
1

Virtual Memory Support for Multiple Pages

Yousef A. Khalidi
Madhusudhan Talluri
Michael N. Nelson
Dock Williams

SMLI TR-93-17 September 1993

Abstract:

The advent of computers with 64-bit virtual address spaces and giga-bytes of physical memory will provide
applications with many more orders of magnitude of memory than is possible today. However, to tap the poten-
tial of this new hardware, we need to re-examine how virtual memory is traditionally managed. We concentrate
in this note on two aspects of virtual memory: software support for multiple page sizes, and memory manage-
ment policies tuned to large amounts of physical memory. We argue for the need to examine these areas, and
we identify several questions that need to be answered. In particular, we show that providing support for multi-
ple page sizes is not as straightforward as may initially appear.

A Sun Microsystems, Inc. Business

M/S 29-01
2550 Garcia Avenue
Mountain View, CA 94043

email addresses:
yousef.khalidi@eng.sun.com
madhusudhan.talluri@eng.sun.com
michael.nelson@eng.sun.com
dock.williams@eng.sun.com

2

Virtual Memory Support for Multiple Page Sizes

Yousef A. Khalidi, Madhusudhan Talluri, Michael N. Nelson, Dock Williams

Sun Microsystems Laboratories, Inc.
2550 Garcia Avenue

1 Introduction

Virtual memory implementations in current systems such
as UNIX® [5], VMS® [3], NTTM [13], MACH® [2], and
CHORUS® [4], share two basic assumptions regarding
physical memory management:

• There is one page size. This one size may be a multiple
of the MMU page size, but there is only one size and it
is typically in the range of 512-8K bytes.

• Physical memory is not very large, typically some-
where in the range of 4M-256M bytes. Physical mem-
ory replacement algorithms are normally tuned for the
common sizes of 16M-64M bytes.

It is not hard to see that these assumptions will no longer
be valid for a class of machines in the near future. We
believe that to tap the potential of computers with large
amounts of memory requires new software implementa-
tion techniques, rather than just porting the existing oper-
ating systems to future machines.

In this note, we examine two hardware features of future
machines that violate basic assumptions of current virtual
memory implementations:

• Hardware support for multiple pages sizes.

• Very large physical memory.

2 Multiple page sizes

2.1 Motivation

A Translation Look-aside Buffer (TLB) is a cache of vir-
tual-to-physical address translations, and is typically used
to reduce the average address translation time. When a

required translation is not in the TLB, a software (e.g.,
R4000® [6]) or a hardware miss handler (e.g., Super-
SPARCTM [7]) is executed to enter the translation in the
TLB.

Technological and architectural trends are leading towards
larger main memory sizes and programs with larger work-
ing sets, but with the TLB size remaining relatively small.
For reasons stated in [1] and elsewhere, the TLB size is
not expected to increase at the same rate as main memory
size, yet the amount of memory mapped by the TLB is an
important factor in determining performance. Therefore,
there is a need to make the TLB map larger working sets.
Otherwise, TLB miss handling may become a perfor-
mance bottleneck.

One way to increase the amount of memory mapped by
the TLB is to increase the page size. This approach may be
feasible for modest increases in page sizes (e.g., from 4K
to 8K or even 16K bytes). In general, however, this
approach causes more internal fragmentations, larger pro-
tection boundaries, and forces the system to do all opera-
tions, such as copy-on-write, zero-fill on demand, and
paging I/O at the new large page size.

Another way to increase TLB coverage is by using multi-
ple-page sizes, where each TLB entry may map a page of
variable size. For example, large contiguous regions in a
process’ address space, such as program text, may be
mapped using a small number of large pages (e.g., 64K
byte pages) rather than a large number of small pages
(e.g., 4K byte pages), while thread stacks may continue to
be mapped using the small page size.

The case for hardware support for multiple page sizes has
been argued by others [1], and there are now several
microprocessor architectures that support multiple page

Mountain View, CA 94043 USA

Multiple page sizes

Virtual Memory Support for Multiple Page Sizes 3

sizes, including R4000 [6], Alpha [8], and SuperSPARC
[7]. For example, the R4000 supports seven page sizes
(from 4K to 16M bytes) using a 48-entry fully associative
TLB.

In general, there are two classes of applications that can
benefit from multiple page sizes:

• The operating system kernel and devices such as frame
buffers. In addition to the microprocessors listed
above, many other architectures have some limited
support for handling these specialized cases, including
the PA-RiscTM 1.1 [9] and i860TM [10].

• General applications, including multiprogrammed job
mixes, and applications with large working sets such as
numerical analysis code.

Mapping the kernel, or specialized devices such as frame
buffers using large mappings, is relatively straightforward.
Moreover, adding such functionality to existing systems is
a simple engineering exercise that affects limited portions
of the operating system. In this note, we are interested in
providing multiple page size support for general applica-
tion code.

2.2 Utilizing New Hardware

New microprocessors that support multiple page sizes will
be under-utilized if the software does not provide support
for multiple page sizes. A simulation study was conducted
to compare three different TLB designs, given the same
chip area. The bar graph in Figure 1 shows the TLB miss
ratios for four large programs and three alternative TLB
configurations. The first bar shows the miss ratio (% of
memory references that missed in the TLB) for a 64-entry
fully-associative TLB with the software using only 4K
pages. The second bar shows the miss ratio for a 256-entry
2-way set-associative TLB again using only 4K pages.
The third bar shows the same configuration as the first bar
but the software is using both 4K and 32K pages (the pol-
icy for assigning pages is described in [1]).

Current microprocessor hardware is being designed
assuming that the software will use the large page sizes
(third bar). However, current operating systems do not
support multiple page sizes and end up using only one
page size although the TLB can support multiple sizes
(first bar). If the hardware engineers knew that the large

mappings would not be used, a larger set-associative TLB
could have been an alternative design (second bar).1

The figures show that unless large mappings are used, the
hardware is being under-utilized. The performance using
only small pages is worse than the simpler 2-set associa-
tive hardware designs. By using multiple page sizes, there
is apotential for very low TLB miss ratio. The questions
to ask are:

• How would alternative TLBs supporting only a single
page size perform, compared to a TLB supporting mul-
tiple page sizes?

• What is the overhead in the operating system to sup-
port multiple page sizes?

2.3 Why is it Hard?

Current VM systems are not suited for supporting multiple
page sizes as the knowledge of one page size is ingrained
in the virtual memory code. As we will show, adding sup-
port for multiple page sizes raises many new issues
regarding howphysicalmemory is managed, as well as
affecting common VM and file system optimizations such
as read-ahead, clustering [16], and copy-on-write.

It is important to note that supporting multiple page sizes
affects both the machine dependentand independent por-
tions of the system. That is, the clean separation of
machine independent and dependent code in systems such

1. This assumes that a fully-associative TLB takes four times the
chip area as a set-associative TLB of the same number of entries,
with access time being approximately equal.

0%

1%

2%

3%

4%

5%

6%

verilog mpsas nasa7 matrix300

64 fa/4K 256 2-way/4K 64 fa/4-32K

Miss
Ratio

Figure 1. Miss ratios for different TLB

Multiple page sizes

Virtual Memory Support for Multiple Page Sizes 4

as MACH, SunOSTM [5], and CHORUS is not enough to
mitigate the difficulties of supporting multiple page sizes.

2.4 What Needs to be Done?

2.4.1 Choosing a Page Size
Current VM interfaces do not have the notion of multiple
page sizes. Given a choice of more than one page size,
who should decide the page size for a given mapping? The
user application, the compiler, and the operating system
are potential candidates. Should the user even know that a
particular mapping can be done using a large page size
instead of a number of small pages? Can the compiler
make use of multiple-page-size knowledge in arranging
the program’s data structures?

In general, the system can use large pages to map any
mapped region that is big enough. However, as we will
show below, in many cases the system may not be able to
satisfy a request for a large page mapping, and instead
may resort to using a number of small mappings. There-
fore, at best, the notion of multiple page sizes should be
exported to the user/compiler as a hint only.

2.4.2 Arranging VM Data Structures
Introducing support for multiple page sizes complicates
many VM data structures. Consider, for instance, the basic
page frame descriptor. Traditionally, VM systems repre-
sent each physical page with a descriptor. The descriptor is
normally linked on a number of lists, contains (or implic-
itly indicates) the page frame number, and includes other
state information (e.g., locks, modified and referenced
bits).

With multiple page sizes, a particular page frame descrip-
tor may represent one of several page sizes. Moreover, at
any point in time, a page frame may need to be viewed
simultaneously as a distinct small page and as part of a
larger page (e.g., when two mappings are established to
the same memory object: one small and one large). Tradi-
tionally, a hash list of all page frames in the system is built
and is accessed by some page frame identifier (e.g., in
SunOS, by a vnode-offset pair). With multiple page sizes,
arranging and accessing the hash list can become very
complex.

2.4.3 Managing Physical Memory
Perhaps the biggest issue with adding support for multiple
page sizes is how to manage physical memory. Micropro-

cessors that support multiple page sizes normally impose
the following alignment restriction: a mapping of size B
bytes is defined to start at a virtual address that is a multi-
ple of B and a physical address that is a multiple of B,
where B is a power of 2. Note that the physical address
specifies a contiguous physical page of size B.

These constraints are due to what the hardware can sup-
port efficiently in TLBs. Defining a page, as above, allows
the hardware to be based on bit-selection. Supporting
unaligned virtual/physical addresses requires hardware
adders/comparators that are more complicated. All exist-
ing microprocessor TLBs that we are familiar with require
these alignment restrictions.

Therefore, to support multiple page sizes, there is now a
need for managingphysical memory. For example, the
VM system will need to structure its “free” and “clean”
page lists into several lists of the supported page sizes
(e.g., 8K, 64K, 512K bytes). A physical memory allocator,
(e.g., one based on the buddy system) is needed to main-
tain these lists. When a particular mapping to a large page
is requested (e.g., as a hint from the user or from the
higher level of the VM), a clean page of the required size
must be located. If a page of the appropriate size is not
found, the system may opt for using smaller mappings, or
may attempt somehow to coalesce smaller pages into a big
page.

There are many important questions that need to be
answered with respect to physical memory management:

• Can physical memory become so fragmented that no
large mapping requests can be accommodated? When
and how should the allocator coalesce memory? Will it
be worthwhile to copy memory around to create large
pages?

• How is page-replacement affected? Should the system
favor large pages over small pages? When should a
large page be broken into a number of small pages?

• Will managing the free lists according to size cause the
system to page more? If it causes extra paging, it’s
probably not worth the effort! It is important to note
that for a given application, one extra I/O operation
may wipe out the all the advantages of better TLB cov-
erage.

• How does arranging the free lists according to size
affect page-coloring [14] algorithms?

Page replacement

Virtual Memory Support for Multiple Page Sizes 5

2.4.4 Using Large Mappings
Another question to answer is: when should the decision
to use a large mapping be made? Should the system allo-
cate and populate a large physical page on the first fault, or
should it delay the decision until a later point in time?

A similar question affects copy-on-write and zero-fill-on-
demand mappings. The system should probably wait until
“enough” small pages have been populated beforepromot-
ing [1] the mapping into one using a large page.

2.4.5 Interaction Between Different Mappings
When using one page size only, all mappings to the same
memory object are done using the same page size. With
use of multiple page sizes, it is possible that one mapping
may use a small page size to map a small part of a memory
object, while a second mapping may use a large page size
to map a large part of the same memory object. If the sys-
tem is not careful, the first mapping (which uses small
pages) may preclude using large pages for the second
mapping.

For example, if one process maps the first 8KB of a 1MB
sized file, the VM system may choose a free 8KB physical
frame for the mapping. There are no particular alignment
requirements on this 8KB physical page. If a second pro-
cess then requests say a 1M mapping to the same file, then
the second mapping cannot be done using a large page size
because the VM system already allocated an unaligned 8K
page for the first mapping. Even if the 8K page was
aligned correctly on a 1MB boundary, the rest of the phys-
ical memory after the 8KB page may not be free.

2.4.6 Re-examining VM/FS Optimizations
What are the effects of supporting multiple page sizes on
VM and file system optimizations such as read-ahead, and
clustering? What about copy-on-write and zero-fill-on-
demand handling that was mentioned before?

3 Page replacement

Current commercial high-end machines can support giga-
bytes of physical memory (e.g., SparcCenter 2000 and
CHALLENGETM), and newer machines are expected to
reach tera-bytes of physical memory. Current workstations
support up to 0.5 giga-bytes of memory or more (e.g.,
SPARCStation-10). The question is how will large
amounts of physical memory, especially when coupled

with support for multiple pages sizes, affect page replace-
ment?

Virtual memory systems traditionally keep track of a refer-
ence bit per page. This bit is either provided by the hard-
ware or simulated in software. The reference bit is usually
used by the VM system to implement page replacement
algorithms such as “clock” [17] and Sampled Working Set
[18] algorithms. Periodically, the VM system examines all
pages in the system, resetting the reference bits, and
updating page usage statistics.

It is not clear how useful reference bits will be for very
large machines. In particular, clock-based algorithms such
as the ones used in many UNIX variants are not appropri-
ate for large amounts of memory (how much time does it
take to sweep a 1GB of physical memory? 10GB?).

There is a large body of work from the sixties and seven-
ties in the area of page replacement and paging (see [18]
and [19] for references). Perhaps now it is time to re-
examine the basic assumptions of prior studies in light of
very large physical memory and multiple page sizes. Per-
haps we need to reconsider two of the simplest page
replacement algorithms that were dismissed in the past:
random replacement, and first-in first-out replacement.

One final issue is how the page replacement algorithm
interacts with support for multiple page sizes. Should we
attempt to bias the algorithm toward large or small pages?
When should we break a large page into a set of small
pages? Or should we replace large pages completely? By
using a simple replacement algorithm such as random
replacement, perhaps we can simplify the interaction of
page replacement with multiple page sizes.

Others have recognized the need to re-examine page
replacement algorithms in large memory machines. Wood
and Katz argued for getting rid of the modified bit [12],
though we do not necessarily agree with their conclusions.
Harty and Cheriton [15] describe an interface exported by
the VM system to external pagers that can be used to con-
trol physical memory. Harty and Cheriton recognize that
future computers will have giga-bytes of memory and
advocate providing more control over memory to external
pagers. (They also state that their interfaces are useful for
providing support for multiple page sizes, though we
believe that the interfaces they propose are not sufficient
for that purpose.)

Conclusions

Virtual Memory Support for Multiple Page Sizes 6

4 Conclusions

We believe that new virtual memory implementation tech-
niques are required to tap the potential of newer micropro-
cessors. We posed several questions in this note regarding
multiple page size support and new page replacement
algorithms.

Few would argue that we need to re-examine current tech-
niques for page replacement in light of machines with very
large physical memory. The issue of support for multiple
page sizes, however, is more complex. The gains of better
TLB coverage can be very small, and the overhead of pro-
viding multiple page size support is unknown. As we men-
tioned before, in some situations, even one extra I/O
operation may wipe out the advantages of extra TLB cov-
erage.

Since microprocessors are now designed with hardware
support for multiple page sizes, it behooves those of us in
the operating system community to investigate how useful
hardware support for multiple page size is, and how the
operating system can make use of this hardware feature.
The operating system should either provide support for
multiple page sizes, or the hardware should be redesigned
to support a single page size more efficiently.

References

[1] Talluri, Madhusudhan, Shing Kong, Mark D. Hill, and
David A. Patterson. “Tradeoffs in Supporting Two Page
Sizes.”Proceedings of the 19th Annual International Sympo-
sium on Computer Architecture(May 1992): 415–424.

[2] Rashid, R., A. Tevanian, M. Young, D. Golub, R. Baron,
D. Black, W. Bolosky, and J. Chew. “Machine-Independent
Virtual Memory Management for Paged Uniprocessor and
Multiprocessor Architectures.”IEEE Transactions on Com-
puters37, no. 8 (August 1988): 896–908.

[3] Kenah, Lawrence J., Ruth E. Goldenberg, and Simon F.
Bate.VAX/VMS Internals and Data Structures. Digital Press,
1988.

[4] Abrosimov, Vadim, Marc Rozier, and Marc Shapiro.
“Generic Memory Management for Operating System Ker-
nels.”12th Symposium on Operating System Principles
(SOSP '89) (1989): 123–136.

[5] Gingell, Robert A., Joseph P. Moran, and William A.
Shannon. “Virtual Memory Architecture in SunOS.”Pro-
ceedings of Summer '87 USENIX Conference (June 1987).

[6] MIPS Computer Systems.MIPS R4000 Microprocessor
User’s Manual.1991.

[7] Blanck, G., and S. Krueger. “The SuperSPARC Micro-
processor.”COMPCON(February 1992): 136–141.

[8] Dobberpuhl, Daniel, et al. “A 200 MHz 64b Dual-Issue
CMOS Microprocessor.”Proceedings of the 39th Interna-
tional Solid-State Circuits Conference (February 1992): 106–
107.

[9] Hewlett-Packard.PA RISC 1.1 Architecture and Instruc-
tion Set Reference Manual. 1990.

[10] Intel Corporation.Overview of the i860 XP Supercom-
puting Microprocessor. 1991.

[11] Chen, J. Bradley, Anita Borg, and Norman P. Jouppi. “A
Simulation Based Study of TLB Performance.”Proceedings
of the 19th Annual International Symposium on Computer
Architecture (May 1992): 114–123.

[12] Wood, David A. and Randy H. Katz. “Supporting Refer-
ence and Dirty Bits in SPUR’s Virtual Address Cache.”Pro-
ceedings of the 16th Annual International Symposium on
Computer Architecture (June 1989): 122–130.

[13] Custer, Helen.Inside Windows NT. Microsoft Press,
1993.

[14] Kessler, R. E., and Mark D. Hill. “Page Placement Algo-
rithms for Large Real-Index Caches.”ACM Transactions on
Computer Systems 10, no. 4 (November 1992): 338–359.

[15] Harty, Kieran, and David R. Cheriton. “Application-
Controlled Physical Memory using External Page-Cache
Management.”Proceedings of the 5th International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems (ASPLOS V) (October 1992): 187–
197.

[16] McVoy, L. W., and S. R. Kleiman. “Extent-like Perfor-
mance from a UNIX File System.”Proceedings of Winter
1991 USENIX (January 1991).

[17] Babaoglu, Ozalp, and William Joy. “Converting a Swap-
Based Sytem to do Paging in an Architecture Lacking Page-
Reference Bits.”Proceedings of the 8th Symposium on Oper-
ating Systems Principles (1981): 78–86.

[18] Denning, Peter J. “The Working Set Model for Program
Behavior.”Communications of the ACM 11 (May 1968):
323–333.

[19] Babaoglu, Ozalp. “Virtual Storage Management in the
Absence of Reference Bits.” Ph.D. thesis, Computer Science
Division, University of California, Berkeley, 1981.

© Copyright 1993 Sun Microsystems, Inc. The SMLI Technical Report Series is published by Sun Microsystems Laboratories, Inc.
Printed in U.S.A.

Unlimited copying without fee is permitted provided that the copies are not made nor distributed for direct commercial advantage, and credit to the
source is given. Otherwise, no part of this work covered by copyright hereon may be reproduced in any form or by any means graphic, electronic, or
mechanical including photocopying, recording, taping, or storage in an information retrieval system, without the prior written permission of the copy-
right owner.

TRADEMARKS
Sun, Sun Microsystems, and the Sun logo are trademarks or registered trademarks of Sun Microsystems, Inc. UNIX and OPEN LOOK are registered
trademarks of UNIX System Laboratories, Inc. All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of
SPARC International, Inc. SPARCstation, SPARCserver, SPARCengine, SPARCworks, and SPARCompiler are licensed exclusively to Sun Microsys-
tems, Inc. VMS is a registered trademark of Digital Equipment Corporation. Windows NT is a trademark of Microsoft Corporation. Connection
Machine is a registered trademark of Thinking Machines Corporation. R4000 is a registered trademark of MIPS Computer Systems Inc. Sun OS is a
trademark of Sun Microsystems, Inc. i860 is a trademark of Intel Corporation. PA-Risc is a trademark of Hewlett-Packard Company. CHALLENGE is a
trademark of Silicon Graphics, Inc. CHORUS is a registered trademark of Chorus Systems. All other product names mentioned herein are the trade-
marks of their respective owners.

