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Abstract:

In this paper we describe an architecture for extensible file systems. The architecture enables the extension of
file system functionality by composing (or stacking) new file systems on top of existing file systems. A file sys-
tem that is stacked on top of an existing file system can access the existing file system’s files via a well-defined
naming interface and can share the same underlying file data in a coherent manner. We describe extending file
systems in the context of the Spring operating system. Composing file systems in Spring is facilitated by basic
Spring features such as its virtual memory architecture, its strongly-typed well-defined interfaces, its location-
independent object invocation mechanism, and its flexible naming architecture. File systems in Spring can
reside in the kernel, in user-mode, or on remote machines, and composing them can be done in a very flexible
manner.
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1 Introduction

File systems are an important part of operating systems.
Typically, an operating system provides one or two types
of file systems that are not extensible. In current systems
such as the UNIX® operating system, the file system pro-
vides a storage mechanism (in addition to a naming facil-
ity) that manages stable storage media and cooperates with
the virtual memory system to cache data in memory [1].
To add new file system functionality requires either modi-
fying the existing file systems or adding a new file system.
Examples of new functionality that may need to be added
include compression, replication, encryption, distribution,
and extended file attributes.

There are several architectures that allow for extending the
functionality of the file system in one way or another. The
Virtual File System (VFS) architecture was originally
designed to accommodate multiple file systems within a
UNIX kernel [2]. More recently, a proposal was made to
evolve VFS to support the implementation of new file sys-
tems in terms of pre-existing ones [3]. The 4.4BSD UNIX
system includes a stackable file system module that is
based on the Ficus work described in [4]. Systems based
on an external pager interface [5, 6] potentially have the
ability to provide for file system extensibility. Other sys-
tems such as the Apollo® extensible IO system [7] and
watchdogs [8] allow for extending the file system in a lim-
ited manner. Such systems demonstrate along with other
systems the need for extending the file system. However,
we believe that the goals of these systems are too limited.

Spring is an internal code name only.

In this paper we describe an architecture for extensible file
systems. We also describe an implementation of the archi-
tecture and report on our experience using it in extending
the base Spring system. The architecture enables the
extension of file system functionality by stacking (or com-
posing) new file systems on top of existing file systems.
The implementor of a new layer has the option of keeping
the files exported by the new layer coherent with files of
the underlying layer, as well as the option of sharing the
same cached memory with the files of the underlying
layer. A flexible framework is also provided for arranging
the file systems’ name spaces. Composing new layers on
top of existing ones can be done statically (at compile/con-
figuration time) or dynamically (at boot/run time). In addi-
tion, the file system layers can reside in the same address
space or in different address spaces, and be implemented
locally or remotely.

This paper is organized as follows. Section 2 presents the
goals and requirements of the architecture. Section 3 gives
an overview of the Spring system, emphasizing those
aspects of Spring that are relevant to this paper. The gen-
eral stacking architecture is described in Section 4, while
the special case of interposing on a per-file basis is pre-
sented in Section 5. The implementation of the system and
our experience in using it are described in Section 6. Sec-
tion 7 compares our architecture to other related work.
Conclusions and future work are discussed in Section 8.
Finally, the Appendices list some of the important inter-
faces used in the paper.
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2 Requirements

There are four broad requirements that we believe are nec-
essary for a flexible extensible file system architecture:

1. Leveraging existing file systems. In order to add new
file system functionality to a system, one has two basic
options: either to build new file systems from scratch,
or somehow to leverage the existing file systems.
Clearly, it is preferable to be able to easily leverage
existing file systems when introducing new file system
functionality. This should be achievable without affect-
ing the clients of the existing file systems.

2. Caching. For performance reasons, the extensible file
system architecture must define means for caching file
data and attributes.

3. Coherency. Due to caching, to distribution, and to
multiple clients accessing the same data from different
points of view, the architecture must define a frame-
work for keeping file data and attributes coherent.
However, the coherency policies should be left to the
implementation of the file systems.

4. Dynamic addition of functionality. For ease of
administering and configuring the system, it should be
possible to add new functionality to a running system,
and to dynamically extend the functionality of files. In
addition, new file systems should be able to reside in
the kernel or in user mode.

These requirements lead us to the following design deci-
sions:

• The implementation of a new file system leverages
existing file systems by being stacked on top of exist-
ing file systems. The files of the underlying file system
can be directly accessible if desired. Whether a file is
accessible or not is an administrative decision.

• The architecture provides the building blocks for cach-
ing file data and attributes and for keeping them coher-
ent with the files of the underlying file systems.

• A particular file system decides whether or not to keep
its files coherent with the files of the underlying file
systems, and a file system is free to implement the
coherency algorithm it desires.

• A file system that does not modify the data of its
underlying file system may use the same memory used
to cache the underlying file(s) to avoid caching the
“same” file data twice.

• File systems can be implemented in the kernel or in
user processes, and in either case can be implemented

locally or on a remote machine. In addition, file sys-
tems can be added to or removed from the system stati-
cally or dynamically.

• The architecture allows for interposing on individual
files or entire collections of files.

3  Spring

In this section we give a brief overview of the Spring sys-
tem and its naming architecture, followed by a more
detailed description of the virtual memory system, an
aspect of Spring that is particularly relevant to this paper.

3.1 The Spring Operating System

Spring is a distributed, multi-threaded operating system
that is structured around the notion ofobjects. A Spring
object is an abstraction that contains state and provides a
set of operations to manipulate that state. The description
of an object and its operations is aninterface that is speci-
fied in aninterface definition language. The interface is a
strongly-typed contract between theserver (implementor)
and theclient of the object.

A Spring domain is anaddress space with a collection of
threads. A given domain may act as the server of some
objects and the client of other objects. The server and the
client can be in the same domain or in a different domain.
In the latter case, the representation of the object includes
an unforgeable nucleushandle that identifies the server
domain.

Since Spring is object-oriented, it supports the notion of
interfaceinheritance1. An interface that accepts an object
of typefoo will also accept a subclass of foo.

The Spring kernel supports basic cross domain invoca-
tions, supports threads, and provides basic virtual memory
support for memory mapping and physical memory man-
agement [9, 10].

A typical Spring node runs several servers in addition to
the kernel as shown in Figure 1. Support for running

1.  Note the emphasis on interface inheritance as opposed to
implementation inheritance. From the operating system point of
view, what matters are the interfaces of the different servers and
programs. Specific implementations are free to use implementa-
tion inheritance and to reuse code.
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UNIX binaries is also provided [11]. All services are
exported via objects defined using the interface definition
language. In general, any collection of servers may reside
in the same or in different domains. The decision on where
to run a particular server is made for administrative, secu-
rity, and performance reasons, and is independent of the
interface of the service.

3.2 Naming

The Spring naming service allows any object to be associ-
ated with any name. A name-to-object association is called
aname binding. A contextis an object that contains a set
of name bindings in which each name is unique. An exam-
ple of a context is a UNIX file directory. An object can be
bound to several different names in possibly several differ-
ent contexts at the same time. Since a context is like any
other object, it can also be bound to a name in some con-
text. Our naming system is based on the architecture
described in [12].

There are two aspects of Spring naming that are very use-
ful for our extensible file system architecture:

• Any domain may implement a naming context and, if
the domain is appropriately authenticated, can bind the
context in any other context.

• Each Spring domain has a context object that imple-
ments a per-domain name space. All domains have part
of their name space in common, but they can also cus-
tomize their name space as appropriate.

network
proxy

caching
fs

UNIX

name
server

linker

device
server

Spring
application

FIGURE 1. Major system components of a Spring node
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3.3 Virtual Memory

3.3.1 Overview
A per-node virtual memory manager (VMM) is responsi-
ble for handling mapping, sharing, and caching of local
memory. The VMM depends on external pagers for
accessing backing store and maintaining inter-machine
coherency.

Most clients of the virtual memory system only deal with
address space and memoryobjects. An address space
object represents the virtual address space of a Spring
domain while a memory object is an abstraction of store
(memory) that can be mapped into address spaces. An
example of a memory object is a file object (the file inter-
face in Spring inherits from the memory object interface).
Address space objects are implemented by the VMM.

A memory object has operations to set and query the
length, and an operation tobind to the object (see below).
There are no page-in/out or read/write operations on mem-
ory objects (which is in contrast to systems such as
MACH® [5]). The Spring file interface provides file read/
write operations (but

not page-in/page-out operations). Separating the memory
abstraction from the interface that provides the paging
operations is a feature of the Spring virtual memory sys-
tem that we found very useful in implementing our file
system [13]. This separation enables the implementor of
the memory object to be in a different location from the
implementor of thepager object which provides the con-
tents of the memory object. Table 1 shows the differences

MACH ® Spring

Memory
Object

Memory mapped &
encapsulates access
rights

Init/terminate ops

Paging operations

Memory mapped &
encapsulates access
rights

Bind operation

No paging operations
File
Object

Can be same port as
memory object

May provide file
operations using pag-
ing operations

Inherits from mem-
ory object

Provides file read/
write operation

No paging ops

TABLE 1. Memory object in MACH and Spring
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between our memory object and the memory object of a
traditional external pager-based system such as MACH.
We will show uses of this feature in Sections 4 and 6.2.

3.3.2 Cache and Pager Objects
In order to allow data to be coherently cached by more
than one VMM, there needs to be a two-way connection
between the VMM and the provider of the data (e.g., a file
server). The VMM needs a connection to the data provider
to allow the VMM to obtain and write out data, and the
data provider needs a connection to the VMM to allow the
provider to perform coherency actions (e.g., invalidate
data cached by the VMM). In our system we represent this
two-way connection as two objects. The VMM obtains
data by invoking on apagerobject implemented by a data
provider, and a data provider performs coherency actions
by invoking on acacheobject implemented by a VMM.
Throughout the rest of this paper we call data providers
“pagers”.

When a VMM is asked to map a memory object into an
address space, the VMM must be able to obtain a pager
object to allow it to manipulate the objects’s data. Associ-
ated with this pager object must be a cache object that the
pager can use for coherency. In addition, a VMM wants to
make sure that if two equivalent memory objects (i.e. two
memory objects that refer to the same file on disk) are
mapped that they can share the same data cached by the
VMM. Therefore the VMM contacts the pager that imple-
ments the memory object by invoking thebind operation
on the memory object. The result of the bind operation is a
cache_rightsobject implemented by the VMM. If two
equivalent memory objects are mapped, then the same
cache_rights object will be returned. The VMM uses the
returned object to find a pager-cache object connection to
use, and to find any pages cached for the memory object.

When a pager receives a bind operation from a VMM, it
must determine if there is already a pager-cache object
connection for the memory object at the given VMM. If
there is no connection, the pager contacts the VMM, and
the VMM and the pager exchange pager, cache, and
cache_rights objects. Once the connection is set up, the
pager returns the appropriate cache_rights object to the
VMM.

Appendices A and B list the operations of the cache and
pager objects, respectively. Typically, there are many
pager-cache object channels between a given pager and a
VMM (see Figure 2 for an example).

3.3.3 Maintaining Data Coherency
The task of maintaining data coherency between different
VMMs that are caching a memory object is the responsi-
bility of the pager for the memory object. The coherency
protocol is not specified by the architecture—pagers are
free to implement whatever coherency protocol they wish.
The cache and pager object interfaces provide basic build-
ing blocks for constructing the coherency protocol. Our
current pager implementations use a single-writer/multi-
ple-reader per-block coherency protocol (Section 6.2).

4 Spring File Stacking Architecture

4.1 Overview

The Spring file system stacking architecture enables new
file systems to be added that extend the functionality of
and build on existing file system implementations. This is
achieved by adding new file systemlayers to the system. It
is important to note that as long as theinterface of the new
layer conforms to the interface of a file system, clients will
view the new layer as a file system, regardless of how it is
implemented. Theimplementation decides how the new
layer utilizes the underlying file systems, which in turn

VMM 1 VMM 2

FIGURE 2. Pager-cache object example

Pager 1

pager
object

A VMM and a pager have a two-way pager-cache object connec-
tion. In this example, Pager 1 is the pager for two distinct memory
objects cached by VMM 1, so there are two pager-cache object
connections, one for each memory object. Pager 2 is the pager for
a single memory object cached at both VMM 1 and VMM 2, so
there is a pager-cache object connection between Pager 2 and
each of the VMMs.

pager
object

Pager 2

pager
object

pager
object

cache
object

cache
object

cache
object

cache
object
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also must conform to the file system interface.Administra-
tive decisions are used to choose which file systems to
stack on top of other file systems (or individual files), and
to arrange the name space appropriately.

There need not be a one-to-one correspondence between
the files exported by a given layer and its underlying lay-
ers. A file system may even export files that do not actu-
ally exist. Again, the implementation of a given file
system makes such decisions.

Figure 3 illustrates a configuration of stacked file systems.
In the figure, each box represents a layer2 that exports a
file system interface. At the bottom of the stack arebase
file systems fs1 and fs2 that build directly on top of stor-
age devices (e.g., UFS [14]). The implementation of fs3
uses one underlying file system, while the implementation
of fs4 uses two underlying file systems to implement its
function (e.g., fs3 is a compression file system, and fs4 is a
mirroring file system). The choice of which file systems to
use as the underlying file systems for fs3 and fs4 is an
administrative decision. It is also an administrative deci-
sion whether (and to whom) to expose the files exported
by the various file systems. Note that the decision of
which disk drives to use for the base file systems fs1 and
fs2 is similar to the current practice of mounting disk par-
titions.

There are three components to the extensible file system
architecture:

2.  As with other Spring servers, the layers of a given configura-
tion of stacked file systems may be implemented by one or more
domains, on one or more machines.

fs interface
fs implementation

FIGURE 3. Implementation vs. administrative decisions

fs4

fs2 fs3

fs1disk 2

disk 1

1. A stackable pager interface for caching data and keep-
ing it coherent.

2. A stackable attribute interface for caching file
attributes and keeping them coherent.

3. A stackable file system interface that is used with a
flexible naming architecture to compose file systems
and to arrange the file name space.

We will discuss each of these components in turn.

4.2 Stackable Pager Interface

In Section 3.3 we described the cache and pager object
interfaces and how they can be used by external pagers to
keep memory shared by more than one VMM coherent. In
general, anybody can implement cache objects. A VMM is
one such cache manager (i.e., it is an implementor of
cache objects); pagers can also act as cache managers to
other pagers. Therefore, a pager may have its data cached
at several cache managers, some of which may be virtual
memory managers. As far as the pager is concerned, it
uses the same algorithm to maintain the coherency of its
data regardless of whether a particular cache manager is a
VMM or not.

Figure 4 shows how a file server may act as a pager and a
cache manager at the same time. In particular, in this fig-
ure, fs1 acts as a pager to the VMM through the P1 pager
object, and fs1 acts as a cache manager to fs2 through the
C3 object. Note that the pager and cache object interfaces
are the same as those described in Section 3.3.

P3

fs1

VMM

fs2
fs1 acts as a pager

VMM acts as a cache VMM acts as a cache

FIGURE 4. File systems as pagers & cache managers

to VMM through the
P1 pager object

manager to fs1 through
the C1 cache object.

P2

P1
C3

C1 C2

manager to fs2 through
the C2 cache object.

fs2 acts as a
pager to VMM
through the P2
pager object

fs2 acts as a
pager to fs1
through the P3
pager object.

fs1 acts as a
cache manager to
fs2 through the
C3 cache object.
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There are two possible design decisions that the imple-
mentor of a file system layer has regarding data caching:

• Whether to keep the layer’s files coherent with the files
of the underlying file system. A file system can main-
tain coherency with the underlying files by acting as a
cache manager for those files.

• Whether to use the same cached pages for the layer’s
files and for the files of the underlying file system. A
file system can use the same cached memory by for-
warding bind operations from local cache managers to
the underlying file system which has the effect of using
the same pager-cache object connection as the one
used for the underlying file.

We illustrate these two design points with examples.

4.2.1 Stacking COMPFS on top of SFS
Suppose we would like to implement a compression file
system (COMPFS). We can use COMPFS to save disk
space by compressing all data before writing it out and by
uncompressing all data read from the disk. Since we are
not interested in rewriting an on-disk file system, we can
implement COMPFS as a layer on top of a base file system
(SFS).

Figure 5 illustrates the example of stacking COMPFS on
SFS. A request to COMPFS to create a new fileCOMP
results in COMPFS creating a new underlying fileSFS.

FIGURE 5. Stacking COMPFS on top of SFS (case 1)

• Local and remote binds to COMPFS are handled by COMPFS
itself. Binds from the local VMM result in using the P2-C2 con-
nection.

• COMPFS accesses the contents of fileSFS by either mapping it
or issuing read/write calls to it.

• Clients can access the underlying SFS file (fileSFS) as usual.

• Mappings of fileSFS and fileCOMP are not coherent with respect
to each other.

VMM

SFS

COMPFS

P1

C2

P2

local and remote
binds are handled
by COMPFS itself

fileCOMP

C1

fileSFS

As with other files in Spring, a client that holds fileCOMP
may access its contents either by memory mapping the file
or by calling the file read/write operations. COMPFS
implements the read/write operations the same way as
other Spring file systems: it maps the fileCOMPinto its
address space and reads/writes the mapped memory.
Therefore, in either case, the cache object used by the
VMM to service the file map request is C2, and COMPFS
receives page-ins/page-outs from the VMM on its P2
object.

When a page-in is received on P2 from the VMM, COM-
PFS has to read the compressed version of the data stored
in fileSFS, uncompress the data, and return it as a result of
the page-in request. Similarly for page-outs, COMPFS has
to compress the data and write it to fileSFS.

Note if the name space is configured appropriately (see
Section 4.4), the underlying SFS files can also be accessed
by other clients in the system. A client opening fileSFS can
access this file as usual, reading and writing itscom-
pressed data.

COMPFS can access fileSFS by reading/writing the file or
by memory mapping it. Such a scheme works and is sim-
ple, but has one drawback: if fileCOMP and fileSFS are both
memory mapped, the setup shown in Figure 5 willnot
keep accesses to both files coherent. For example, if a cli-
ent writes directly into fileCOMP the corresponding
changes may not be reflected into fileSFS until some time
later, or they may be clobbered by direct writes to fileSFS.

Keeping concurrent accesses to fileCOMP and fileSFS
coherent may or may not be important. In the case of
COMPFS, one may argue that it is not important, and a
quick solution is to disallow direct accesses to fileSFS. For
the sake of discussion, let’s assume that it is important to
keep all mappings to fileCOMP and fileSFS coherent.

When a file system is stacked on top of another file sys-
tem, it can act as a cache manager to the underlying pager.
A new setup is shown in Figure 6. Note that the only dif-
ference from Figure 5 is the addition of the C3-P3 connec-
tion. To keep all mappings to fileCOMP and fileSFS
coherent, COMPFS now acts as a cache manager for
fileSFS. Therefore, instead of accessing fileSFS through the
file interface, COMPFS establishes itself as a cache man-
ager for fileSFS by issuing a bind operation on fileSFS and
establishing a C3-P3 connection.



Spring File Stacking Architecture

8 Extensible File Systems in Spring

The advantage of the second approach is that COMPFS
can now keep fileCOMP coherent with fileSFS. When
COMPFS is a cache manager for fileSFS, SFS (acting as a
pager) engages COMPFS in its coherency actions regard-
ing fileSFS. For example, if the VMM requests a block of
fileSFS in read-write mode through the P1-C1 connection,
the SFS acting as a pager may first need to flush the block
from COMPFS through the C3-P3 connection before to
the VMM’s request.

Each pager is responsible for keeping its own files coher-
ent. The exact algorithm implemented by a given file sys-
tem is not dictated by the architecture. This implies that a
given layer can only guarantee that its files will be coher-
ent with the files’ underlying state. An underlying file sys-
tem may choose not to keep its state coherent withits
underlying file system. In Section 6.3 we describe how,
utilizing a generic coherency layer, one can construct a
stack of file systems where all file accesses are coherent,
even though each individual layer implementation does
not maintain coherency.

4.2.2 Stacking DFS on top of SFS
Another design decision that a file system implementor
may want to make is whether to use thesame pager-cache
object connection used by the underlying file system for
local accesses to the file. This is possible if the layer does
not change the data obtained from the underlying file sys-
tem.

VMM

SFS

COMPFS

P1

C2

P2

P3

FIGURE 6. Stacking COMPFS on top of SFS (case 2)

Same as Figure 5 except:

• COMPFS acts as a cache manager to SFS by establishing a
P3-C3 connection. Remote page-in/page-out and read/write
requests on fileCOMP result in requests made by COMPFS to
SFS through the P3-C3 connection.

• Mappings of fileSFS and fileCOMP are coherent with respect to
each other.

local and remote
binds are handled
by COMPFS itself

fileCOMPC3

C1

fileSFS

Figure 7 illustrates a network-coherent distributed file sys-
tem (DFS) layered on top of SFS. The job of DFS is to
export SFS files to other machines in a coherent fashion
through some existing protocol (e.g., AFS [15]). For each
underlying fileSFS, DFS exports a fileDFS. FileDFS may be
accessed on the local machine through the normal Spring
mechanisms, or it may be accessed remotely through the
DFS protocol.

DFS arranges to act as a cache manager for fileSFS to han-
dle remote DFS operations. Therefore, all accesses to
fileDFS will be coherent with fileSFS. But since the data of
fileDFS is identical to that of fileSFS, DFS arranges to use
locally cached memory of fileSFS to handlelocal accesses
to fileDFS. This is achieved by forwarding bind operations
from local cache managers on fileDFS to the bind operation
on fileSFS. The pager object returned from the bind opera-
tion on fileSFS is P1. (In other words, when the VMM
binds to a locally managed DFS file, DFS reroutes the
VMM to the SFS, so that the VMM ends up dealing with
SFS directly.) Therefore, local accesses to fileDFS use the
same cached memory as fileSFS.

Note that since DFS is acting as a cache manager for
fileSFS, changes to the data in C1 (through fileSFS and

VMM

SFS

DFS

P1

C1

P2

C2
fileDFS

local binds

DFS forwards

fileSFS

FIGURE 7. Stacking DFS on top of SFS

• Local binds to fileDFS are forwarded to the corresponding
fileSFS. Thus, local clients of fileDFS use the same cache
object (C1) as clients of fileSFS, and DFS is not involved in
local page-in/page-out requests for fileDFS.

• Remote binds to DFS are handled by DFS itself. DFS acts as
a cache manager to SFS by establishing a pager object-
cache object (P2-C2) pair. Remote page-in/page-out requests
to DFS result in requests made by DFS to SFS through P2-
C2 connection.

• DFS handles read/write requests on fileDFS by mapping
fileSFS in its address space and reading/writing the data
directly in memory.

remote binds
are handled by
DFS itself

local binds to SFS
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local mappings of fileDFS) that affect pages cached by
remote DFS clients will be communicated to DFS by SFS.
Likewise, any coherency actions taken by DFS through its
private network protocol will be communicated to SFS
through the P2-C2 channel.

There are cases, of course, when sharing the same under-
lying data cache is not feasible. In our first example (Fig-
ure 5), COMPFScomputes its data based on SFS files. In
this case, fileCOMP data is different from fileSFS data, and
no sharing is possible. Note that these decisions are made
by the implementation of COMPFS—not SFS or any other
file system in the stacking hierarchy.

4.3 Stackable File Attributes Interface

The previous section described how we can use the cache
and pager object interfaces as the building blocks for
accessing and caching data, and keeping it coherent. The
cache and pager object interfaces, however, are insuffi-
cient for stacking file systems. In addition to data, files
contain attributes such as access and modified times, and
file length. Other attributes that may be associated with
files include access control lists and generalized attribute
lists.

One approach to handling file attributes would be to add
more operations to the cache and pager object interfaces.
Such an approach suffers from two problems. First, it is
not possible to decide on all operations that may be needed
by possible future file system extensions. Second, adding
file system-specific operations to a data movement inter-
face complicates the implementation of non-file system
clients of that interface.

Instead of burdening the cache and pager object interfaces
with file-specific operations, wesubclass the cache and
pager object interfaces into fs_cache and fs_pager inter-
faces, respectively. These two interfaces add some file
attribute operations that we believe are a good starting
point for handling file systems (basically, operations for
caching and keeping coherent the access and modified
times and file length). Future systems are free to subclass
these interfaces further to add more operations.

Since fs_cache and fs_pager objects are subclasses of
cache and pager objects, they can be passed wherever
cache and pager objects are expected. Referring back to
Figure 7, the P2-C2 connection is established when DFS,
acting as a cache manager, invokes the bind operation on

fileSFS. Recall that as a result of the bind operation a
pager-cache channel is established (or reused). When the
channel is first established, DFS sends an fs_cache object
instead of a cache object, and similarly SFS sends an
fs_pager object instead of a pager object. DFS attempts to
narrow the pager object it receives to an fs_pager object. If
it succeeds, it knows that it is talking to a file system. Oth-
erwise, DFS assumes that it is talking to a simple storage
pager that only provides the pager object functionality.
Similarly, SFS attempts to narrow the cache object it
receives to an fs_cache object. If the narrow succeeds,
SFS knows that it is talking to a file system, and therefore
engages it in the file attributes coherency protocol. Other-
wise, SFS assumes that it is talking to a simple cache man-
ager (e.g., a VMM).

Note that the fs_cache and fs_pager interfaces can be sub-
classed further to add more file system functionality. A
particular file system implementation may attempt to nar-
row these objects to other subtypes.

4.4 Configuring File Systems

In this section, we discuss two related issues: how to con-
figure file system stacks, and how to configure the result-
ing file name space.

A mechanism is needed to construct file systems layers. In
all the examples presented so far, a layer (e.g., DFS in
Figure 7) is really aninstance of a DFS file system, since
there can be other DFS layers stacked on other file
systems. We therefore define an interface,
stackable_fs_creator, that is used to create instances of
stackable file systems. This interface provides one
operation,create, which returns instances of file systems
of typestackable_fs. The stackable_fs interface inherits
from thefs andnaming_context interfaces as shown in
Figure 8.

At boot-time or during run-time, the file system creator for
each file system type (e.g., DFS and COMPFS) is created.

naming_context

stackable_fs

fs

FIGURE 8. File system interface hierarchy
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When a file system creator is started, it registers itself in a
well-known place e.g., /fs_creators/dfs_creator.

The method to configure a new file system is as follows:

1. A file system creator object is looked up from the well-
known place using a normal naming resolve operation
(e.g., “dfs_creator” is looked up in /fs_creators,
returning the object dfs_creator_obj, which is of type
stackable_fs_creator).

2. The file system creator object returned by Step 1 is
used to create an instance of the file system, e.g.,

stackable_fs dfs = dfs_creator_obj ->create();

3. The dfs instance is given an object of typestackable_fs
as the underlying file system, e.g.,

dfs->stackon(fs2);

Note that since fs2 is of typestackable_fs, it is also a
naming_context. The stack_on operation can be called
more than once to stack on more than one underlying
file system—the maximum number of file systems a
particular layer may be stacked on is implementation
dependent.

4. The new file system instance is bound somewhere in
the name space to expose its files to user programs,
e.g.,

some_name_server->bind(cxt, dfs);

Note that dfs is also a naming_context.

4.5 Putting Everything Together

In this section, we present a walk-through of the extended
example shown in Figure 9. In this setup, DFS is stacked
on COMPFS, which is in turn stacked on SFS. The stack is
created using the following steps:

• A dfs_creator_obj and a compfs_creator_obj are
looked up from a well-known location (e.g., /fs_cre-
ators).

• An SFS object (which is of type stackable_fs) is
located (e.g., looked up from /fs/SFS0a).

• An instance of COMPFS is created:

stackable_fs compfs = compfs_creator_obj->create()

• COMPFS is stacked on top of SFS:

compfs->stackon(sfs)

• Similarly for DFS:

stackable_fs dfs = dfs_creator_obj->create()

dfs->stackon(compfs)

• A decision is made whether or not to export SFS,
COMPFS, and DFS files (and to whom). A file system
is exported by binding its stackable_fs object in a con-
text somewhere. Let’s assume in this example that all
file systems are exported.

Now suppose a name lookup arrives through the private
DFS protocol:

• DFS resolves the file in its underlying file system.

• COMPFS in turn resolves the file in SFS.

• SFS returns fileSFS to COMPFS.

• COMPFS invokes the bind operation on fileSFS to
setup (or reuse) the P2-C2 connection and returns a
locally implemented fileCOMP to DFS.

• DFS invokes the bind operation on fileCOMP to setup
(or reuse) the C4 - P4 connection.

A remote read request arriving through the private DFS
protocol results in:

• DFS issuing a read-only page-in on P4.

• COMPFS issuing one or more read-only page-ins on
P2.

• SFS reading the data from disk.

• COMPFS uncompressing the data and returning it to
DFS.

• DFS sending the data to its DFS client through the pri-
vate DFS protocol.

P1

C1C3

P3 C2

P2

DFS

P4

C4

local binds

fsDFS forwards local

VMM

SFS

COMPFS

all binds are

fileSFS

fileCOMP

fileDFS

private DFS
protocol

FIGURE 9. Stacking DFS on COMPFS on SFS

remote binds
are handled
by DFS itself

binds to COMPFS

handled by
COMPFS itself
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Note that at any point the underlying data of fileDFS may
be accessed through fileCOMP or (uncompressed) through
fileSFS. All such accesses will be coherent with each other
and with remote DFS clients.

5 Interposing on a Per-file Basis

In Section 4, we described how a new file system can be
stacked on top of another. In this section, we describe how
we can use the same stacking architecture to change the
semantics of individual files or even individual file opera-
tions (functionality similar towatchdogs described in [8]).

Spring provides a general mechanism for objectinterposi-
tion. An object O1 can be substituted for another object O2
of typefoo as long as O1 is also of type foo. The imple-
mentation of O1 decides on a per-operation basis whether
to invoke the corresponding operation on O2, or whether
to implement the functionality itself. We describe in Sec-
tion 6.2 a caching file system that interposes on remote
files.

Another way to interpose on files is at name-resolution
time. To interpose on one or more files, an interposer
resolves the name of the context where the file object(s) is
bound, unbinds the context from the name space, and
binds in its place a naming context implemented by the
interposer itself. As a result, all naming operations through
this context will go to the interposer.3 The interposer can
then selectively intercept some name resolutions while
passing the rest to the original context.

When the interposer intercepts a name resolution, it
returns a file implemented by itself. All calls on the new
file are handled by the interposer, which may implement
the operation itself, or may forward the call to the original
file object. A more sophisticated interposer may act as a
cache manager to the original file.

3.  Of course, the interposer has to be appropriately authenticated
to be able to manipulate the name space. Note that naming con-
texts are associated with access control lists (ACLs) as explained
in [12].

6 Implementation

6.1 Spring Operating System

The Spring operating system is implemented, and is now
stable. We are currently on a push to make it our daily pro-
duction system. All system servers including the kernel
are multi-threaded, and the system runs on several unipro-
cessor and symmetric multiprocessor Sun SPARCsta-
tionTM models. Virtually all of the system is implemented
in C++.

The system interfaces are stable. Some of the interfaces,
especially the cache and pager object interfaces, under-
went several revisions as we gained more experience with
using and extending the system during the last three years.

6.2 File System Implementations

We have implemented and experimented with the extensi-
ble file system architecture described in this paper. Our
“production” system has several layered file system imple-
mentations:

Spring DFS. The Spring distributed file system [13] is
implemented as acoherencylayer. The coherency layer
implements a per-block multiple-readers/single-writer
coherency protocol. Among other things, the implementa-
tion keeps track of the state of each file block (read-only
vs. read-write) and of each cache object that holds the
block at any point in time. Coherency actions are triggered
depending on the state and the current request using a sin-
gle-writer/multiple-reader per-block coherency algorithm.
The coherency layer also caches file attributes using the
operations provided by the fs_cache and fs_pager inter-
faces.

Spring SFS. The Spring storage file system is actually
implemented using two layers as shown in Figure 10. The
basedisk layer implements an on-disk UFS [14] compati-

FIGURE 10. Spring SFS

Coherency layer

Disk layer

SFS

All files are

Disk drive

exported by
coherency
layer
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ble file system. It does not, however, implement a coher-
ency algorithm. Instead, an instance of the coherency layer
is stacked on the disk layer, and all files are exported via
the coherency layer.

We structure the SFS in this manner for two reasons:

1. By stacking the coherency layer on top of the disk
layer, we leverage the existing coherency implementa-
tion.

2. By placing each layer in its own address space, we can
lock the disk layer implementation in physical mem-
ory, while keeping the coherency layer in pageable
memory. Note that the system needs a “default” pager
that is locked-down in memory and is responsible for
paging other pagers. The state maintained by the disk
layer implementation is small (basically ani-node
cache). However, the state maintained by the coher-
ency layer is larger, and is proportional to the number
of clients of the system.

It is interesting to note that when we initially implemented
the Spring distributed file system, we planned to extract
the coherency code into a regular C++ library that any
pager implementation could use. We soon realized that by
structuring the coherency code as a file system layer we
were able to stack this layer on top of non-coherent layers
with comparable performance to a library approach.

Spring CFS. CFS is an attribute-caching file system. Its
main function is to interpose on remote files when they are
passed to the local machine as described in [13]. Once
interposed on, all calls to remote files end up being for-
warded to the local CFS.

An interesting aspect of CFS is the manner in which it
dynamically interposes on individual remote DFS files.
When CFS is asked to interpose on a file, it becomes a
cache manager for the remote file by invoking the bind
operation on the file as described in Section 4.2.

When a remote file is mapped locally, the VMM invokes
the bind operation on the file. Since the file is interposed
on by CFS, CFS receives the bind request. CFS proceeds
by returning to the VMM a pager-cache object channel to
the remote DFS. Therefore, all page-ins and page-outs
from the VMM go directly to the remote DFS.

CFS caches file attributes using the fs_pager and fs_cache
objects described in Section 4.3. CFS also services read/
write requests by mapping the file into its address space

and reading/writing the data from/to its memory (thus uti-
lizing the local VMM for caching the data).

Note that CFS is optional. If it is not running, remote files
will not be interposed on, and all file operations go to the
remote DFS.

6.3 Constructing Coherent Stacks

Using the coherency layer, we can construct coherent file
system stacks out of non-coherent layers. As in the case of
Spring SFS, starting from a non-coherent base layer, we
stack a coherency layer on the non-coherent layer and
export all files through the coherency layer. In the result-
ing file system stack, any exported file will be coherent
with its underlying file(s).

6.4 Performance

In this section we look at the performance of a file system
that was built using our extensible file system architecture.
We focus our performance measurements on determining
any additional overhead introduced by using our layering
approach to extensibility.

The additional overhead from our layering approach is
mainly due to crossing interface boundaries. Two file sys-
tem layers communicate by invoking operations on file,
stackable_fs, pager, and cache objects. When two layers
are in different domains, each object invocation requires a
cross-domain call. However, if the two layers are in the
same domain, then the object invocation consists of only
two local procedure calls. Whether one layer is in the same
domain or is in a different domain from another layer is
transparent to the implementation. Our object invocation
stub technology automatically chooses the optimal path
(procedure calls or cross-domain calls).

The file system that we measured is the SFS described in
the previous section. This file system contains two layers.
We provide measurements of stacking overhead by mea-
suring three implementations of the SFS:

• One that does not use stacking—this is the case with
no stacking overhead.

• One that uses stacking, but both file system layers are
in the same domain.

• One that uses stacking where the two file system layers
are in different domains.
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The benchmarks we use are opening, reading, writing, and
getting the attributes of a file stored on a machine’s local
disk. All measurements were taken on Spring running on a
40 Mhz SPARCstation 10 with 64 Mbytes of memory and
a 424 Mbyte 4400 RPM disk. Each data point is the aver-
age of 5 runs of 10,000 invocations of the given operation.
Variance between runs was less than 8 percent.

Table 2 compares measurements of the three implementa-
tions of the SFS. These measurements show several inter-
esting results. First, there is no significant overhead from
stacking if the layers are in the same domain. The highest
overhead is 39 percent on the open operation, and is due to
maintaining state about open files in two layers instead of
one. There is no measurable overhead on read, write, and
stat operations, since these merely require two extra proce-
dure calls across the layer.

The second interesting result is that when the two layers
are in different domains, there is a fairly significant over-
head for the open operation (101 percent). This overhead
is basically due to maintaining extra state in the top layer
and to the cross-domain call overhead when the top layer
calls the lower layer to perform the open. Although the
open overhead appears to be significant, it will only be
important to applications that are dominated by the cost of
file opens. Based on the estimates of name lookup over-
head on the macro-benchmarks in [16], we believe that the
open overhead when two layers are in different domains
will not be significant for real applications.

If the open overhead caused by splitting file system layers
across domains turns out to be significant for some appli-
cations, name caching can be used to eliminate the over-
head. We are currently implementing name caching in
Spring in order to eliminate the network overhead of
remote name resolutions. However, this same implementa-
tion can be used, if necessary, to eliminate the domain
crossing overhead as well.

The third interesting result from Table 2 is that when the
coherency layer caches the results of read, write, and stat
calls, there is no overhead from stacking since there are no
calls from the coherency layer to the lower layer. Thus,
with data and attribute caching, the data movement over-
head of putting layers in separate domains can be made
insignificant.

The fourth interesting result is that when there is no data
caching by either the non-stacked implementation or the

coherency layer, the stacking overhead is insignificant.
This is the case because, without caching by the coherency
layer, all read and write calls go to the lower layer, which
accesses the disk directly, and the disk overhead is much
higher than the cross domain call overhead.

Table 3 shows the cost of open, read, write, and stat opera-
tions on SunOSTM 4.1.3 running on the same hardware
used for the Spring measurements. The measurements
show that Spring is from 2 to 7 times slower than SunOS.
This is not surprising since SunOS is a production system
and Spring is an untuned research prototype. Since there is
no stacking overhead when reads, writes, and attributes
are cached, the speed differential between SunOS and
Spring for these operations is irrelevant with respect to
stacking overhead. However, the open stacking overheads
are very significant when compared to the much faster
SunOS open operation. This just amplifies our earlier
remark that if the open stacking cost adversely affects sys-

Operation

Cached by
Coherency
Layer?

Not
stacked

Stacked
one
domain

Stacked
two
domains

open No 0.98
100%

1.36
139%

1.97
201%

4KB read Yes 0.17
100%

0.17
100%

0.17
100%

4KB read No 13.7
100%

13.7
100%

13.7
100%

4KB write Yes 0.16
100%

0.16
100%

0.16
100%

4KB write No 13.7
100%

13.7
100%

13.7
100%

fstat Yes 0.13
100%

0.11
85%

0.11
85%

fstat No 0.13
100%

0.16
123%

0.22
169%

TABLE 2. Spring Performance Measurements

The table shows measurements of simple operations with and
without caching by the coherency layer. The disk layer maintains
its own cache to handle open and stat operations without requiring
disk I/Os, but reads and writes to the disk layer do require disk I/
Os. The first row is the cost of opening a file using a single-com-
ponent path name. The second and third rows are the cost of
reading 4 Kbytes from a file. The fourth and fifth rows are the cost
of writing 4 Kbytes to a file. The sixth and seventh rows are the
cost of getting an open file’s attributes. The top line of each row is
the time in milliseconds and the bottom line is normalized relative
to the non-stacked implementation.
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tem performance, then name caching will be necessary to
eliminate the stacking overhead.

The Spring performance measurements show that good
performance is attainable with our extensible file system
architecture. There are three basic ways of configuring
stacked file system layers that will provide performance
equivalent to non-stacked implementations:

• The layers can reside in the same domain. However,
without name caching there will still be open overhead.

• The layers can be in different domains but data and
attribute caching (and possibly name caching) can be
used by the top layer to eliminate stacking overhead on
cache hits.

• The bottom layer can be attached to a slow device such
as a disk such that the overheads of higher layers are
insignificant.

7 Comparisons with Related Work

In this section we compare our architecture to several sys-
tems that have recognized the need for extending the file
system.

7.1 VFS

The VFS architecture provides an interface between a file
system implementation and the kernel. The original notion
of an i-node [14] was abstracted into a virtual node
(vnode). The vnode interface has proven useful in
abstracting file system dependencies and in supporting
several file system types within the UNIX kernel [2]. In
[3] a prototype implementation is described where the
functionality of a file system is extended by stacking a
new vnode on top of another vnode. The work described in
[3] inspired the Ficus layering mechanism [4], as well as
further prototyping work within the SunOS system [17].
The Ficus file system [4, 18] makes further improvements

Operation Time in microseconds

open 127
4KB read 82
4KB write 86
fstat 28

TABLE 3. SunOS 4.1.3 Performance

to the vnode interface to provide a layering mechanism. In
particular, the Ficus system contains a delegation mecha-
nism that allows a file system layer to dynamically extend
its interface. A layer may forward an operation to a lower
layer if it does not implement this operation. Our system
does not provide such a mechanism.

There are several limitations to VFS-related systems:

• No general support for data or attribute coherency. The
issues of page identity and coherency are muddled.
There is one cache manager (the VM system), and
pages are identified by an internal (vnode address, off-
set) pair. Yet different vnodes may want to share and
maintain the coherency of the “same” data. Although
Ficus has limited support for centralized page owner-
ship that effectively implements a simple single-owner
coherency protocol between the different vnodes, it is
not clear how useful or general this mechanism is.

• No general transport mechanism, strong interfaces, or
distributed or user-level implementations.

• New file systems are added statically, not dynamically.
In addition, arcane knowledge of the UNIX kernel in
general, and vnodes in particular, is needed to intro-
duce new functionality in the system (see, for example,
the discussion of inter-vnode locking in [17]).

• Naming and file mounting issues are closely inter-
twined with vnode composition. There is no naming
system as such and no per-process view of the naming
space.

We believe that introducing the notion of more than one
cache manager in the system, and identifying the roles of
the pagers and cache managers, are the most important dif-
ferences between our approach and the approach taken by
VFS-based systems. In our architecture, interfaces and
protocols are defined for each of the producer (pager) and
the consumer (cache manager) of the data. Vnodes are tra-
ditionally producers of data, yet when they are stacked
they also become consumers of data. However, their role
as data consumers is not well-defined with the end result
that there is no general support for data or attribute coher-
ency.

7.2 External Pagers

Systems such as MACH [5], CHORUS® [6], and V++
[19] support external pager interfaces. Our file system
architecture utilizes several aspects of the Spring operat-
ing system, some of which have counterparts in MACH
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and CHORUS. Other aspects of Spring, such as the nam-
ing architecture, the separation of the memory object from
the pager object, and the stub technology, can be added to
these systems. Therefore, we believe that it is possible to
extend systems such as MACH and CHORUS to support
the architecture described in this paper. However, to our
knowledge none of these systems implements such a
framework.

7.3 Other Related Work

There are other systems that attempt to extend the func-
tionality of the file system in one way or another. For
example,watchdogs [8] provide extensions to the 4.3UFS
UNIX file system that allow users to define and implement
their own semantics for files. The Apollo extensible IO
system [7] uses libraries linked with the application to
define a framework for accessing base system I/O objects
which include files. Thex-kernel [20] supports access to
multiple file systems by providing a flexible directory ser-
vice that maps file names to a location where the file can
be found. TheChoices system [21] provides a framework
for extensible file systems, but does not address issues of
caching, coherency, and separate address spaces.

8 Conclusions and Future Work

Spring’s extensible file system architecture provides a
powerful mechanism for extending file system functional-
ity by structuring file systems as a set of dynamically con-
figurable layers. The architecture provides the ability to
keep file data and attributes coherent between layers and
provides the flexibility necessary to build extensible file
systems without sacrificing performance.

Spring’s extensible file system architecture benefits from
several Spring features:

• The basic Spring object mechanism provides a flexible
location-independent transport mechanism that enables
the different layers to reside in either different address
spaces or the same address space.

• Interface inheritance provides a clean way to extend
the functionality of a file system without the need to
resort to untyped interfaces (e.g., ioctl in UNIX).

• Object interposition provides a natural mechanism for
interposing on files.

• The Spring naming system, with its support for flexible
manipulation of the name space, enables the naming
system to be largely orthogonal to the file system.

• The Spring virtual memory system provides the basic
building blocks for data caching, coherency, and move-
ment.

Although we believe it may be possible to build an exten-
sible file system framework in other systems, Spring’s
many desirable features made our job much easier.

An interesting open problem is how to implement optimi-
zations such as read-ahead andclustering[22] in a system
that utilizes external pagers. This problem is complicated
further by file system stacking. We are experimenting with
extensions to the pager object interface to address this
issue. One approach we are currently investigating allows
a cache manager to convey to the pager the maximum and
minimum amount of data required during a page-in. The
pager is then given the opportunity to return more data
than strictly needed.

We are also continuing our work with our extensible file
system architecture. Our current work includes imple-
menting a compression file system layer, implementing
name caching, implementing an efficient bulk data transfer
mechanism, and designing the proper extensible file sys-
tem configuration tools. We hope that other users of
Spring will take advantage of our architecture, and add
important system functionality by adding new file system
layers to Spring.
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A Cache object interface definition

We list in this appendix the interface of the cache object
exported by cache managers (the VMM and pagers acting
as cache managers). In Appendix B we list the interfaces
of the objects exported by the pagers. The code below
specifies for each parameter a passing mode: a Spring
object passedcopy remains accessible to the caller and
callee after the call is made, while aconsumed object is
deleted from the calling domain as a side effect of the call.
Borrow is an in-out passing mode, whileproduce is an out
mode. Due to space considerations we elide some meth-
ods, most comments, and all type declarations. Most meth-
ods raise exceptions when errors are encountered; we elide
the description of the exceptions as well.

// Cache objects are implemented by cache managers and
// are invoked by pagers.
interface cache_object {
// Remove data from the cache and send modified blocks
to
 // the pager.
void flush_back(copy offset_t offset,copy offset_t size,
produce data memory);
// Downgrade read-write blocks to read-only and return
 // modified blocks to the pager.
void deny_writes(same parameters as flush_back());
 // Return modified blocks to the pager. Data is retained
 // in the cache in the same mode as before the call.
 void write_back(same parameters as flush_back());
 // Remove data from the cache—no data is returned.
 void delete_range(copy offset_t cache_offset,
copy offset_t size);

 // Indicate that a particular range of cache is zero-filled.
void zero_fill(same parameters as delete_range());
 // Introduce data into the cache.
void populate(copy offset_t cache_offset,
copy offset_t size,copy rights access_rights,
copy data memory);
void destroy_cache();
}; // cache_object interface

B Pager objects interface definitions

interface memory_object {
 // Return a cache_rights object that the caller can use
 // to locate a pager-cache object connection. The name
 // passed in is used to identify the cache manager making
 // the call.
void bind(copy name caller,copy rights requested_ac-
cess,
copy offset_t mem_obj_offset,borrow  offset_t length,
produce cache_rights rights,produce offset_t offset);
void get_length(produce offset_t length);
void set_length(copy offset_t length);
};  // memory_object interface

// Pager objects are implemented by pagers and are
// invoked by cache managers.
interface pager_object {
 // Request data be brought from the pager object in
 // read-only or read-write mode.
 void page_in(copy offset_t offset,copy offset_t size,
copy rights requested_access,produce data memory );

 // Write data to pager. Data is no longer retained by
 // the caller.
void page_out(copy offset_t offset,copy offset_t size,
copy data memory);
// Write data to pager. Data is retained in read-only mode
 // by the caller.
 void write_out(same parameters as page_out());
 // Write data to pager. Data is retained in same mode
 // by the caller.
 void sync(same parameters as page_out());
// done_with_pager_object is called by cache
 // manager when it closes its end of this connection.
void done_with_pager_object();
};  // pager_object
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