1 2 4 8
Number of CPUs

100%

200%

300%

400%

500%

600%

700%

800%
P

er
ce

nt
ag

e
In

cr
ea

se Single lock
Multi-threaded

Figure 6. SPECrate_int92 using 512MB of memory

SPECrate_int92 shows little improvement using the multi-
threaded hat implementation.

10%

20%

30%

Memory and number of CPUs

3264 128 1286432

2 CPUs 4 CPUs

fork

page fault

%
 im

pr
ov

em
en

t o
ve

r
si

ng
le

 lo
ck

 h
at

Figure 7. Microbench w/different memory and
number of CPUs

Microbench runs for different memory sizes and number of
CPUs. All memory sizes are in megabytes.

tion that uses 128MB of memory. We believe that
this is partly due to the multi-threaded implemen-
tation aggressively returning page table memory
to the free resource pool when unloading transla-
tions. A load operation running in parallel can
then reuse the memory and complete the opera-
tion while the unload operation is still running. In
contrast, the single lock implementation delays
freeing the memory until its task is complete
(which may involve a lengthy TLB shoot down
operation).

We did not experiment with varying the size of
physical memory when running multi-user bench-
marks. The interaction of I/O, physical memory,
and the role of the hat layer is an area we plan to
investigate as part of our future work (see Section
6.2).

128-16

Memory and number of CPUs

10%

20%

30%

%
 im

pr
ov

em
en

t o
ve

r
si

ng
le

 lo
ck

 h
at

128-32 128-64 128-32 128-64

2 CPUs 4 CPUs

fork

page fault

Figure 8. Microbench comparing 128MB single-
lock implementation with different multi-
threaded memory sizes

Comparison of a 128MB single-lock hat system with multi-
threaded hat systems of various memory sizes. For example,
“128-16” designates a comparison of the performance of
128MB single lock hat system with a 16MB multi-threaded hat
system. Using this benchmark, a multi-threaded system using
only 16MB of memory has better performance than a single-
lock hat system with 128MB of memory.

11

6 Conclusions and Future Work

6.1 Conclusions

Multi-threading the hat layer is required for appli-
cations that use the OS heavily. For a class of
multi-user applications, a single lock around the
hat data structures does not allow the system to
scale to more than a few CPUs. The OS, after all,
is a server that is exercised heavily by multi-user,
general purpose applications. The TPC-B and
Kenbus1 benchmarks benefited considerably
from the extra parallelism.

Increasing the parallelism in the hat layer allows
more page faults to proceed in parallel. In particu-
lar, more minor faults can be handled in parallel,
which has implications on the throughput of a
multiprocessor:

• More CPUs can be handling minor faults in
parallel.

• Less amount of physical memory may need to
be set aside for (hardware or software) page
tables.

However, the results of the interaction of memory
size and the hat are very preliminary.

Finally, multi-threading the hat layer alone is not
enough. Our work was motivated by previous
multi-threading efforts that were done in early
versions of Solaris, particularly to the VM and file
systems. The overhead of the hat lock was
observed only after the VM and file systems were
considerably tuned. In turn, our work exposed
newer bottlenecks in the system. Anticipating the
time when the hat becomes a bottleneck again, we
identify a number of further improvements in
Section 6.2.

6.2 Future Work

We identify below more possible improvements
to the hat layer implementation. These improve-
ments may become necessary in the future after
other OS locking bottlenecks are removed:4

1. Hash the global page_mutex as described in
Section 4.4.

The global page_mutex shows moderate (6-
9%) contention in some benchmarks. This
mutex can be replaced by an array of mutexes.
A particular mutex is then chosen based on
hashing the address of the page structure
pointer. The hashing would prevent unneces-
sary blocking of unrelated accesses to pages
that fall into different hash buckets. A similar
scheme can also be applied to the mmu_mutex
if the need arises.

2. Handle sparse address spaces efficiently.

We see a trend towards sparse address spaces,
with the average size of each contiguously
mapped area getting smaller. This can be seen
today in UNIX systems that use a large number
of small dynamically-linked libraries. Most
current hat implementations are not well-suited
for handling sparse address spaces.

3. Use multiple locks for hat free resource lists.

There is a single hat_resource_mutex that pro-
tects all of the hat free lists which can be bro-
ken down into a lock per list.

4. Simplify LRU context list.

It may help to do away with maintenance of an
LRU context list on a machine with lots of
contexts until a tunable percentage of them are
allocated.

We are now seeing more and more multi-threaded
applications that run in the same address space.
To allow maximum thread parallelism, there is a
need to multi-thread hat operations on the same
address space. Our locking strategy (Section 4.4)
allows many hat operations to proceed in parallel
on the same address space (e.g., two load transla-
tion operations on different MMUs). It would be
interesting to quantify the effect of this potential
parallelism on real applications.

4. Most of the listed improvements were made to more recent ver-
sions of the Solaris operating system after our study was con-
cluded.

12

An area which we plan to address is the interac-
tion of I/O, and the amount of physical memory
as they relate to the hat layer. A fixed percentage
of physical memory is normally dedicated to the
hat translation tables. This percentage is calcu-
lated at boot time and is a function of the total
amount of physical memory (plus perhaps a func-
tion of the number of CPUs). The translation
tables are used as a cache of total translations in
the OS. If the cache is too small, the system may
experience a large number of minor faults. If the
cache is too big, memory that otherwise could be
used for applications may be wasted. We would
like to experiment with different sizes for the hat
page table pool, and with the classes of applica-
tions that would benefit from bigger page tables.

Acknowledgments

We would like to thank Gyan Bhal for obtaining
much of the performance data. We would like to
also thank Nhan Chu and Todd Clayton for their
help.

References

[1] Abrosimov, Vadim, Marc Rozier, and Marc
Shapiro. “Generic Memory Management for
Operating System Kernels.”Proceedings of the
12th Symposium on Operating Systems Princi-
ples (SOSP '89) (1989): 123–136.

[2] Blanck, G. and S. Krueger. “The Super-
SPARC Microprocessor.”COMPCON (Febru-
ary 1992): 136–141.

[3] Cheriton, D., A. Gupta, P. Boyle, and H.
Goosen. “The VMP Multiprocessor: Initial
Experience, Refinements and Performance
Evaluation.”Proceedings of the 15th Interna-
tional Symposium on Computer Architectures
(May 1988).

[4] Custer, Helen.Inside Windows NT.
Microsoft Press. 1993.

[5] Gingell, Robert A., Joseph P. Moran, and
William A. Shannon. “Virtual Memory Archi-
tecture in SunOS.”Proceedings of 1987 Sum-
mer USENIX Conference (June 1987).

[6] Huck, Jerry and Jim Hays. “Architectural
Support for Translation Table Management in
Large Address Space Machines.”Proceedings
of the 20th International Symposium on Com-
puter Architectures (May 1993).

[7] Khalidi, Yousef A. and Michael N. Nelson.
“A Flexible External Paging Interface.”Pro-
ceedings of the 2nd Workshop on Microkernels
and Other Kernel Architectures (September
1993). AlsoSun Microsystems Laboratories,
Inc. Technical Report SMLI-TR-93-20 (Octo-
ber 1993).

[8] Nagle, David et al. “Design Tradeoffs for
Software-Managed TLBs.”Proceedings of the
20th International Symposium on Computer
Architectures (May 1993).

[9] MIPS Computer Systems.MIPS R4000
Microprocessor User’s Manual (1991).

[10] Rashid, R., A. Tevanian, M. Young, D.
Golub, R. Baron, D. Black, W. Bolosky, and J.
Chew. “Machine-Independent Virtual Mem-
ory Management for Paged Uniprocessor and
Multiprocessor Architectures.”IEEE Transac-
tions on Computers 37 (8) (August 1988):
896–908.

[11] Sun Microsystems, Inc. SPARCcenter
2000 Architecture and Implementation. Tech-
nical white paper (November 1992).

[12] SPEC Newsletter 3 (2) (spring 1991).

13

About the authors

Yousef A. Khalidi is a Senior Staff Engineer at
Sun Microsystems Laboratories, Inc. His interests
include operating systems, distributed object-ori-
ented software, high speed networking, and com-
puter architecture. He is one of the principal
designers of the Spring operating system. He has
a Ph.D. in Information and Computer Science
from Georgia Institute of Technology.

Vikram Joshi is a Staff Engineer at SunSoft, Inc.,
and is currently working on the virtual memory
system of the Spring operating system. He has
been with Sun Microsystems, Inc. for six years,
and amongst other things, has ported Solaris to
Sun’s desktops/high end servers. Prior to Spring,
he was involved in the area of software manage-
ment for MMU/TLB/Cache architectures and per-
formance evaluation for Sun’s 2-20 processor
machines. Mr. Joshi’s research interests are in dis-
tributed systems and multiprocessor architectures.
He received his M.S. in Physics and B.S. in
Chemical Engineering from BITS, Pilanti, India
in 1985.

Dock Williams received an S.B. in Electrical
Engineering and Computer Science from M.I.T.
in 1980. Prior to joining Sun, he worked at Amer-
ican Information Systems, ONYX Systems, Tri-
Comp Systems, and Hughes Aircraft Radar Sys-
tems.

14

© Copyright 1994 Sun Microsystems, Inc. The SMLI Technical Report Series is published by Sun Microsystems Laboratories, Inc.
Printed in U.S.A.

Unlimited copying without fee is permitted provided that the copies are not made nor distributed for direct commercial advantage, and credit to the source is
given. Otherwise, no part of this work covered by copyright hereon may be reproduced in any form or by any means graphic, electronic, or mechanical,
including photocopying, recording, taping, or storage in an information retrieval system, without the prior written permission of the copyright owner.

TRADEMARKS
Sun, Sun Microsystems, and the Sun logo are trademarks or registered trademarks of Sun Microsystems, Inc. UNIX and OPEN LOOK are registered trade-
marks of UNIX System Laboratories, Inc. All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC
International, Inc. SPARCstation, SPARCserver, SPARCengine, SPARCworks, and SPARCompiler are licensed exclusively to Sun Microsystems, Inc. Solaris
is a registered trademark of Sun Microsystems, Inc. CHORUS is a registered trademark of Chorus Systems. Connection Machine is a registered trademark of
Thinking Machines Corporation. Microsoft Windows NT is a trademark of Microsoft Corporation. R4000 is a registered trademark of MIPS Computer Sys-
tems Inc. All other product names mentioned herein are the trademarks of their respective owners.

