
The Spring Virtual Memory System

Yousef A. Khalidi
Michael N. Nelson

SMLI TR-93-9 February 1993

Abstract:

In this document we describe the architecture and the implementation of the Spring virtual memory system.
The architecture separates the tasks of maintaining memory mappings and protections from the task of paging
memory in and out of backing store. A per-node virtual memory manager is responsible for maintaining the
mappings on the local machine while external pagers are responsible for managing backing store. A novel
aspect of the architecture is the separation of the memory abstraction from the interface that provides the pag-
ing operations. The design supports flexible memory sharing, sparse address spaces, and copy-on-write
mechanisms. Support for distributed shared memory and extensible stackable file systems are natural conse-
quences of the design. The architecture is implemented and has been in use for over two years as part of an
experimental operating system.

Categories and Subject Descriptors:

 D.4 Software:
[Operating Systems]: D.4.2 Storage management

 D.4.3 File systems management
D.4.6 Security and protection

 D.4.7 Distributed systems

Additional Keywords and Phrases : Object-oriented operating system, Distributed shared memory,
 Memory coherency, Micro-kernel

email address:
yak@eng.sun.com
mnn@eng.sun.com

A Sun Microsystems, Inc. Business

M/S 29-01
2550 Garcia Avenue
Mountain View, CA 94043

2

The Spring Virtual Memory System

Yousef A. Khalidi, Michael N. Nelson

Sun Microsystems Laboratories, Inc.
2550 Garcia Avenue

Mountain View, CA 94043

1 Introduction

Spring is an experimental object-oriented operating sys-
tem developed by our research group at Sun Microsystems
Laboratories. In Spring the object paradigm pervades and
unifies the system. The system is structured around a small
nucleus that provides the basic mechanisms for object
invocation and thread control. Traditional operating sys-
tem functionality (such as file system services) is built on
top of the substrate provided by the nucleus as user-level
applications. Entities in the system are represented by
objects, and services are requested by invoking objects.
Spring is a distributed multi-threaded system that is con-
structed to exploit a range of systems from tightly-coupled
multiprocessors to more loosely-coupled networks. Spring
supports traditional UNIX programs through compatibil-
ity mechanisms [1], but it is aimed toward new computing
requirements, such as transparent distribution, high reli-
ability, and stronger security.

The architecture and implementation of the virtual mem-
ory system of Spring is presented in this document. The
design follows the basic Spring object model and strives to
meet the requirements of the diverse intended applications
of Spring. An accompanying document [2] describes the
implementation of the Spring file system, an important cli-
ent of the virtual memory system.

The Spring virtual memory system provides:

• Flexible, distributed, and secure memory mapping and
sharing.

• Well-defined object-oriented interfaces for external
(user) pagers.

• Support for distributed shared memory.

• Support for stackable file systems.

• Efficient bulk-data transfer mechanisms.

The rest of this section provides an overview of Spring.
The goals of the virtual memory system design are listed
in section 2. Related work is described in section 3. Sec-
tion 4 gives an overview of the virtual memory system and
lists its basic components. The virtual memory manager is
described in section 5. Section 6 discusses the objects
implemented by the external pagers. Section 7 details an
important protocol used between the virtual memory sys-
tem and the pagers. Section 8 gives a brief overview of the
Spring file system, an important client of the virtual mem-
ory system. Implementation details of the virtual memory
system are presented in section 9. Finally, conclusions and
planned extensions to the architecture are listed in section
10.

1.1 The Spring Operating System

Spring is a distributed, multi-threaded operating system
that is structured around the notion ofobjects. A Spring
object is an abstraction that contains state and provides a
set of methods to manipulate that state. The description of
the object and its methods is aninterface that is specified

© 1993 Sun Microsystems, Inc. UNIX is a registered trademark of UNIX
Systems Laboratories, Inc.

Design Goals

The Spring Virtual Memory System 3

in aninterface definition language. The interface is a
strongly-typed contract between the implementor (server)
and theclient of the object.

Spring strives to keep a clear separation betweeninter-
faces andimplementations, and in general there is no spe-
cial status for interfaces that are provided as part of the
base system. The Spring system is perceived as a set of
interfaces rather than a set of implementations.

A Spring domain is anaddress space with a collection of
threads. A given domain may act as the server of some
objects and the clients of other objects. The implementor
and the client can be in the same domain or in a different
domain. In the latter case, the representation of the object
includes an unforgeable nucleushandle that identifies the
server domain.

Since Spring is object-oriented it supports the notion of
interfaceinheritance. An interface that accepts an object
of typefoo will also accept a subclass of foo. For example,
theaddress space object has a method that takes amemory
object and maps it in the address space. The same method
will also acceptfile andframe_buffer objects as long as
they inherit from the memory object interface.

The Spring kernel supports basic cross domain invoca-
tions, threads, and low-level machine-dependent interrupt
handling, and provides basic virtual memory support for
memory mapping and physical memory management. A
Spring kernel does not know about other Spring kernels—
all remote invocations are handled by a network proxy
server. In addition, the virtual memory system depends on
external pagers to handle storage and network coherency.

A typical Spring node runs several servers in addition to
the kernel (Figure 1). These include the domain and virtual
memory managers; a name server; a file server; a linker
domain that is responsible for managing and caching
dynamically linked libraries; a network proxy that handles
remote invocations; and a tty server that provides basic
terminal handling as well as frame-buffer and mouse sup-
port. Support for running UNIX binaries is also provided
[1] .

The Spring file system supports cache coherent files [2].
The file object interface inherits from the memory object
interface and therefore can be memory mapped. The file
system uses the virtual memory system to provide data

caching and uses the operators provided by virtual mem-
ory caches to keep the data coherent. The file system also
acts as the system pager (see section 8).

2 Design Goals

The design of the virtual memory system is motivated by
the following considerations:

• Spring object model. The virtual memory system
should adhere to the Spring object model and should
meet the general goals of Spring, such as security and
extensibility.

• Separation of concerns.Separation of policyvs.
mechanisms is a very important concept in Spring that
the virtual memory system must follow. The virtual
memory system should provide a basic set of mecha-
nisms but should as much as possible leave the policies
of using these mechanisms to other entities in the sys-
tem.

• Distribution. In Spring, object invocation is location
transparent and distribution is the default. The virtual
memory system facilities must be usable regardless of
their location. Any two address space objects (see sec-
tion 4) may share a range of memory between them.
Since the address spaces may be on different nodes,
distributed shared memory must be supported.

There are three important consequences of our design
goals:

network
proxy

caching
fs

UNIX
process

uelib

csh

uelib
name
server

linkertty
server

Spring
application

X11 server

Figure 1. Major system components of a Spring node

domain
manager

vm
manager

Kernel

server

Related Work

4 The Spring Virtual Memory System

• Any client should be able to implement the abstraction
of memory objects. The client could be located on a
local or remote machine.

• The base system must not put arbitrary trust in the
implementor of a memory object. The implementor of
a memory object is allowed to handle its own memory
only.

• Since memory objects are abstractions of memory, the
architecture should allow for different views on the
same memory to be implemented efficiently. In an
object-oriented system, it is desirable for a memory
object to encapsulate other properties, such as protec-
tion properties (e.g., read-onlyvs. read-write). An
implementor of a memory object may want to hand out
a read-only memory object to one client while giving
another client a read-write memory object, where both
objects encapsulate the same underlying memory (e.g.,
see [2]). When both clients map their respective mem-
ory objects on the same machine, each should be able
to do so given the protection restrictions embodied in
the memory objects. Moreover, mapping the memory
objects should cause the system to use the same under-
lying memory cached at the node.

3 Related Work

There are several systems that provide rich virtual mem-
ory subsystems that support the notion of external pagers
and distributed shared memory [3][5][6][7][8][9]. An
example of an early system that provides flexible memory
mapping support is Multics [10]. Apollo Domain [11] is
an early commercial system that supported the notion of
distributed virtual memory. The Choices [12] system uses
an object-oriented framework for building the operating
system but it has a more traditional virtual memory system
with no support for distribution or external pagers. In this
section we concentrate on comparing our virtual memory
system to MACH and to traditional commercial UNIX as
represented by SunOS/SVR4.

3.1 MACH

The MACH operating system [3][4] has a flexible virtual
memory system that supports an external pager interface.
Our system differs from MACH in several aspects:

• Spring provides different views on the same memory.
In our system we have the ability to encapsulate differ-

ent access rights in different memory objects that rep-
resent the same underlying memory. The memory
objects can then be handed out to different clients. Cli-
ents can then map their respective memory objects on
the same node such that:

each mapping cannot exceed the protection restric-
tions embodied in the memory objects (e.g., a
read-only memory object cannot be mapped read-
write),

each mapping uses thesame physical memory
cached at the node,

and each mapping is done in a manner that does
not involve a third trusted agent between the vir-
tual memory system and the implementor of the
memory object.

To achieve a similar effect in MACH one has to:

a. have a copy of the data per memory object and
force the pager to copy the data between the differ-
ent memory objects even on the same machine, or

b. develop a protocol based on a third trusted agent
that sits between the system and the client (e.g.,
see [4], page 103), or

c. modify the external pager interface, perhaps
along the lines of our system.

• Spring separates the memory object from the object
used for paging operations (the pager object). In
MACH these two objects are one and the same
although they provide different functionality: the first
encapsulates access to a (logical) piece of memory
while the other is used to obtain the physical underly-
ing memory. Such separation gives pagers the flexibil-
ity to implement the memory object and the pager
object in different domains. Our file system benefits
greatly from this ability as described in [2] (see also
section 4.4).

• Spring provides an architecture tailored for composing
(or stacking) file systems.

• Spring uses strongly-typed object-oriented interfaces.
As with all other Spring interfaces, the virtual memory
system interfaces are specified in a strongly-typed
object-oriented definition language that provides inter-
face inheritance. The base MACH system deals with
virtual memory objects at the lower level of ports with
object-based interface language support but with no
support for object-oriented interface inheritance.

Overview of the Spring VM System

The Spring Virtual Memory System 5

• Spring providesmove semantics for bulk data transfer
during object invocation in addition tocopy semantics
(see section 9).

3.2 SunOS/SVR4

SunOS/SVR4 is representative of current state of the art
commercial UNIX virtual memory systems [13]. It sup-
ports memory-mapped files between different processes
on the same node, private mappings (which are similar to
traditional copy-on-write), and access protection select-
able on a per-page basis. The system, however, does not
provide an external pager interface (clients cannot create
new memory objects), coherent file mapping across the
network, a general stackable file system architecture, nor
efficient bulk data transfer between processes.

4 Overview of the Spring VM System

In this section we present an overview of the virtual sys-
tem architecture.

4.1 Basic objects: memory and address space
objects

Most clients of the Spring virtual memory system deal
with only two types of objects: address space and memory
objects. An address space object represents the virtual
address space of a Spring domain while a memory object
is an abstraction of store (memory) that can be mapped
into address spaces.

memory objects

address space

Figure 2. User’ s view of address spaces.

An address space is a linear range of addresses with regions
mapped to memory objects. Each region is mapped to a (part
of) a memory object. Each page within a mapped region may
be mapped with read/write/execute permissions and may be
locked in memory.

4.1.1 Memory Object

An example of a memory object is a read-only file object
obtained from some file system. The same memory object
can be mapped into more than one address space at the
same time on more than one machine. Note that the mem-
ory object interface doesnot provide page-in and page-out
methods: a holder of a memory object can either map it
into an address space or pass it to another client. The sig-
nificance of not providing paging operations on the mem-
ory object is explained in section 4.4.

4.1.2 Address Space Object
Each Spring domain has an address space object that rep-
resents its virtual address space. As with other Spring
objects, an address space can be operated on by any client
that holds the object. Appropriately authenticated clients
can obtain and operate on the address space object of other
domains, regardless of their location.

The address space has ranges of addresses that are mapped
to (parts of) memory objects, calledregions. Each page in
a region may be mapped with read/write/execute permis-
sions and may be locked in memory. The address space
can be sparse. Figure 2 shows the user’s view of an
address space. Appendix A lists the methods of the
address space object.

The main operations on address space objects are to map
and unmap (part of) memory objects into selected address
ranges of the address space. Since a memory object encap-
sulates a maximum access mode, a client may map a mem-
ory object as long as the requested access mode does not
exceed the maximum access mode of the object.

Operations are also provided to allocate newzero-filled
memory. Zero-filled memory is generally used for stack
and heap regions, and is backed by anonymous memory
objects.1 Zero-filled memory is normally allocated from a
per-address space default anonymous memory object.
Zero-filled memory can also be allocated using an address
space operation that obtains-and-maps anonymous mem-
ory objects.

1. Anonymous memory objects are either obtained from the sys-
tem swap pagers or optionally from a per-address space swap
pager (see section 6.3).

Overview of the Spring VM System

6 The Spring Virtual Memory System

Address space objects provide additional functionality
including:

• An operation to make a copy of a memory object and
to map the copy into an address space. The copy opera-
tion is implemented as copy-on-write.

• The ability to lock in physical memory specific virtual
address ranges of the address space. For this operation
to succeed, an appropriately authenticated address
space object must be used.

• Other housekeeping functions, including the ability to
catch and notify a handler object of translation-faults
due to access violation and accesses to unmapped
addresses. The handler object can also be notified of
changes to address space mappings. Also, there are
methods to get a description of mapped regions, and to
query memory usage statistics. These functions are
useful for garbage collection and debuggers.

4.2 Major players

There are two types of servers that co-operate to provide
the implementation of address spaces and memory
objects: a per-nodevirtual memory manager (VMM) and
external pagers. The VMM is the implementor (type man-
ager) of address space objects, while memory objects are
implemented by pagers. A pager supplies (pages in) and
stores back (pages out) the actual contents of the memory
objects. Any client program can act as a pager.

A VMM presented with a request to map a memory object
into an address space has to be able to obtain the actual
memory represented by the memory object, since the
memory object itself does not provide methods for obtain-
ing this memory. Therefore, the VMM contacts the pager
that implements the memory object by invoking thebind
method on the memory object. The purpose of the bind
operation is to point the VMM to a local data cache that
provides the contents of the memory object.

4.3 Cache and pager objects

The VMM and the pager exchange two objects during the
bind operation: thepagerobject and thecacheobject. The
pager object provides methods to page in and out memory
blocks and is used by the VMM to populate a local mem-
ory cache. The cache object is implemented by the VMM
and is used by the pager to affect the state of the cache.2

A given pager object—cache object pair constitutes a two-
way communication channel between a pager and a virtual
memory manager. Typically, there are many such channels
between a given pager and a VMM.

4.4 Separating the memory object from the
pager object

Unlike more traditional systems such as MACH, the
Spring memory object does not provide paging methods.
Table 1 summaries the differences between a MACH
memory object and a Spring memory object.

.In Spring the memory objectrepresents memory and is
separated from the pager object that actuallyprovides the
methods to page-in and page-out the memory.

This separation has the major advantage of giving the
implementor of the memory object the power to place the
implementation of the memory object in a separate
domain from the implementor of the pager object.

For example, the Spring file system uses this separation to
interpose a local attribute caching file system (CFS) in the
local node, with the end result that all file attributes are
cached by the CFS, file data is cached by the VMM, all
reads and writes to the file go to the local CFS and use the
data cached by the VMM, yet all page-ins and page-outs
go directly to the remote server where the data is stored on
disk [2]. The file system also ensures that all bind opera-

2. The cache object is actually part of thecache manager inter-
face. In this paper, we concentrate on one particular implementa-
tion of the cache manager interface, the one implemented by the
VMM.

TABLE 1. Memory object in MACH and Spring

MACH Spring

Memory
Object

• memory mapped

• init/terminate ops

• paging operations

• memory mapped

• bind operation

• no paging opera-
tions

File
Object

• same port as mem-
ory object

• may provide file
read/write opera-
tions

• inherits from mem-
ory object

• provides file read/
write operation

• no paging ops

Virtual Memory Manager

The Spring Virtual Memory System 7

tions go to the CFS, thus changing the bind into a local call
instead of a remote operation. We also utilize the bind
operation and the separation between memory and pager
objects in our extensible file system architecture.

Note that two or more memory objects can encapsulate the
same underlying memory, but with different access rights.
As far as the VMM is concerned, each memory object is
unique; the VMM relies on the memory object’s pager to
point it to a data cache from which the VMM obtains the
contents of the memory object. This extra level of indirec-
tion allows different memory objects that share the same
pages (but perhaps encapsulate different access rights) to
have their pages cached in the VMM instead of flushing
the same pages back and forth between the VMM and the
pager.

4.5 Summary of VM objects

In summary, the main components of the virtual memory
system are (Figure 3):

• address space objects are implemented by the VMM.
There is one address space object per Spring domain.
Operations on address space objects include mapping
and unmapping memory objects into the address space.

• memoryobjects are abstractions for memory. Memory
objects are implemented by pagers that are responsible
for servicing page-in and page-out requests from
VMMs.

• cacheobjects are containers of physical memory. They
are created by virtual memory managers as a result of
requests by external pagers. These objects cache mem-
ory pages that belong to pager objects. Pagers instruct
the VMM to obtain the contents of memory objects
from local cache objects during the bind operation.

• pagerobjects are used to build a two-way communica-
tion channel between the VMM and the pager of a
cache object. Pagers implement pager objects. The
VMM pages data in/out of their cache objects from/to
the corresponding pager objects.

The next two sections describe the cache and pager objects
in more detail by discussing the functionality of their
object managers. Note that, strictly speaking, the virtual
memory architecture is defined in terms of the objects
listed above and not the servers; implementations are free
to use more than one domain to provide these objects (see
section 8).

5 Virtual Memory Manager

There is a single virtual memory manager per Spring
machine. The functions of the VMM can be grouped into
the following categories:

• The VMM is the type manager for address space and
cache objects. It is responsible for maintaining physi-
cal memory and paging memory in and out of pager
objects.

• The VMM is responsible for handling the memory
management hardware, including the memory manage-
ment unit (MMU) and any hardware data caches.

The VMM also exportsvmm objects that are used by pag-
ers to create cache objects at the VMM. The vmm object
inherits from thecache manager interface and provides
methods for creating cache objects (Appendices B and C).
Section 9 describes our current implementation of the
VMM. The rest of this section describes the interface of
the cache object in detail.

5.1 Cache Objects

Cache objects are implemented by the VMM. A cache
object provides methods to cache memory blocks that
belong to pagers. The underlying state of a memory object
cached at a particular VMM is encapsulated in a cache
object.

Pagers request the creation of cache objects at a VMM
during the process of binding a mapping from an address
space region to the underlying state of the memory object.
When the VMM is presented with a memory object to
map, it invokes thebind method on the object. This opera-
tion returns (among other things) a pointer to a locally-
implemented cache object which the VMM uses to obtain

address space memory object

pager objectcache object

PagerVMM

pager-private
relationship

region-to-cache
binding

mapping

1-1 relationship
as a result of
bind operation

Figure 3. Relationship among basic VM objects

memobj-to-region

Virtual Memory Manager

8 The Spring Virtual Memory System

the actual pages that back the virtual memory in the
mapped region. Each cache object has an associated pager
object. Section 7 describes this binding protocol and the
rationale behind it in detail.

Data is paged in/out of a cache from/to the corresponding
pager object. The cache object provides a set of operations
for pagers to control the cache. Each VMM is responsible
for managing the physical memory at its local node. The
VMM’s view of physical memory is centered around the
contents of cache objects.

A holder of a cache object (normally the pager) may
destroy it, and any pages held in the cache when it is
destroyed are discarded. A cache object can also be
destroyed by the VMM at anytime that it is empty and it is
not currently mapped. The pager, if it wishes, can be
informed when the last binding to a cache object is gone.

A cache object holds data blocks. Information regarding
the size of the data block is sent by the pager to the VMM
at cache creation time. The pager also sends other infor-
mation at that time, including hints on how the cache will
be used.3 The VMM may transmit one or more blocks per
call (the interface specifies the starting offset in the cache
and a length aligned to the block size).

A data block may be obtained by the VMM in one of two
modes:read-only or read-write. The VMM and the pager
may issue requests to each other to “upgrade” read-only
blocks to read-write and “downgrade” read-write blocks to
read-only.

A cache object has an ownership state that is under the
control of the pager that creates the cache. There are two
ownership states:exclusive andshared. The intended use
of the ownership state is for the pager to set it to exclusive
unless the pager knows that the contents of the cache is
shared with some other cache (most probably on a differ-
ent machine). The ownership state gives the pager control
of whether the VMM should invoke the “usual” optimiza-
tion of upgrading read-faults on read-write regions to
read-write page-ins.

3. Currently, the hints include an indication of whether the cache
holds text, data, or anonymous memory, and an indication of the
cost of using the pager.

The ownership may be changed by the pager at any time.
The state of the cache is ahint to the VMM that modifies
the behavior of the VMM during page-in. The VMM may
request the page from the pager object in mode read-write
when the following is true:

• the state of the cache is exclusive,

• the VMM is in the process of satisfying a read page-
fault, and

• the region where the fault occurred is mapped read-
write.

If the cache state is shared, then a read page-fault results in
a request for the page in mode read-only. This is the only
difference in the VMM behavior between the two states.

The cache object provides several methods that are used
by the pager to control the cache. Since the pager must be
prepared to receive the data stored at the VMM at any
point, other calls from the VMM to the pager may com-
plete before the call requesting the data returns. The VMM
guarantees that when the call returns successfully the data
requested is at the pager. The requests issued by the pager
to the cache object are:

• flush_back: used to remove data from the cache and
send it back to the pager.

• deny_writes: used to “downgrade” read-write blocks to
read-only. Any modified blocks are returned. A copy of
the data is retained in the cache in read-only mode.

• write_back: used to request a copy of all modified
blocks. Data is retained in the cache in the same mode
as before the call.

• delete_range: used to remove data from the cache. No
data is returned

• zero_fill: used to indicate that a particular range in the
cache is zero-filled. The data blocks indicated by this
range are held by the VMM in read-write mode.

• populate: used to introduce data blocks into the cache.

If a call from the VMM to a pager object takes “too long”
or the call fails with an unexpected exception, the VMM
may terminate the call and destroy the cache and all bind-
ings to it; page-out the data through its default pager(s); or
block “forever” waiting for pager to finish. The decision is
made depending on the privilege of the pager4. For exam-
ple, the VMM will block waiting for operations on the
default pager(s).

Pagers

The Spring Virtual Memory System 9

6 Pagers

Pagers compliment the functions of the VMM by provid-
ing operations for fetching and storing the contents of
pager objects. Whereas the virtual memory manager is
concerned with maintaining the mappings between
address spaces and cache objects and with reflecting these
mappings in the underlying address translation hardware,
pagers are concerned with providing and storing the con-
tents of memory objects (by providing paging operations
on the corresponding pager object). Appendix D lists the
important methods of the pager object and memory object
interfaces.

Note that we use the term “pager” to refer to the imple-
mentor of pager and memory objects. As noted before, the
implementations of these objects can reside in different
domains. As far as the VMM is concerned it deals with
pager and memory objects and it does not care where the
implementations of these objects reside.

6.1 Pager object

The VMM issues several requests to the pager object. For
each request, the VMM specifies:

• the starting offset in the cache and a length (both
aligned to the block size of the cache),

• whether the request is for read-only or read-write data,
and

• the current cache ownership state.

Data is transmitted by using the normal Spring bulk data
passing mechanism (section 9.6). As an optimization, if
the data is null (all zeros), an indication is sent instead of
the actual data. The requests issued by the VMM to the
pager object are:

• page_in: used to request data be brought into the cache.

• page_out: used to move data out of the cache.

• write_out: used to change the state of read-write data to
read-only. Data is retained in read-only mode in the
cache. Only called for read-write data.

• sync: used to copy data back to the pager. Data is
retained in same mode.

4. The privilege of the pager is encapsulated in the vmm object
that the pager must obtain in an authenticated manner before cre-
ating any cache objects at the VMM.

For clean (i.e., not modified) blocks and for cache objects
that are not bound writable (i.e., no read-write mappings
exist to these caches), the VMM will never transmit the
actual data in page_out, write_out or sync calls. The pager
is at liberty to cease communicating with a misbehaving
VMM that is violating the protocol.

Note that the system is designed such that the VMM can
always reuse a clean physical page without the need to
inform the pager. This is an important consideration in the
design of a virtual memory system that uses external pag-
ers. To require the VMM to inform the pager each time a
clean page is reused would severely limit the page recla-
mation policies of the virtual memory system.

6.2 Network Virtual Memory

Network-wide virtual memory—also known as distributed
shared memory (DSM)—refers to the case where the same
memory is mapped on more than one machine simulta-
neously. A pager, if it chooses, may service requests from
more than one virtual memory manager for the same
memory object. Therefore, pagers are responsible for
maintaining the consistency of memory objects’ data
stored in different cache objects (Figure 4).

VMMs do not know about DSM; they call the pager object
associated with a given cache object when a particular
page is needed. The pager is the only entity that knows
about distribution. In particular, the interfaces to the
address space and cache objects are designed such that the
VMM does not need to contact other VMMs to implement
its functions. This is in line with our goal of maintaining
the separation of concerns between the VMM and the
pager.

VMM 1 VMM 2

Pager

Figure 4. DSM coherency maintained by pager

pager
object

cache
object

pager
object

cache
object

The Bind Protocol

10 The Spring Virtual Memory System

Methods on the cache object are provided for a pager to
request back memory pages from the VMM and to change
their access mode to read-only to facilitate the implemen-
tation of multiple-reader single-writer consistency proto-
cols. Our file system implements network coherent
mapped files using such a protocol; see section 8.

The coherency protocol is not specified by the architec-
ture. Pagers are free to implement whatever coherency
protocol they wish. The cache-pager objects channel (sec-
tions 5.1 and 6.1) provides the basic building block for
constructing the coherency protocol.

6.3 Swap Pagers

The VMM requires anonymous memory objects to satisfy
zero-filled memory requirements, for example, as a result
of theallocate_memory andcopy_and_map calls on
address space objects. The swap pager interface allows the
VMM to request anonymous memory objects from swap
pagers. A system swap pager is added by invoking the
vmm objectadd_swap_pager method. Normally at boot
time one or more swap pagers are added. Swap pagers can
be added at any time.

Each address space has one default anonymous memory
object that is normally used to satisfy zero-filled memory
requirements. In addition, a domain may set its own swap
pager by calling theset_swap_pager method on its
address space object.

Note that anonymous memory objects are just like any
other memory object in that they can be passed around and
mapped in other address spaces. The VMM deletes the
memory object when it is unmapped from the address
space (client applications may of course clone the object;
the VMM deletes its own copy only).

7 The Bind Protocol

When the VMM is presented with a memory object to map
into an address space, it needs to identify a cache object—
pager object “channel” that can be used to page-in and
page-out the contents of the memory object. The purpose
of the bind protocol is to create and/or identify a paging
channel for each memory object.

7.1 Rationale

One design possibility is to associate a global identifier
with each memory object. Each time the VMM is asked to
map a memory object, it uses the global id to see if there
already exists a paging channel for this memory object. If
no such channel exists, it contacts the memory object to
establish a channel. This is basically the approach taken by
the MACH virtual memory system. The drawback of this
scheme is that it does not allow two distinct memory
objects that encapsulate the same data to use the same
channel.

The approach we decided on is the following: When pre-
sented with a memory object, the VMM asks the memory
object through the bind operation to provide a pointer to
an existing cache object—pager object channel that can be
used for paging purposes.5

After a paging channel is identified the VMM can satisfy
the requests for mapped memory (i.e., faults) from the
cache. The VMM can populate the cache by invoking the
pager object and the pager can request back any of its data
by invoking the cache object, as described before in sec-
tions 5.1 and 6.1.

7.2 Protocol description

Figure 5 shows the sequence of operations made during
the bind operation. The step numbers correspond to the
following list:

1. An application issues a request on an address space
object that requires mapping a memory object to a
region in the address space (or a request to make a
copy of a memory object).

2. The VMM is presented with a memory object to map
(or to make a copy from the object). It needs to associ-
ate the mapping with a local cache object. Therefore, it
calls thebind method on the memory object requesting
from the pager a pointer to a cache object to use when
accessing the mapped memory. The arguments of the
bind request include the name of the VMM (not the
object representing the VMM; see below), the length,
and the access mode of the requested binding.

5. For performance reasons, we insure that the bind calls are
local to a given machine by using the caching file system. See
section 8.

The Bind Protocol

The Spring Virtual Memory System 11

3. The pager that implements the memory object receives
the bind request. It decides whether or not a cache
object that caches the state of the memory object
already exists at the requesting VMM.

3a. If no cache object that caches the contents of the
memory object exists at the VMM, acreate_cache call
is issued to the VMM.6

3b. The VMM receives acreate_cache call that
includes a pager object as an input argument.

3c. The VMM returns a cache object plus a list of
cache-rightsobjects. A cache-rights object is a Spring
object that represents the right to access a cache object
with an encapsulated access right. It is used as a secure
capability.

4. The pager returns from the bind call by pointing the
VMM to an existing local cache object that caches the
contents of the memory object. The “pointer” used by
the VMM is a cache-rights object and not the cache
object itself.

5. The VMM uses the cache-rights object to find the cor-
responding cache object and completes the original cli-
ent request by checking the requested access mode
against the access mode encapsulated in the cache-
rights object.

6. The pager first looks up thevmm object given the name
passed in the original bind call if it does not have the VMM
object cached already. The name lookup is made on some well-
known name server in an authenticated manner.

2. address space::map()
5. return()

3b. vmm::create_cache()
3c. return()

Client Application

1.address space.map(mobj)

VMM

Figure 5. The bind protocol

(1) Client requests mobj to be mapped in an address space, (2) the map
request is turned around into a bind on mobj. (3) If a cache that backs mobj
does not exist at the calling VMM then (3a) a new cache is created at the
VMM, etc. (4) The bind call returns pointing the VMM to a local cache ob-
ject. (5) The VMM uses this cache object to back the requested address
space region.

Pager
3. memory object::bind()

if !cache_exists() then
 3a. vmm->create_cache()
4. return()

7.3 Cache-rights object

The cache-rights objects returned in step 3c above are
used as secure capabilities. A cache-rights object encapsu-
lates an access right to a cache object and supports one
method: to obtain other cache-rights objects that encapsu-
late asubset of the encapsulated access rights. The VMM
supports four possible access rights:

• read-only

• read-execute

• read-write

• read-write-execute

A cache creation request from the pager includes the max-
imum access rights of the cache being created. The VMM
returns at least one cache-rights object that encapsulates
the maximum requested access right. The holder of the
cache-rights object may obtain weaker versions of the
object by calling thecreate_restricted_sibling method on
the object. For example, a read-only cache-rights object
can be obtained from a read-write cache-rights object, but
a read-write-execute object cannot be obtained from a
read-write cache-rights object. The rationale behind using
the cache-rights object is explained in the next section.

7.4 Discussion

We argue in this section for the correctness of the protocol:

• When a VMM is given a memory object to map, it
needs to find a corresponding cache object. The only
entity it can ask this question to is the memory object
itself.

• However, the VMM must be sure that when it asks the
memory object, “Give me a cache object that has your
data,” that the answer points to the correct cache object
and not to some other cache object thus compromising
security. The VMM does not trust pagers to be honest.
The VMM trusts pagers only with the data they are
supposed to manage.7

• Therefore, the VMM protects itself by requiring the
pager to return as a result of the bind call a cache rights
object and not a forgeable identifier, since a forgeable

7. If a pager does not even handle its own data correctly, then the
only losers are those clients that depend on its memory objects.
Looking up a memory object from a pager in a secure manner is
the responsibility of these clients and not the responsibility of the
VMM.

Spring File System

12 The Spring Virtual Memory System

identifier can give a malicious pager access to a cache
that it should not control.8 Similarly, the pager protects
itself by returning a cache-rights object and not the
actual cache object since a cache-rights object is of use
only to the implementor of the cache object and to
nobody else. Note that a cache-rights object is a Spring
object and is not forgeable.

• When a pager receives a bind request from a VMM it
does not know for sure that the caller is really the
VMM indicated in the call. Moreover, pagers do not
trust the VMM except for handling the data of the
memory object in question.

• Therefore, the VMM sends its name and not a VMM
object in the bind request. It is up to the pager to use
the name to look up an authenticated VMM object.
Once an authenticated VMM object is obtained, the
pager can issue acreate_cache call knowing with cer-
tainty that it is invoking the right VMM. Note that pag-
ers can look up an authenticated VMM object once and
cache it for futurecreate_cache calls.

If the system is structured such that the pager, the VMM,
and the original client are on the same node and a cache
object already exists at the VMM, an address spacemap
request can be satisfied by issuing two local object invoca-
tions: the address spacemap call and memory objectbind
call. Our file system uses such an implementation (section
8).

7.5 Cache Reclamation

Pagers may delay deleting unattached caches in the hope
of reusing them later on. The virtual memory system tries
to keep as many unattached caches as it can. However, as
with any resource, the system has to impose a limit on the
maximum number of unattached caches. Therefore, the
VMM has to reclaim some of these caches when the limit
is reached.

It is possible that while a pager is returning from abind
operation the VMM may decide to reclaim the same cache
referenced in the call. Since it is not acceptable to fail the
bind call (and the corresponding address spacemap call),

8. Alternatively, one could send an encrypted identifier. As with
other parts of Spring, we made a conscious decision to avoid
using encryption and instead used a Spring object. This way we
hide encryption, if any, in the support the system provides for
secure Spring objects and not in application code.

the bind protocol needs to be extended to recover from this
race. Although this race is seldom encountered in practice,
a recovery protocol is necessary nonetheless.

The protocol extension is the following: When thebind
call returns, the VMM checks to see if the cache-rights
object points to a valid cache. If it does not, then instead of
failing themap call, it invokes thefinal_bind method on
the memory object, passing in addition to the usual bind
arguments abind-key object which has no methods. Note
that at this point the VMM does not know whether it has
hit a cache reclamation race or it is simply dealing with a
malicious/incompetent pager.

When the pager receives thefinal_bind call, it is expected
to call the VMM passing the bind-key object to thecre-
ate_cache_object_and_bind or thebind_cache call. The
pager calls the latter method when it believes that it has a
cache at the VMM. If thebind_cache call fails, the pager
then calls thecreate_cache_object_and_bind method.

When the VMM receives either call it uses the passed
bind-key object to identify the outstandingfinal_bindcall
and associates the new cache with that call. A successful
execution of abind_cache or acreate_cache_ob-
ject_and_bind guarantees that a cache is bound to a bind-
key object and that this cache will not be deleted until the
bind-key object is deleted.

When thefinal_bind call returns to the VMM, it checks to
see if acreate_cache_object_and_bind or a bind_cache
was executed successfully. If so, the originalmap request
is satisfied, otherwise the VMM fails thebind and the cor-
respondingmap request.

8 Spring File System

An important client of the virtual memory system is the
Spring file system [2]. The Spring file system supportsfile
objects that inherit from thememory, io, andauthenticated
objects. Therefore, Spring files can be memory-mapped
just like any other memory object, and can be operated on
as an io stream. Files also encapsulate a principal name
and an access control list (ACL).

The file system caches all file data in VMM cache objects
(i.e. there is no double caching of the same data in the file
server and the VMM). In addition, the file system makes

VMM implementation

The Spring Virtual Memory System 13

sure that all file read and write calls are coherent with
memory-mapped accesses to the same file. The file system
implements reads/writes to a file by mapping (part of) the
file into its address space and handling the bind request
itself. The file system also keeps all file attributes coherent
(e.g. file length).

The file system supports network-coherent files. It imple-
ments a multi-reader/single-writer per-block coherency
protocol. It acts as a pager and uses the pager-cache meth-
ods to implement its protocol. Therefore, all access to a
given file remain strongly consistent (including read and
write calls) even when the file is mapped in more than one
domain and on more than one machine.

As mentioned before, the file system interposes a local
attribute caching file system (CFS) agent at each local
node. The CFS caches file objects implemented by remote
nodes. Operations on remote file objects are redirected to
the local CFS as described in [2]. Therefore, all read and
write calls, as well as file attribute calls, are handled
locally by the CFS. In addition, the CFS caches all file
attributes from the remote file system and cooperates with
the remote file system to keep them coherent using its own
attribute coherency protocol.

An important function of the CFS is to handle bind
requests for remote files. Recall that a bind request is nec-
essary for each user map request. Using the CFS, all file
operations including bind requests are handled locally.

Finally, the CFS utilizes the separation of the memory
object from the pager object to ensure that all VMM page-
in and page-out requests go directly to the pager object
implemented by the remote file system, while at the same
time handling all file (and memory object) operations
locally. Reference [2] describes in detail the architecture
and implementation of the file system.

9 VMM implementation

In this section we give a brief overview of the VMM
implementation. We describe the overall organization of
the system and highlight important structures. We elide
many details that are not important for understanding the
overall structure of the implementation.

As with other servers in Spring, the virtual memory man-
ager is implemented in C++ in a multi-threaded fashion.

The implementation is arranged in three layers:address
space, cache, andmachine-dependent layers as shown in
Figure 6.

9.1 Address Space Layer

Each address space is represented by anaddress space
descriptor structure that maintains a sorted doubly-linked
list of region descriptor structures each of which describes
a mapped region (Figure 7). A pointer to the most recently
accessed region descriptor is kept in the address space
descriptor. The address space descriptor structure also
contains a mutex, a reference count, per-address space sta-
tistics, and per-address space swap pager and event han-
dler objects. The address space descriptor also includes a
hat address space descriptor that is used to manipulate the
MMU translations for this address space (section 9.3). All
address space descriptors are linked on a global list which
is protected by its own mutex.

Each region descriptor contains the starting virtual address
and length of the region described by the structure. The
region descriptor also contains a pointer to acache
descriptor (section 9.2.1) and a list ofsubregion maps.
Since each page in a region may have different protection
and locking attributes, a subregion map is used to describe
contiguous similarly mapped subregions. In practice, most
regions have the same attributes for all their pages.

A reference to the memory object used in establishing a
mapped region is kept in the region descriptor. This refer-

Address
space
layer

Cache
layer

Machine
dependent
layer

as desc

cache
desc

page frames

pushers fetchers sweeper reclaimer

machine independent interface

as desc

cache
desc

cache
desc

Figure 6. Internal structure of the VMM

VMM implementation

14 The Spring Virtual Memory System

ence is necessary to guard against the situation where all
references to the memory object are gone before the mem-
ory is unmapped. In general, the system informs the
implementor of an object when all references to the object
are gone. If a reference to the memory object is not kept by
the VMM, the pager may mistakenly assume that the
memory object is no longer in use and proceed to destroy
the cache thus invalidating the mapping.

There is one specialization on the address space descriptor,
nucleus address space descriptor, which adds a few extra
methods for handling some of the special needs of the ker-
nel.

9.2 Cache Layer

9.2.1 Cache Management
A cache descriptor is an abstract class that provides opera-
tions to page-in, page-out, attach/detach a region, and
other operations related to maintaining physical pages in
the cache. In addition to a mutex, it contains a condition
variable that is signalled whenever a page belonging to
this cache changes state (see below). A given cache
descriptor is linked on one of several lists:

• attached cache list: A cache is linked on this list if it is
currently mapped in some address space or if it is the
source of a copy-and-write operation.

• new cache list: Caches that are newly created by the
VMM from one of the swap servers are attached on
this list. Caches are moved to the attached cache list
when they are used.

hat_as_desc

links private to machine-dependent layer

cache descriptor cache descriptor cache descriptor

region descriptorregion descriptorregion descriptor

links to next region descriptor
that belongs to same
cache

list of subregion maps
if per-page info is needed

address space
descriptor

Figure 7. Address space and related structures

• special cache list: Special caches such as those used for
mapping the kernel itself or for device support (see
section 9.3.3) are attached on this list.

• unattached text cache list, unattached data cache list,
unattached anon cache list: A cache is linked on one of
these lists when (a) it is currently not mapped or used
as a source of a copy-and-map operation, and (b) the
pager that created it indicated that the cache should be
kept around after the last attach to the cache is gone.
The hint sent by the pager when the cache was created
(section 5.1) determines the list used. Unattached
caches are eligible for reclamation by the VMM.

There are several specializations on a cache descriptor.
The most common is thepaged cache descriptor which is
used to implement instances of the VMM cache object.
The paged cache descriptor encapsulate a pager object that
is used to talk to the pager that controls the cache.

9.2.2 Physical Page Management
Each physical page is described by a page frame C++
object.9 Each page frame has a number, a mode, a mutex,
information about the cache to which it belongs, and state
flags. A page frame belongs to at most one cache descrip-
tor. At any point in time a page frame is linked on one of
the following lists:

• free list: when the page is free and is not in use by any
cache.

• in-use list: when page is in use in some cache. The list
is arranged such that the least-recently used pages are
at the front of the list.

• page-out list: when page is waiting to be paged-out to
its pager object. The page is also in-use in some cache.

The page-frame lists are controlled by a global mutex. In
addition, when a page is not on the free list, it is also
linked on a per-cache list and a system-wide page hash
table. The hash table is indexed by the <cache address,
offset> pair. The hash table is used to locate pages given
their offset within a cache (e.g., during the address
translation process described in section 9.4). Figure 8
shows the various page frame lists.

9. Each physical page is actually a multiple of the MMU page.
In the sun4c and sun4m implementations, a physical page is
equal to the MMU page and is equal to 4K bytes. Only the
machine dependent portion of the system knows about MMU
pages.

VMM implementation

The Spring Virtual Memory System 15

A page frame may bein-transition. There are three types
of transitions:

• page-in: page is in the process of being paged-in.

• page-out: page is in the process of being paged-out.

• other: page is in a temporary short transition.

If someone needs a page frame that is in transition, they
have to release its lock and wait on the condition variable
of the cache where this page frame belongs.

9.2.3 Internal threads
The cache layer employs several threads:

• Pushers. These threads are responsible for processing
the push-out list.

• Prefetchers. Threads that are used to prefetch pages
into memory.

• Sweeper. A thread that implements a two-hand clock-
like sweep algorithm.

• Cache reclaimer. A thread that is responsible for delet-
ing unattached caches. Any dirty pages are first flushed
out before deleting an unattached cache.

9.2.4 Page Replacement
A global replacement algorithm is used in our current
implementation. As mentioned before, the sweeper thread

page frame page frame

page frame page frame

page frame page frame page frame

cache

cache

free list

push-out list

in-use list

pf_hash_list

descriptor

descriptor

Figure 8. Data structures used for page frame linkage

uses a two-hand clock algorithm to keep track of refer-
enced pages. The system maintains several counters of
clean and dirty pages and uses them to schedule dirty
pages to be cleaned when it is running out of clean pages.

9.3 Machine-dependent Layer

The machine-dependent layer encapsulates all knowledge
of the MMU and hardware caches. This layer has a
machine-independent interface that is used by the rest of
the system.

9.3.1 Machine-independent Interface
There are two C++ classes that define machine-indepen-
dent interfaces for maintaining the MMU and the hard-
ware caches. These classes are used to enter and remove
translations from the MMU.

An object of typehat address space descriptor is included
as part of each address space descriptor. This object
defines an interface for manipulating the address space
MMU translations. Operations include entering the trans-
lation for a page frame at a particular virtual address,
removing a translation, and changing the access mode of
an address range.

An object of typehat frame descriptor is included as part
of each page frame. This object defines operations for
manipulating MMU translations to this particular page
frame. The hat address space descriptor and hat frame
descriptor maintain the relationship between each page
frame and the address space descriptor(s) where the page
frame is currently mapped. This information is used when
changing the MMU translations of page frames.

9.3.2 Machine-dependent Code
The implementation of the machine-dependent layer
maintains three types of information:

• The relationship between each page frame and the
address space(s) where it is currently mapped.

• Any MMU-specific state information (e.g., hardware-
dictated page tables for MMU’s that require such
tables).

• A cache of virtual-to-physical memory translation
information (the “software TLB” in Figure 9). This
state is only a cache and the implementation is permit-
ted to “forget” about a translation since the true state of
virtual-to-physical and physical-to-virtual translation

VMM implementation

16 The Spring Virtual Memory System

information is maintained by the address space and
cache layers.

The current implementations of the hat address space
descriptor and hat frame disc classes use the hardware
address translation (HAT) layer of SunOS [13]. The imple-
mentation of these two classes consists mainly of direct
calls to the HAT layer routines.

Using the SunOS hat layer has the advantage of fast bring-
up on existing and future machines. No changes where
made to the hat layer itself with the exception of adding a
few #ifdefs and #defines.

9.3.3 Device Support
There are two specializations on the classcachedescriptor
that are machine-dependent. Classdevice register cache
descriptor is used in the implementation ofdevice register
memory object. Similarly,dvma cache descriptor is used in
the implementation ofdvma memory object.

Note that to port the virtual memory system to a different
architecture or MMU, only the implementations of hat
address space descriptor and hat frame descriptor classes
and any necessary device support need be changed (see
section 9.7).

9.4 Address Translation Process

Figure 9 summarizes the address translation process. Vir-
tual addresses used by instructions executed by a thread
running in a domain are translated to physical addresses
using the hardware address translation cache. If the hard-
ware cannot translate a virtual address, a machine transla-
tion fault is generated. A machine-dependent handler
attempts first to locate the required translation in a soft-
ware cache that acts as an extension to the hardware TLB.
If the translation is not found, the following steps are
taken:

1. The trap handling code locates the currently running
domain and invokes thehandle_page_fault method on
its address space descriptor object.

2. The address space layer locates the region descriptor
where the fault occurred, checks protections and
invokes the page_in method on the cache descriptor
that backs the region where the fault occurred.

3. The cache layer attempts to locate the required page.
Depending on the particular cache descriptor type this
process may involve a simple lookup in a linear table

or a more sophisticated search. We describe here the
implementation of the paged cache descriptor, the most
common (and complex) implementation of cache
descriptor. The search is started by first looking in the
source copy-on-write cache, if any (section 9.7), then
searching for the required page in the system-wide
page hash table, and finally in the per-cache zero-fill
table. If the page is located, it is returned to the caller,
otherwise the page_in method of the pager object cor-
responding to the cache object is invoked. When the
call returns, the page is returned to the caller.

4. The address space layer then invokes the appropriate
call on its hat_address space descriptor object to enter a
translation for the page and returns.

5. The trap handler returns, retrying the faulting instruc-
tion.

When the page_in method on the cache descriptor is
called, both the address space descriptor and cache
descriptor locks are held. If a page-in request to the pager
has to be issued, both of these locks must be released first
since the call is an out-call that may take an arbitrarily
long time to return. Not releasing the locks introduces
deadlock, security, and performance problems. Therefore,
the reference counts on the address space descriptor and
cache descriptor are incremented, a stub page frame is
entered in the paged cache descriptor and locks are
released. (The purpose of the page frame stub is to indicate
that an operation on the page is in-progress so that another
request for the same page will wait instead of attempting
another page-in.) When the call returns the locks are re-
acquired, a check is made to see whether the address space

address
space

cache desc

pager object

address
translation
fault

hardware
TLB page frame

page-fault

vm system

pager

software TLB

CPU

Figure 9. Address translation process

Virtual to physical address translations are normally cached in the hardware
TLB. On an address translation fault the VMM is invoked. The cache respon-
sible for backing the virtual address where the fault occurred is consulted.
The cache may service the translation request by returning an existing page
frame or it may contact a pager object to page-in the required page.

VMM implementation

The Spring Virtual Memory System 17

descriptor or cache descriptor has been (logically) deleted
and the page frame stub is removed from the cache.

Note that the fault handling code path is the most fre-
quently executed part of the virtual memory. Therefore,
the order of acquiring internal locks is designed such that
it is the natural order for this code path.

9.5 Copy-on-write implementation

The VMM implementation provides copy-on-write
(COW) support that is used to implement thecopy_and_-
map method of the address space object (Appendix A),
and is used in bulk data transfers with copy semantics
(section 9.6). COW support is part of the paged cache
descriptor implementation.

9.5.1 Data structures
The COW data structures maintained by the implementa-
tion are depicted in Figure 10. A given (destination) cache
may be a copy of a portion of another (source) cache. Each
destination cache has a copy-on-write map structure
(COW map) that contains information about the logically
copied range. This information include pointers to the
source and destination caches, the starting offsets in the
source and destination caches, length of the copied range,
and a bitmap indicating which pages have been copied

address space address space

cache
source

copy copy copy
(destination)

cow mapcow mapcow map

(to the source of the source cache, etc.)

cow map

descriptor

cache
descriptor

cache
descriptor

cache
descriptor

The figure shows three cache descriptors that are copies of a source
cache. The source cache is in turn a copy of another cache (not shown).
Some of the cache descriptors back mapped regions in two address
spaces.

Figure 10. Copy-on-write data structures

from the source cache. The COW map also keeps a refer-
ence to the memory object that is backed by the source
cache. This reference is kept for the same reason as the
one explained in section 9.1 for a region descriptor. The
source cache in turn keeps a linked list of all COW maps
that point back to it. The need for this list is explained
below in section 9.5.4.

It is possible to have a chain of caches that are copies of
other caches. This structure can nest to arbitrary levels.

9.5.2 Setting up a COW relationship
The following steps are taken when a copy-on-write rela-
tionship is established:

• A COW map structured is allocated and initialized.
The structure is linked as shown in Figure 10.

• A new region in the destination address space is
mapped. This region is backed by the destination
cache.

• The MMU-level access mode of each region that maps
the source cache in read-write mode is changed to
read-only. This is to catch attempts to modify the
source cache and to trigger COW processing as
explained in section 9.5.4. Note that only the MMU-
level access mode is changed; the true access mode in
the region descriptor remains the same.

When a copy-on-write relationship is established, pages at
the source and destination caches are not copied until a
write is made to either the source or the destination page.
Therefore, the copy-on-write data structures are consulted
at two points during fault processing: at the beginning of a
page-in request when trying to locate a page, and at the
end of a read-write page-in request to update any read-
only destination caches. Note that the page-in is a request
to the cache and as mentioned before in section 9.4 does
not necessarily mean an actual page-in from the pager.

9.5.3 COW processing at the beginning of page-in
When handling a page-in request, the cache checks to see
if it has a COW map attached. If there is no such structure,
then copy-on-write processing ends and fault processing
resumes as described in step 3 on page 16. Otherwise, the
following is done:

• The COW map is queried to see if the required page
falls in a range logically copied from another cache and
the page has not been copied from the source cache

VMM implementation

18 The Spring Virtual Memory System

yet. If not, COW processing ends and fault processing
resumes.

• Next, a check is made if the fault is a read-only fault
vs. a read-write fault.

• For a read-only fault, a page-in request is issued to the
source cache. The page returned from the page-in is
used to satisfy the fault and no copy is made (i.e., it is
shared read-only between the source and destination
caches).

• Otherwise, an internal copy-to request is issued on the
source cache to make a copy of the page and return it.

• As part of processing the copy-to request, the source
cache first issues a page-in to itself (which may initiate
COW handling on the source cache), then returns a
copy of the page. The COW map is also appropriately
updated to indicate that this particular page has been
copied from the source cache.

9.5.4 COW processing at the end of page-in
As shown in Figure 10, a given cache may be the source to
a number of destination caches. Before a page-in on a
cache ends, the following checks are made:

• If the page-in request is for a read-write page,

• and if the cache is a source cache to any other caches,

• and if there are any caches that have not yet made their
own copies of this page,

then the linked list of all destination COW maps is tra-
versed (Figure 10), and a copy of the page is made for
each destination cache. Note that this copy must be made
at this point to maintain the COW semantics.

9.5.5 Tearing down COW data structures
The implementation takes considerable care in building
and tearing down the COW data structures shown in Fig-
ure 10. Careful reference counting and locking is needed
to maintain these structures.

Each COW map linked to a source cache is considered an
attachment to the cache (similar to an attached region
descriptor as in Figure 7). As long as a cache is still
attached, it is not subject to reclamation by the VMM.
However, a cache that is thedestination of a copy is not
considered attached unless it is also attached to a region.

Although the VMM will only reclaim unattached caches, a
cache may be destroyed at any point by the pager. There-

fore the implementation has to guard against either the
source or destination disappearing while accessing the
structures.

9.6 Bulk data transfer

The address space layer cooperates with the cache and the
machine-dependent layers to provide the nucleus with
bulk data transfer support during object invocation. Before
we present the data transfer mechanism, we briefly
describe the object invocation mechanism.

9.6.1 Spring Object Invocation
An object invocation as seen by the Spring nucleus is a
trap from user-mode that presents the nucleus with a door
(handle) id to invoke, plus optionally some arguments to
pass to the domain that implements the object represented
by the door id. A return from an object invocation is very
similar, except that in this case the return address is known
by the kernel and is not specified by a door id.

The arguments to the call may consist of a limited number
of words that fit in machine registers or a pointer to a
transport buffer. A transport buffer may have up to three
parts:

• A set of door ids.

• In-line data

• Indirect data.

The door ids are passed to the destination domain by the
nucleus. The in-line data is copied directly by the nucleus
from the transport buffer to the destination domain. The
nucleus uses the address space layer to pass the indirect
data to the destination domain.

Indirect data may be passed either bycopy or move seman-
tics. Note that the transport buffer is normally set up by
stub and library routines in user-mode before the call is
made. These routines determine whether to pass the data
in-line, by copy, or by using the move semantics.

For each indirect data block, the transport buffer includes
an indication of whether to copy or move the data. Copy-
ing the data is done using the copy-on-write mechanism
and has the expected semantics. The semantics of moving
the data is equivalent to unmapping the memory from the
source domain and mapping it in the destination domain.

VMM implementation

The Spring Virtual Memory System 19

9.6.2 Implementation of the move operation
The implementation is optimized such that, in the common
case, the data transfer is reduced to invalidating the trans-
lations in the source address space and setting up the new
translations in the destination address space to thesame
physical pages.

A bulk data transfer is initiated when the nucleus issues an
internal transfer call to the virtual memory system. The
request specifies the source and destination address
spaces, a range of addresses in the source address space, a
length, and an indication of whether to copy or move the
data. If a copy is requested, the VMM establishes a normal
copy-on-write mapping between the source and destina-
tion address ranges. For a move request, the following
steps are taken (Figure 11):

• A range of free virtual addresses is allocated in the des-
tination address space. The backing store of this range
is the default memory object of the destination address
space. This is a relatively fast and simple operation.

• For each page in the source address range, a check is
made if the page is resident in memory and if the nec-
essary locks can be obtained. If this test succeeds, the
page translation is invalidated from the source address
space, a new translation is entered into the destination
address space, and the identity of the page is changed
to the destination cache descriptor. If the test fails, a
more general (and slower) code path is taken.

• The general code path handles the cases of non-resi-
dent or in-transit pages, and waits for any necessary
locks. The implementation is careful to guard against
deadlocks while obtaining the necessary locks.

source
address
space

destination
address
space

✕
✕

page frames

1. allocate
new virtual
range

2. unmap
from source

3. map into
destination

Figure 11. Moving pages during object invocation

Huge amounts of data can be transferred using this mecha-
nism. The amount is only limited by the size of thevirtual
address space. Any or all of the data being transferred
could be paged out of memory.

Note that the current implementation of the fast path data
transfer is machine-independent. Further optimizations are
possible, but a faster implementation requires coding short
sequences of machine-dependent assembly language, and
more importantly, knowledge of underlying memory man-
agement hardware (section 9.3).

9.6.3 Example
An important use of the bulk data mechanism is to move
data efficiently between stable storage and the virtual
memory system. In Spring, the disk driver, the pager, and
the VMM may reside in separate domains. Therefore, the
data may have to be transferred between several domains
during a paging operation. We would like to maintain the
flexibility of placing the various servers involved in pag-
ing data in different domains, and we do not want this
decision to be constrained by the cost of moving data
between the different servers.

We present an example that illustrates how the bulk data
transfer mechanism is used to efficiently move data during
a page-in operation. Figure 12 shows three servers that are
involved in paging data from a disk drive: the disk driver,
a pager, and the VMM. The following steps correspond to
the ones in the figure:

1. VMM issues a page-in request to the pager.

2. The pager in turn issues a disk read request to the disk
driver.

1. page-in
request

2. disk
read

3. DMA
from disk

4. diskrequest

read return

5. page-in
return

VMM

Pager

Disk Driver

Figure 12. Paging from a local disk

Conclusions and Future Extensions

20 The Spring Virtual Memory System

3. The disk driver allocates memory and initiates a DMA
(direct memory access) operation into the allocated
memory.

4. The disk driver returns the memory using the bulk data
transfer mechanism. As part of the return from the disk
read operation, the memory is unmapped from the
address space of the disk driver and is mapped into the
address space of the pager as explained before in sec-
tion 9.6.2. No data copying takes place.

5. The pager returns the required data to the VMM, again
using the bulk data transfer mechanism. The VMM
uses the returned pages to satisfy the page-in request.

9.7 Implementation Status

All functionality described in this paper has been imple-
mented and is part of the base Spring system. Our initial
implementation was for thesun4c architecture (SPARCs-
tation 1, 2). The system was then ported to thesun4m mul-
tiprocessor architecture (SPARCstation 10 and
SPARCserver 600) without modifying any of the machine-
independent portions of VM—only the machine-depen-
dent portion described in section 9.3.2 was changed. Note
that thesun4c andsun4m architectures have drastically
different MMUs. All system servers including the VMM
are multi-threaded, and the system runs in uniprocessor
and symmetric multiprocessor configurations.

There are several pager implementations, the most impor-
tant of which is the Spring file system. The system inter-
faces are stable; some of the interfaces, especially the
cache-pager object interface, underwent several revisions
as we gained more experience with the system.

The Spring system as a whole is now very stable and
usable. We are starting to use it with the X11 window sys-
tem as a development environment.

9.8 Testing

We used several approaches in testing the implementation.
In addition to ad-hoc stress testing (both synthetic stress
tests as well as compiling the system using itself), we
wrote a test suite to pseudo-randomly execute various vir-
tual memory operations. The pseudo-random test has been
successful in finding bugs at boundary conditions and in
executing complex mapping and unmapping operations. It
is less useful as a stress test but very good at generating
unexpected legal (and illegal) test sequences that a test

writer would not normally code. Finally, as an ongoing
activity, we are annotating the interfaces with semantic
clauses using a formal specification language with an eye
toward automatically generating test programs from the
specifications.

9.9 Performance Evaluation

Work in this area has concentrated on three approaches:

• Instrumenting with trace records. A circular buffer
maintains event traces that can be dumped (from a run-
ning or a stopped system) and analyzed off-line.

• Dynamically observing the system. The virtual mem-
ory system exports various dynamic information that is
displayed and observed graphically. Each address
space provides usage statistics as well as mapping
information, while the system as a whole provides var-
ious statistics including paging activity, fault rates, and
cache activity.

• Statistically observing the system. Basicgprof support
is implemented in Spring and it is used to obtain statis-
tical profiles of the system.

We have done some performance tuning and measure-
ments. The implementation is efficient. For example, the
virtual memory system is able to achieve a paging
throughput in excess of 95% of raw system io throughput.

More performance evaluation and tuning are needed in
some areas, for example, page replacement. We are in a
position to evaluate and tune page replacement now that
we have a complete system with a set of real applications.

10 Conclusions and Future Extensions

We have designed and implemented a virtual memory sys-
tem for a general-purpose operating system that empha-
sizes object-oriented interfaces, security, and distribution.
The virtual memory system separates the memory abstrac-
tion from the interface that provides the actual memory
and provides an architecture for efficient sharing of the
underlying memory in a secure manner.

It is interesting to note that one aspect of our original
design that we revisited time and again during the imple-
mentation is the cache-pager object interface. Although
the resultant interface does not differ much from the one

References

The Spring Virtual Memory System 21

we initially designed, we continually made small changes
to this interface during the development effort.

The implementation of the system described in this paper
is complete and is currently in use. We are currently
undertaking an effort to tune the system, including mea-
suring and tuning lock usage on multiprocessor systems.
Also we are starting to experiment with various paging
and cache reclamation policies. In addition several exten-
sions to the system are planned:

• The address space object will be extended by adding
two calls: anadvise call that gives the VMM hints of
the expected behavior of an application, and astatus
call that returns and clears information regarding mod-
ified and referenced pages of the address space. The
status call is useful for garbage collectors.

• The behavior of the VMM when time-outs and failed
invocations occur will be specified more precisely.

• Page frames of only one size are supported. With the
advent of MMU’s that support multiple page sizes and
of machines that support giga-bytes of physical mem-
ory and tera-bytes of virtual memory we believe there
is a need to support multiple sized pages.

References

[1] Yousef A. Khalidi and Michael N. Nelson, “An
Implementation of UNIX on an Object-oriented Oper-
ating System,”Proceedings of Winter ‘93 USENIX
Conference, January 1993.

[2] Michael N. Nelson, Yousef A. Khalidi, and Peter
W. Madany, “The Spring File System,” Sun Microsys-
tems Laboratories, SMLI-92-389, December 1992.

[3] R. Rashid, A. Tevanian, M. Young, D. Golub, R.
Baron, D. Black, W. Bolosky, J. Chew, “Machine-Inde-
pendent Virtual Memory Management for Paged Uni-
processor and Multiprocessor Architectures,”IEEE
Transactions on Computers, 37(8):896-908, August
1988.

[4] Michael Wayne Young, “Exporting a User Interface
to Memory Management from a Communication-Ori-
ented Operating System,” Technical Report, CMU-CS-
89-202, Carnegie Mellon University, November 1989.

[5] Vadim Abrosimov, Marc Rozier, and Marc Shapiro,
“Generic Memory Management for Operating System
Kernels,”12th Symposium on Operating Systems Prin-
ciples (SOSP ’89), pp. 123-136, 1989.

[6] Vadim Abrosimov, Francois Armand, and Maria
Inés Ortega, “A Distributed Consistency Server for the
CHORUS System,”3rd Symposium on Experiences
with Distributed and Multiprocessor Systems (SEDMS
III) , pp. 129-148, March 1992.

[7] José M. Bernabéu-Aubán,et al., “The Architecture
of Ra: A Kernel forClouds,” Proceedings of the 22nd
Annual Hawaii International Conference on System
Sciences, pp. 936-945, January 1989.

[8] Kieran Harty and David R. Cheriton, “Application-
Controlled Physical Memory using External Page-
Cache Management,”Proceedings of 5th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-V), pp.
187-197, September 1992.

[9] David R. Cheriton, “The Unified Management of
Memory in the V Distributed System,” Technical
Report CSL-TR-88-359, Computer Science Labora-
tory, Stanford University, August 1988.

[10] E. I. Organick,The MULTICS System: an Exami-
nation of its Structure (1972). MIT Press, Cambridge,
Mass.

[11] P. J. Leach, P. H. Levine, B. P. Douros, J. A.
Hamilton, D. L. Nelson, and B. L. Stumpf, “The archi-
tecture of an integrated local network,”IEEE Journal
on Selected Areas in Communication, SAC-1(5):842-
57 (November 1983).

[12] Vincent Russo and Roy H. Campbell, “Virtual
Memory and Backing Storage Management in Multi-
processor Operating Systems using Class Hierarchical
Design,”Proceedings of OOPSLA '89, pp. 267-278,
September 1989.

[13] Robert A. Gingell, Joseph P. Moran, and William
A. Shannon, “Virtual Memory Architecture in
SunOS,”Proceedings of Summer '87 USENIX Confer-
ence, June 1987.

Appendices

22 The Spring Virtual Memory System

Appendices

The following appendices list the interfaces of the major
virtual memory objects. Appendix A lists the interface of
the address space object. Appendix B lists the interface of
the cache object which is exported by the cache manager
interface (the VMM acts as cache managers). Appendix C
lists the vmm object interface, while the interfaces of the
memory and pager objects are listed in Appendix D.

The code below specifies for each parameter a passing
mode: a Spring object passedcopy remains accessible to
the caller and callee after the call is made, while acon-
sumed object is deleted from the calling domain as a side
effect of the call.Borrow is an in-out passing mode, while
produce is an out mode. Due to space considerations we
elide some methods, most comments, and type declara-
tions. Most methods raise exceptions when errors are
encountered; we elide the description of the exceptions as
well.

A Address space object interface
definition

interface address_space {
void map(

copy memory_object mobj,
copy offset_t mobj_offset,
borrow offset_t length_in_bytes,
borrow addr_t as_address,
copy access mode

);
void map_many(

borrow mappings_list mappings
);
void unmap(

copy addr_t address,
copy offset_t length_in_bytes

);
void copy_and_map(

copy memory_object source_mobj,
copy offset_t source_mobj_offset,
copy offset_t length_in_bytes,
borrow addr_t as_address,
copy access mode,
produce memory_object destination_mobj

);
void allocate_memory_and_mobj(

borrow offset_t length_in_bytes,
borrow addr_t address,
copy access mode,
produce memory_object new_mem_obj

);
void allocate_memory(

borrow offset_t length_in_bytes,
borrow addr_t address,
copy access mode

);
void change_access_rights(

copy addr_t address,
copy offset_t length_in_bytes,
copy access new_access_rights

);
void flush(

copy addr_t address,
copy offset_t length_in_bytes,
copy boolean please_keep

);
long get_page_size(
);
void get_mappings(

copy addr_t address,
copy offset_t length_in_bytes,
produce mappings_list mappings_description,
produce boolean more_regions

);
void statistics(

produce as_statistics stats
);
void add_swap_pager(

copy swap_pager swapper
);
void lock_memory(

copy addr_t address,
copy offset_t length_in_bytes

);
void unlock_memory(

copy addr_t address,
copy offset_t length_in_bytes

);
void catch_as_events(

copy as_handler handler
);

}; // address_space

B Cache object interface definition

interface cache_manager {
void create_cache_object(

consume pager_object cache_pager,

Appendices

The Spring Virtual Memory System 23

copy boolean signal_last_ref,
copy pager_info info,
copy ownership_t vcache_ownership,
produce vcache_object new_cache,
copy rights maximum_access_rights,
produce rights_list cache_rights_list

);
void create_cache_object_and_bind(

consume bind_key_object bind_key,
copy offset_t bind_length,
copy offset_t bind_cache_offset,
copy rights bind_max_rights,
consume pager_object cache_pager,
copy boolean signal_last_ref,
copy pager_info info,
copy ownership_t vcache_ownership,
produce vcache_object new_cache,
copy rights maximum_access_rights,
produce rights_list cache_rights_list

);
void bind_cache(

copy bind_key_object bind_key,
copy offset_t bind_length,
copy offset_t bind_cache_offset,
consume rights_object rights_to_cache

);

 }; // cache_manager

interface cache_object {
// The size_in_bytes argument can be specified as -1
// to indicate all blocks starting from cache_offset to
// the end of the cache.
void flush_back(

copy offset_t cache_offset,
copy offset_t size_in_bytes,
borrow ownership_t vcache_ownership,
produce data memory_bytes

);
void deny_writes(

// same parameters as flush_back()
);
void write_back(

// same parameters as flush_back()
);
void delete_range(

copy offset_t cache_offset,
copy offset_t size_in_bytes,
borrow ownership_t vcache_ownership

);
void zero_fill(

// same parameters as delete_range()
);
void populate(

copy offset_t cache_offset,

copy offset_t size_in_bytes,
copy rights requested_access,
borrow ownership_t vcache_ownership,
copy data memory_bytes

);
void destroy_cache();

}; // cache_object interface

C Vmm object interface definition

interface vmm : cache_manager {
void get_vm_info(

produce vm_info local_vm_info
);
void add_swap_pager(

consume swap_pager swapper,
copy boolean temporary

);

}; // vmm

D Pager objects interface definitions

interface memory_object {
void bind(

copy name cache_manager_name,
copy rights requested_access,
copy offset_t mem_obj_offset,
borrow offset_t length_in_bytes,
produce rights_object rights_to_cache,
produce offset_t cache_offset,
produce long flags

);
void final_bind(

consume bind_key_object rights_to_bind,
copy name my_name,
copy rights request_access,
copy offset_t mem_obj_offset,
copy offset_t length_in_bytes
produce long flags

);
void get_length(

produce offset_t length_in_bytes
);
void set_length(

copy offset_t new_length_in_bytes
);

}; // memory_object interface

interface pager_object {
void page_in(

Appendices

24 The Spring Virtual Memory System

copy offset_t cache_offset,
copy offset_t size_in_bytes,
copy rights requested_access,
borrow ownership_t vcache_ownership,
produce data memory_bytes

);
void page_out(

copy offset_t cache_offset,
copy offset_t size_in_bytes,
borrow ownership_t vcache_ownership,
copy data memory_bytes

);
void write_out(

// same parameters as page_out()
);
void sync(

// same parameters as page_out()
);
void zero_fill_range(

copy offset_t cache_offset,
copy offset_t size_in_bytes,
borrow ownership_t vcache_ownership

);
void done_with_cache(

borrow vcache::ownership_t vcache_ownership
);
// done_with_pager_object is called by cache
.// manager when it reclaims this cache.
void done_with_pager_object(
);

}; // pager_object

© Copyright 1993 Sun Microsystems, Inc. The SMLI Technical Report Series is published by Sun Microsystems Laboratories, Inc.
Printed in U.S.A.

Unlimited copying without fee is permitted provided that the copies are not made nor distributed for direct commercial advantage, and credit to the
source is given. Otherwise, no part of this work covered by copyright hereon may be reproduced in any form or by any means graphic, electronic, or
mechanical, including photocopying, recording, taping, or storage in an information retrieval system, without the prior written permission of the copy-
right owner.

TRADEMARKS
Sun, Sun Microsystems, and the Sun logo are trademarks or registered trademarks of Sun Microsystems, Inc. UNIX and OPEN LOOK are registered
trademarks of UNIX System Laboratories, Inc. All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of
SPARC International, Inc. SPARCstation, SPARCserver, SPARCengine, SPARCworks, and SPARCompiler are licensed exclusively to Sun Microsys-
tems, Inc. All other product names mentioned herein are the trademarks of their respective owners.

