
1

A Flexible External Paging Interface

Yousef A. Khalidi
Michael N. Nelson

SMLI TR-93-20 October 1993

Abstract :

In this paper we describe an aspect of the Spring virtual memory system that was influenced by the distributed
object-oriented architecture of Spring. The virtual memory system supports external pagers like those provided
in the MACH® operating system, yet the architecture is more flexible and provides better caching opportunities
than is possible in other systems. A novel aspect of the architecture is the separation of the memory abstrac-
tion from the interface that provides the paging operations. This separation provides considerable caching
opportunities in our file system, and it facilitates our extensible stackable file system architecture. The virtual
memory architecture described in this paper is implemented and has been in use for over three years as part
of the experimental Spring operating system.

A Sun Microsystems, Inc. Business

M/S 29-01
2550 Garcia Avenue
Mountain View, CA 94043

email addresses:
yousef.khalidi@eng.sun.com
michael.nelson@eng.sun.com

2

A Flexible External Paging Interface

Yousef A. Khalidi Michael N. Nelson

Sun Microsystems Laboratories, Inc.
2550 Garcia Avenue

Mountain View, CA 94043

1 Introduction

The Spring operating system is an experimental object-
oriented operating system developed by our research
group at Sun Microsystems Laboratories, Inc. In the
Spring operating system, the object paradigm pervades
and unifies the system. The system is structured around a
small nucleus that provides the basic mechanisms for
object invocation and thread control. Traditional operating
system functionality (such as file system services) is built
on top of the substrate provided by the nucleus as user-
level applications. The Spring operating system is a dis-
tributed multi-threaded system that is constructed to
exploit a range of systems from tightly-coupled multipro-
cessors to more loosely-coupled networks. The Spring
operating system supports traditional UNIX programs
through compatibility mechanisms [1], but it is aimed at
new computing requirements, such as transparent distribu-
tion, high reliability, and stronger security.

We designed and implemented a Virtual Memory System
for the Spring operating system. The VM system follows
the Spring object model and strives to meet the diversity
of applications intended for the Spring operating system.
The Spring VM system provides:

• Flexible, distributed, and secure memory mapping and
sharing.

• Well-defined object-oriented interfaces for external
(user-level) pagers.

• Support for distributed shared memory.

• Support for stackable file systems.

• Support for efficient bulk-data transfer mechanisms.

The design and implementation of the Spring VM system
are described in [2]. In this paper we concentrate on one
aspect of the VM system, namely the separation of the
memory abstraction from the interface that provides the
paging operations. This separation provides considerable
caching opportunities in our file system and it facilitates
our extensible stackable file system architecture.

This paper is organized as follows. The rest of this section
provides a quick overview of the Spring system. Section 2
describes aspects of the VM system that are relevant to
this paper, while Section 3 introduces the notion of sepa-
rating the memory abstraction from the paging interface.
Section 4 describes a protocol used between the VM sys-
tem and external pagers. Examples of how we utilize the
separation of memory from paging are described in Sec-
tion 5. Section 6 compares our work to other external
pager-based systems. Concluding remarks are offered in
Section 7.

1.1 The Spring Operating System

The Spring operating system is a distributed, multi-
threaded operating system that is structured around the
notion ofobjects. A Spring object is an abstraction that
contains state and provides a set of operations to manipu-
late that state. The description of the object and its opera-
tions is aninterface that is specified in aninterface
definition language. The interface is a strongly-typed con-
tract between the implementor (server) and theclient of
the object.

The Spring operating system strives to keep a clear separa-
tion betweeninterfaces andimplementations, and in

Spring is an internal code name only.

Spring VM System

A Flexible External Paging Interface 3

general, there is no special status for interfaces that are
provided as part of the base system. The Spring system is
perceived as a set of interfaces rather than a set of imple-
mentations.

A Spring domain is anaddress space with a collection of
threads. A given domain may act as the server of some
objects and the clients of other objects. The implementor
and the client can be in the same domain or in different
domains. In the latter case, the representation of the object
includes an unforgeable nucleushandle that identifies the
server domain.

Since the Spring operating system is object-oriented, it
supports the notion ofinterfaceinheritance. An interface
that accepts an object of typefoo will also accept a sub-
class of foo. For example, theaddress space object has an
operation that takes amemoryobject and maps it in the
address space. The same operation will also acceptfile and
frame_buffer objects as long as they inherit from the mem-
ory object interface.

The Spring kernel supports basic cross domain invoca-
tions, threads, and low-level machine-dependent interrupt
handling, and provides basic virtual memory support for
memory mapping and physical memory management. A
Spring kernel does not know about other Spring kernels—
all remote invocations are handled by a network proxy
server. In addition, the VM system depends on external
pagers to handle storage and network coherency.

A typical Spring node runs several servers in addition to
the kernel (Figure 1). These include the domain and VM
managers; a name server; a file server; a linker domain
that is responsible for managing and caching dynamically
linked libraries; a network proxy that handles remote invo-
cations; and a tty server that provides basic terminal han-
dling as well as frame-buffer and mouse support. Support
for running UNIX binaries is also provided [1] .

The Spring file system supports cache coherent files [3].
The file object interface inherits from the memory object
interface and therefore can be memory mapped. The file
system uses the VM system to provide data caching and
uses the operations provided by virtual memory caches to
keep the data coherent. The file system also acts as a
system pager.

2 Spring VM System

2.1 Overview

There are two sets of agents that cooperate to provide vir-
tual memory in the Spring operating system. A per-node
Virtual Memory Manager (VMM) is responsible for han-
dling mapping, sharing, and caching of local memory. The
VMM depends on external pagers for accessing backing
storage and maintaining inter-machine coherency.

Most clients of the VM system only deal withaddress
space and memoryobjects. An address space object repre-
sents the virtual address space of a Spring domain, while a
memory object is an abstraction of store (memory) that
can be mapped into address spaces.

The main operations on address space objects are to map
and unmap (part of) memory objects into selected address
ranges of the address space. Since a memory object encap-
sulates a maximum access mode, a client may map a mem-
ory object as long as the requested access mode does not
exceed the maximum access mode of the object.

A memory object has operations to set and query the
length, and operations tobind to the object (see below).
There are no page-in/out or read/write operations on mem-
ory objects (which is in contrast to systems such as Mach
[4]). A holder of a memory object can either map it into an
address space or pass it to another client. The significance
of not providing paging operations on the memory object
is explained in Section 3.

network
proxy

caching
fs

UNIX
process

uelib
csh

uelib
name
server

linkertty
server

Spring
application

X11 server

Figure 1. Major system components of a Spring node

domain
manager

vm
manager

Kernel

server

Spring VM System

4 A Flexible External Paging Interface

2.2 Cache and Pager Objects

The VM architecture defines two other types of objects:
thepagerobject and thecacheobject. The pager object is
implemented by external pagers. It provides operations to
page in and out memory blocks and is used by the VMM
to populate a local memory cache. The cache object is
implemented by the VMM and is used by the external
pager to affect the state of the cache. A given pager
object–cache object pair constitutes a two-way communi-
cation channel between an external pager and a virtual
memory manager. Typically, there are many such channels
between a given external pager and a VMM. Tables 1 and
2 list the operations of the pager and cache objects, respec-
tively.

The architecture defines a mechanism to obtain a pager
object-cache object channel given a memory object. This
mechanism is described in Section 4.l.

Operation Description

page_in Request data be brought into the cache
page_out Write data to pager and remove data from

cache.
write_out Write data to pager and retain data in read-

only mode.
sync Write data to pager and retain data in same

mode.

TABLE 1. Pager object operations

Operation Description

flush_back Remove data from the cache and send modi-
fied blocks to the pager.

deny_writes Downgrade read-write blocks to read-only
and return modified blocks to the pager.

write_back Return modified blocks to the pager. Data is
retained in the cache in the same mode as
before the call.

delete_range Remove data from the cache—no data is
returned.

TABLE 2. Cache object operations

Figure 2 summarizes the relationship among the various
objects. Note that the term “external pager” refers to the
implementor of pager and memory objects. Strictly speak-
ing, the VM architecture is defined in terms of the objects
listed above and not the servers; implementations are free
to use more than one server to provide these objects (see
Section 5). As we will show, the implementations of the
memory and pager objects can reside in different servers.
As far as the VMM is concerned, it deals with pager and
memory objects and it does not care where the implemen-
tations of these objects reside.

2.3 Maintaining Data Coherency

The task of maintaining data coherency between different
VMMs that are caching a memory object is the responsi-
bility of the pager for the memory object. The coherency
protocol is not specified by the architecture—pagers are
free to implement whatever coherency protocol they wish.
The cache and pager object interfaces provide basic build-
ing blocks for constructing the coherency protocol.

zero_fill Indicate to the VMM that a particular range
of cache is zero-filled. The data blocks in the
range are held by the VMM in read-write
mode.

populate Introduce data blocks into the cache.

Operation Description

TABLE 2. Cache object operations

address space memory object

pager objectcache object

PagerVMM

pager-private
relationship

region-to-cache
binding

mapping

1-1 relationship
as a result of
bind operation

Figure 2. Relationship among basic VM objects

memobj-to-region

Separating the Memory Object from the Pager Object

A Flexible External Paging Interface 5

3 Separating the Memory Object from
the Pager Object

In the Spring operating system, the memory objectrepre-
sents memory and is separate from the pager object that
actuallyprovides the operations to page-in and page-out
the memory. Unlike other external pager-based systems
such as the MACH® operating system [5], the Spring
memory object does not provide paging operations.
Table 3 summaries the differences between a MACH
memory object and a Spring memory object.

Separating the memory abstraction from the paging inter-
face has the major advantage of giving the implementor of
the memory object the power to place the implementation
of the memory object in a separate server from the imple-
mentation of the pager object. For example, the Spring file
system uses this separation to interpose a local attribute
caching file system (CFS) in the local node, with the end
result that all file attributes are cached by the CFS, file data
is cached by the VMM, all reads and writes to the file go to
the local CFS and use the data cached by the VMM, and
yet all page-ins and page-outs go directly to the remote
server where the data is stored on disk. We describe the
CFS in Section 5.1. We also utilize the separation between
memory and pager objects in our extensible file system
architecture as will be described in Section 5.2.

The MACH OS The Spring OS

Memory
Object

• memory mapped
& encapsulates
access rights

• init/terminate ops

• paging operations

• memory mapped
& encapsulates
access rights

• bind operation

• no paging opera-
tions

File
Object

• can be same port
as memory object

• may provide file
operations using
paging ops

• inherits from
memory object

• provides file
read/write opera-
tion

• no paging ops

TABLE 3. Memory objects in the MACH and Spring OS

4 The Bind Protocol

When a VMM is asked to map a memory object into an
address space, it needs to answer three questions:

• Is this memory object equivalent to a memory object
that is already being cached at the VMM? If so, the
new memory object can share the cached state of the
equivalent object.

• What are the encapsulated access rights of the memory
object? These are needed for access control to the
shared cached state.

• What pager object should be used to get data?

One possible way of answering the first question is to
associate a global identifier with each memory object.
Each time the VMM is asked to map a memory object, it
uses the global ID to see if the memory object is equiva-
lent to a memory object that is already cached by the
VMM. If the VMM finds an equivalent memory object,
then it can use the associated pager object as a paging
channel for the newly mapped memory object. If no such
channel exists, the VMM can contact the memory object
to establish a channel. This is basically the approach taken
by the MACH virtual memory system. The advantage of
this scheme is that it requires only one memory object ini-
tialization operation, regardless of how many times the
memory object is mapped.

The problem with using global identifiers for memory
objects is that it does not allow two distinct memory
objects that encapsulate the same data to use the same
cached memory. For example, in an object-oriented sys-
tem such as the Spring operating system, it is common to
have two or more distinct objects that encapsulate access
to the same underlying state, each perhaps with different
access rights. In a system that relies on global identifiers
such as the MACH operating system, these distinct mem-
ory objects will have distinct global identifiers. Thus the
VMM when presented with two distinct memory objects
will not allow them to share the same cached state.

We made an early decision in the design of our VM system
to allow different memory objects to encapsulate different
access rights to the same memory. In particular, we wanted
to allow different file objects to encapsulate different
access rights to the same file while using thesame physi-
cal memory to cache the contents of the file.

The Bind Protocol

6 A Flexible External Paging Interface

Instead of using global identifiers, the Spring operating
system uses a special bind protocol that simultaneously
allows the VMM to answer all three of the questions listed
above. The bind protocol involves the implementor of
memory objects, since the implementor can determine if
two memory objects are equivalent (i.e., share the same
underlying state) and can determine the encapsulated
rights of the memory object. Thus, when the VMM is pre-
sented with a memory object to map, it invokes thebind
operation on the memory object. The result of the bind
operation is an object that allows the VMM to determine
the encapsulated access rights for the memory object and
the associated cache and pager objects. The implementor
ensures when it is asked by the same VMM to bind two
distinct yet equivalent memory objects, that the VMM will
use the same cached data.

The decision to call the bind operation on each map
request raises three issues:

1. Cost of the bind operation. Since the VMM has to call
the memory object’s bind operation on each map
request, it is important to minimize the cost of this
operation. By using the CFS (Section 5.1), the cost of
the bind operation is exactly one local object invoca-
tion when the file is cached on the local machine.

2. Security. It is imperative that the VMM is not fooled
by a malicious (or an incompetent) memory object
implementor into using a cache-pager channel that
belongs to a different client (Section 4.2).

3. Cache reclamation. It is important that the VMM is
allowed to reclaim all resources associated with unused
cache objects, while allowing bind operations to pro-
ceed in parallel (Section 4.4).

4.1 Protocol Description

Figure 3 shows the sequence of operations made during
the bind operation. The step numbers correspond to the
following list:

1. An application issues a request on an address space
object that requires mapping a memory object to a
region in the address space (or a request to make a
copy of a memory object).

2. The VMM is presented with a memory object to map
(or to make a copy from the object). It needs to associ-
ate the mapping with a local cache object. Therefore, it
calls thebind operation on the memory object, request-
ing from the pager a cache object to use when access-

ing the mapped memory. The arguments of the bind
request include the name of the VMM (not the object
representing the VMM; see below), the length, and the
access mode of the requested binding.

3. The pager that implements the memory object receives
the bind request. It decides whether or not a cache
object that caches the state of the memory object
already exists at the requesting VMM.

3a. If no cache object that caches the contents of the
memory object exists at the VMM, acreate_cache call
is issued to the VMM.1

3b. The VMM receives acreate_cache call that
includes a pager object as an input argument.

3c. The VMM returns a cache object plus a list of
cache-rightsobjects. A cache-rights object is a Spring
object that represents the right to access a cache object
with an encapsulated access right. It is used as a secure
capability.

4. The pager returns from the bind call by pointing the
VMM to an existing local cache object that caches the
contents of the memory object. The “pointer” used by
the VMM is a cache-rights object and not the cache
object itself.

1. The pager first looks up thevmm object given the name
passed in the original bind call if it does not have the VMM
object cached already. The name lookup is made on some well-
known name server in an authenticated manner.

2. address_space::map()
5. return()

3b. vmm::create_cache()
3c. return()

Client Application

3. memory_object::bind()
 if !cache_exists() then
 3a. vmm->create_cache()
4. return()

VMM

Figure 3. The bind protocol

(1) Client requests mobj to be mapped in an address space; (2) the
map request is turned around into a bind on mobj. (3) If a cache that
backs mobj does not exist at the calling VMM then (3a) a new
cache is created at the VMM, etc. (4) The bind call returns pointing
the VMM to a local cache object. (5) The VMM uses this cache ob-
ject to back the requested address space region.

Pager
1. address_space->map(mobj)

The Bind Protocol

A Flexible External Paging Interface 7

5. The VMM uses the cache-rights object to find the cor-
responding cache object and completes the original cli-
ent request by checking the requested access mode
against the access mode encapsulated in the cache-
rights object.

4.2 Cache-Rights Object

The cache-rights objects returned in Step 3c above are
used as secure capabilities. A cache-rights object encapsu-
lates an access right to a cache object and supports one
operation: to obtain other cache-rights objects that encap-
sulate asubset of the encapsulated access rights. The
VMM supports four possible access rights:

• read-only

• read-execute

• read-write

• read-write-execute

A cache creation request from the pager includes the max-
imum access rights of the cache being created. The VMM
returns at least one cache-rights object that encapsulates
the maximum requested access right. The holder of the
cache-rights object may obtain weaker versions of the
object by calling thecreate_restricted_sibling operation
on the object. For example, a read-only cache-rights object
can be obtained from a read-write cache-rights object, but
a read-write-execute object cannot be obtained from a
read-write cache-rights object. The rationale behind using
the cache-rights object is explained in the next section.

4.3 Discussion

We argue in this section for the correctness of the protocol:

• When a VMM is given a memory object to map, it
needs to find a corresponding cache object. The only
entity it can request this information from is the mem-
ory object itself.

• However, the VMM must be sure that when it asks the
memory object, “Give me a cache object that has your
data,” that the answer points to the correct cache object
and not to some other cache object thus compromising
security. The VMM does not trust pagers to be honest.
The VMM trusts pagers only with the data they are
supposed to manage.2

• Therefore, the VMM protects itself by requiring the
pager to return as a result of the bind call a cache-rights

object and not a forgeable identifier, since a forgeable
identifier can give a malicious pager access to a cache
that it should not control.3 Similarly, the pager protects
itself by returning a cache-rights object and not the
actual cache object, since a cache-rights object is of
use only to the implementor of the cache object and to
nobody else. Note that a cache-rights object is a Spring
object, and is not forgeable.

• When a pager receives a bind request from a VMM, it
does not know for sure that the caller is really the
VMM indicated in the call. Moreover, pagers do not
trust the VMM except for handling the data of the
memory object in question.

• Therefore, the VMM sends its name and not a VMM
object in the bind request. It is up to the pager to use
the name to look up an authenticated VMM object.
Once an authenticated VMM object is obtained, the
pager can issue acreate_cache call knowing with cer-
tainty that it is invoking the right VMM. Note that pag-
ers can look up an authenticated VMM object once and
cache it for futurecreate_cache calls.

If the system is structured such that the pager, the VMM,
and the original client are on the same node and a cache
object already exists at the VMM, an address spacemap
request can be satisfied by issuing two local object invoca-
tions: the address spacemap call and memory objectbind
call. Our file system uses such an implementation as
described in Section 5.1.

4.4 Cache Reclamation

Pagers may delay deleting unattached caches in the hope
of reusing them later on. The VM system tries to retain as
many unattached caches as it can. However, as with any
resource, the system has to impose a limit on the maxi-
mum number of unattached caches. Therefore, the VMM
has to reclaim some of these caches when the limit is
reached.

2. If a pager does not even handle its own data correctly, then the
only losers are those clients that depend on its memory objects.
Looking up a memory object from a pager in a secure manner is
the responsibility of these clients and not the responsibility of the
VMM.

3. Alternatively, one could send an encrypted identifier. As with
other parts of the Spring system, we made a conscious decision
to avoid using encryption and instead used a Spring object. This
way we hide encryption, if any, in the support the system pro-
vides for secure Spring objects and not in application code.

Examples

8 A Flexible External Paging Interface

It is possible that while a pager is returning from abind
operation, the VMM may decide to reclaim the same
cache referenced in the call. Since it is not acceptable to
fail thebind call (and the corresponding address space
map call), the bind protocol needs to be extended to
recover from this race. Although this race is seldom
encountered in practice, a recovery protocol is necessary
nonetheless.4

The protocol extension is the following: When thebind
call returns, the VMM checks to see if the cache-rights
object points to a valid cache. If it does not, then instead of
failing themap call, it invokes thefinal_bind operation on
the memory object, passing in addition to the usual bind
arguments abind-key object which has no operations.
Note that at this point, the VMM does not know whether it
has hit a cache reclamation race or it is simply dealing
with a malicious/incompetent pager.

When the pager receives thefinal_bind call, it is expected
to call the VMM passing the bind-key object to thecre-
ate_cache_object_and_bind or thebind_cache call. The
pager calls the latter operation when it believes that it has
a cache at the VMM. If thebind_cache call fails, the pager
then calls thecreate_cache_object_and_bind operation.

When the VMM receives either call, it uses the passed
bind-key object to identify the outstandingfinal_bindcall
and associates the new cache with that call. A successful
execution of abind_cache or acreate_cache_ob-
ject_and_bind guarantees that a cache is bound to a bind-
key object, and that this cache will not be deleted until the
bind-key object is deleted.

When thefinal_bind call returns to the VMM, it checks to
see if acreate_cache_object_and_bind or a bind_cache
was executed successfully. If so, the originalmap request
is satisfied, otherwise the VMM fails thebind and the cor-
respondingmap request.

4. In practice, the only time we observe this recovery protocol
executing is when a machine reboots faster than a remote pager
notices the quick reboot.

5 Examples

5.1 Caching File System

The Spring operating system provides a coherent distrib-
uted file system (DFS). When a client resolves a file name
through the naming system, it receives a file object with
the requested access rights. As with other Spring objects,
file objects can be freely passed around the network. A
DFS acting as an external pager handles bind requests
from the local VMM and remote VMMs and is responsi-
ble for keeping the different caches consistent [3].

If a client obtains a file object that is implemented by a
remote DFS, all file operations and binds on the file
objects result in network RPCs to the remote DFS, and no
caching of file attributes or file read/write operations is
done. (Of course, the local VMM caches memory-mapped
contents of the file if the file is mapped locally.)

To enable caching of file attributes and read/write opera-
tions, a CFS is introduced on each machine. The main
function of the CFS is to interpose on remote files when
they are passed to the local machine as described in [3, 6].
Once interposed on, all calls to remote files end up being
intercepted by the local CFS (Figure 4).

An important function of the CFS is to handle bind
requests for remote files. When a remote file is mapped
locally, the VMM invokes the bind operation on the file.
Since the file is interposed on by the CFS, the CFS

Local Machine Remote Machine

CFS

VMM VMM

DFS

Figure 4. Using CFS to cache remote file objects

File objects exported by the remote DFS are cached by the local
CFS. All files operations are serviced by the CFS, and all paging
operations go to the remote DFS where the disk is located. File
read/write operations are serviced from memory cached by the
local VMM.

Related Work

A Flexible External Paging Interface 9

receives the bind. The CFS proceeds by returning to the
VMM a cache-pager channel to theremote DFS. There-
fore, all page-ins and page-outs from the VMM go directly
to the remote DFS.

The CFS also caches all file attributes from the remote file
system and cooperates with the remote file system to keep
them coherent using its own attribute coherency protocol.
Finally, the CFS services read/write requests by mapping
the file into its address space and reading/writing the data
from/to its memory (thus utilizing the local VMM cache
for caching the data).

The CFS utilizes the separation of the memory object from
the pager object to ensure that all VMM page-in and page-
out requests go directly to the pager object implemented
by the remote file system, while at the same time handling
all file (and memory object) operations locally.

Therefore, using the CFS, all file operations including
bind requests are handled locally. However, the CFS is
optional. If it is not running, remote files are not inter-
posed on and all file operations go to the remote DFS. Ref-
erence [3] describes in detail the architecture and
implementation of the file system.

5.2 Stacking File Systems

The Spring operating system provides an extensible file
system architecture that allows for a file system to be com-
posed (or stacked) on top of other file systems [7]. A file
system normally acts as a pager by implementing pager
and memory objects. It can also act as acache manager
(similar to a VMM) by implementing cache objects.

A goal of the extensible file system architecture is to allow
new file systems to be implemented using other file sys-
tems, without necessarily re-implementing all the func-
tionality provided by the existing file systems. The
separation of the memory object from the pager object
allows a file system to implement the memory object (the
file) without implementing a corresponding pager object.
A file system can relegate paging services to an underlying
file system, by forwarding an incoming bind request to the
underlying file.

We have found the separation of the memory object from
the pager object very useful in implementing stackable
files. For example, a file system that exports local files

through some private protocol (e.g., AFS [8]) can handle
remote bind requests itself, while forwarding local binds
to the underlying file system. More details are available in
[7].

6 Related Work

There are several systems that provide rich virtual mem-
ory subsystems that support the notion of external pagers
[5, 9, 10]. In this section we concentrate on discussing the
notion of separating the memory from the pager objects as
it relates to the MACH operating system and the CHO-
RUS® operating system. (See [1, 2, 6, 7] for other compar-
isons of the Spring operating system, the MACH operating
system, and the CHORUS operating system.)

6.1 The MACH Operating System

The MACH operating system has a virtual memory sys-
tem that supports an external pager interface [5]. Unlike
the MACH operating system, the Spring operating system
separates the memory object from the object used for pag-
ing operations (the pager object). In the MACH operating
system, these two objects are one and the same although
they provide different functionality: the first encapsulates
access to a (logical) piece of memory, while the other is
used to obtain the physical underlying memory.

The Spring operating system also differs from the MACH
operating system in that the Spring operating system pro-
vides different views on the same memory. To achieve a
similar effect in the MACH operating system one has to:

a. Have a copy of the data per memory object and
force the pager to copy the data between the differ-
ent memory objects even on the same machine, or

b. Develop a protocol based on a third trusted
agent that sits between the system and the client
(e.g., see [5], page 103), or

c. Modify the external pager interface, perhaps
along the lines of our system.

As a final difference, file objects in the Spring operating
system support read and write operations. As mentioned in
[5], a holder of a MACH memory object may read and
write its contents by using the paging operations provided
by the object. To do so, however, requires the client to act
effectively as a VM system, engaging the pager in the

Conclusions and Future Work

10 A Flexible External Paging Interface

memory object’s paging and initialization/termination pro-
tocols. In practice, UNIX applications on MACH access
files through an emulation library that maps the file in the
process’ address space [12].

Although one may argue that it is cheaper to access the file
by mapping it rather than by reading/writing to it (which
probably requires someone to map it somewhere anyway),
in the Spring operating system, we wanted to retain the
ability to issue read/write requests on the file object
directly. The file interface in the Spring operating system
inherits from the I/O interface, and any operation that
expects an I/O stream may be passed a file. Therefore, cli-
ents that expect a stream will act on the file as a stream,
issuing read and write operations on the file object directly
without going through an emulation layer.

6.2 The CHORUS Operating System

The memorysegment in the CHORUS operating system is
similar to MACH’s memory object. Segments are man-
aged bymemory mappers that provide operations to page-
in and page-out the segment [9]. A segment may be mem-
ory mapped or explicitly read and written through CHO-
RUS system calls [11]. Basically, all segment operations
are sent to the mapper’s port.

The CHORUS/MiX V.4 subsystem adds a local mapper
per-node in addition to a global mapper [11]. These map-
pers cooperate with the file managersto provide consistent
access to files in a distributed system. When a file is
opened by the CHORUS process manager (PM), the file
system contacts the global-mapper to construct a so-called
coherent capability that is returned to the PM. Paging calls
on this capability are then routed to the local mapper
which in turn forwards the call to the remote global map-
per if the data is not available locally.

The local mapper serves a different function from our
CFS. CFS is used to intercept operations on remote files,
and is not involved in paging operations, due to the separa-
tion of the memory and pager objects. The local mapper
on the other hand is consulted on all paging operations. It
is not clear from [11] how and if file attribute caching is
done in CHORUS/MiX V.4.

7 Conclusions and Future Work

We have designed and implemented a virtual memory sys-
tem for a general-purpose operating system that empha-
sizes object-oriented interfaces, security, and distribution.
The VM system separates the memory abstraction from
the interface that provides the actual data. The VM system
provides an architecture for efficient sharing of memory in
a secure manner, and for building distributed extensible
file systems.

The notion of separating the memory abstraction from the
paging interface is simple, but powerful. We have found
the separation of the memory and pager objects to be very
useful in the implementation of several pagers.

Although somewhat orthogonal to separating the memory
object from the pager object, we also found that it is very
useful to be able to encapsulate the access right in the
memory object separately from the pager object. Finally,
the ability to directly issue read and write operations on
files (separate from paging operations) is important in an
object-oriented system where files are also io streams.

All functionality described in this paper has been imple-
mented and is part of the base Spring system. The system
currently runs on several uniprocessor and multiprocessor
SPARCstationTM models. All system servers including the
kernel are multi-threaded and are written in C++.

We are continuing our work in virtual memory and the file
system. We are currently implementing new file system
layers as part of our extensible file system work, and eval-
uating and tuning the performance of the system.

References

[1] Khalidi, Yousef A. and Michael N. Nelson. “An Imple-
mentation of UNIX on an Object-oriented Operating Sys-
tem.” Proceedings of Winter '93 USENIX Conference
(January 1993): 469-480.

[2] Khalidi, Yousef A. and Michael N. Nelson. “The Spring
Virtual Memory System.”Sun Microsystems Laboratories
Technical Report SMLI TR 93-09(February 1993).

[3] Nelson, Michael N., Yousef A. Khalidi, and Peter W.
Madany. “The Spring File System.”Sun Microsystems Labo-
ratories Technical Report SMLI TR 93-10(February 1993).

[4] Rashid, R., A. Tevanian, M. Young, D. Golub, R. Baron,
D. Black, W. Bolosky, and J. Chew. “Machine-Independent

References

A Flexible External Paging Interface 11

Virtual Memory Management for Paged Uniprocessor and
Multiprocessor Architectures.”IEEE Transactions on Com-
puters37, no. 8 (August 1988): 896-908.

[5] Young, Michael Wayne. “Exporting a User Interface to
Memory Management from a Communication-Oriented
Operating System.”Carnegie Mellon University Technical
Report CMU-CS-89-202 (November 1989).

[6] Nelson, Michael N., Graham Hamilton, and Yousef A.
Khalidi. “A Framework for Caching in an Object-Oriented
System.” Sun Microsystems Laboratories Technical Report
SMLI TR 93-19 (October 1993).

[7] Khalidi, Yousef A. and Michael N. Nelson. “Extensible
File Systems in Spring.”14th Symposium on Operating Sys-
tem Principles (SOSP '93) (December 1993).

[8] Satyanarayanan, S. “Scalable, Secure, and Highly Avail-
able Distributed File Access.”IEEE Computer23, no. 5
(May 1990): 9-21.

[9] Abrosimov, Vadim, Marc Rozier, and Marc Shapiro.
“Generic Memory Management for Operating System Ker-
nels.”12th Symposium on Operating Systems Principles
(SOSP `89)(December 1989): 123-136.

[10] Harty, Kieran, and David R. Cheriton. “Application-
Controlled Physical Memory using External Page-Cache
Management.” Proceedings of 5th International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-V) (September 1992): 187-197.

[11] Abrosimov, Vadim, Francois Armand, and Maria Inés
Ortega. “A Distributed Consistency Server for the CHORUS
System.”3rd Symposium on Experiences with Distributed
and Multiprocessor Systems (SEDMS III)(March 1992):
129-148.

[12] Dean, R. W., and F. Armand. “Data Movement in Ker-
nelized Systems.”Proceedings of USENIX Workshop on
Micro-kernels and Other Kernel Architectures (April 1992):
243-261.

© Copyright 1993 Sun Microsystems, Inc. The SMLI Technical Report Series is published by Sun Microsystems Laboratories, Inc.
Printed in U.S.A.

Unlimited copying without fee is permitted provided that the copies are not made nor distributed for direct commercial advantage, and credit to the
source is given. Otherwise, no part of this work covered by copyright hereon may be reproduced in any form or by any means graphic, electronic, or
mechanical, including photocopying, recording, taping, or storage in an information retrieval system, without the prior written permission of the copy-
right owner.

TRADEMARKS
Sun, Sun Microsystems, and the Sun logo are trademarks or registered trademarks of Sun Microsystems, Inc. UNIX and OPEN LOOK are registered
trademarks of UNIX System Laboratories, Inc. All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of
SPARC International, Inc. SPARCstation, SPARCserver, SPARCengine, SPARCworks, and SPARCompiler are licensed exclusively to Sun Microsys-
tems, Inc. Connection Machine is a registered trademark of Thinking Machines Corporation. CHORUS is a registered trademark of Chorus Systems. All
other product names mentioned herein are the trademarks of their respective owners.

