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Abstract:

A key problem in operating systems is permitting the orderly introduction of new properties and new implemen-
tation techniques. We describe a mechanism, subcontract, that within the context of an object-oriented distrib-
uted system permits application programmers control over fundamental object mechanisms. This allows
programmers to define new object communication without modifying the base system. We describe how new
subcontracts can be introduced as alternative communication mechanisms in the place of existing subcon-
tracts. We also briefly descibe some of the uses we have made of the subcontract mechanism to support cach-
ing, crash recovery, and replication.
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1 Introduction

It has become common to provide remote procedure call
facilities that extend the semantics of local procedure calls
to distributed systems [Birrell & Nelson 1984]. This often
takes the form of remote object invocation [Almes et al
1985], [Black et al 1987].

However, rather than there being a single set of obvious
semantics for all remote objects, there appears to be a wide
range of possible object semantics, often reflecting differ-
ent application requirements. For example, there are RPC
systems that include integrated support for replication
[Birman & Joseph 1987], atomic transactions [Liskov
1988], object migration [Schuller et al 1992], and persis-
tence [OMG 1991]. But there are also RPC systems that
provide only minimal features and instead concentrate on
high performance [Schroeder & Burrows 1990], [Bershad
et al 1990].

One possible reaction to this diversity would be to attempt
to invent a single mechanism for remote objects that
includes all possible features. Unfortunately the list of
possible properties is continually expanding and not all
features are necessarily compatible. For example, a high
performance system may not want its objects to include
support for persistence or atomicity. Moreover, there are
often a variety of different ways of implementing a given
set of semantics. Having a single RPC system prevents
applications exploiting new and improved mechanisms
that may better reflect their real needs.

For example, say that we wish to support object replica-
tion so as to increase reliability. We do not want client
application code to need to do extra work simply to talk to
replicated objects, so we would prefer to support replica-

tion underneath the covers, as part of the object invocation
mechanism. But there are many different ways of imple-
menting replication and it seems undesirable to build in
support for some particular set of mechanisms while
implicitly rejecting others. If an application developer dis-
covers a more efficient way of managing replicated objects
within their application then we would like them to be able
to start using this new mechanism without having to
change the base RPC system.

In the Spring system we have taken an approach of wel-
coming diversity, rather than trying to implement a single
catch-all RPC mechanism. We provide a framework which
makes it easy for different RPC mechanisms to work
together and for implementors to add new mechanisms in
a consistent, compatible, way. Replaceable modules
known as subcontracts are given control of the basic
mechanisms of object invocation and argument passing.

Subcontracts are separated from object interfaces and
object implementations. It is easy for object implementors
to either select and use an existing subcontract or to imple-
ment a new subcontract. Correspondingly, application
level programmers need not be aware of the specific sub-
contracts that are being used for particular objects.

The rest of the paper is structured as follows: Section 2
describes related work in the distributed systems and lan-
guage communities. Section 3 gives an overview of the
Spring system, which is the context for this work. Sections
4, 5 and 6 describe subcontract and how it is convention-
ally used. Section 7 gives an example of the operation of a
subcontract-based object. Section 8 describes some uses of
subcontract. Finally Section 9 reflects on our experience
with subcontract.
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Related work

2 Related work

2.1 Language-level support for remote
operations

Techniques for providing a language-level veneer for
remote operations have been in use for some time [Nelson
1981], [Birrell & Nelson 1984]. Typically, a remote inter-
face is defined in some language. Then a pair ofstubs are
generated from this interface. Theclient stubruns in one
machine and presents a language level interface that is
derived from the remote interface. Theserver stub runs in
some other machine and invokes a language-level inter-
face that is derived from the remote interface. To perform
a remote operation, a client application programmer
invokes the client stub, whichmarshals the arguments into
network buffers and transmits them to the server stub,
whichunmarshals the arguments from the network buffers
and calls into the server application. Similarly, when the
server application returns, the results are marshalled by the
server stub and returned to the client stub, which unmar-
shals the results and returns them to the client application.

When the arguments or results are simple values such as
integers or strings, the business of marshalling and unmar-
shalling is reasonably straightforward. The stubs will nor-
mally simply put the literal value of the argument into the
network buffer. However, in languages that support either
abstract data types or objects, marshalling becomes rather
more interesting.

One solution is for the stubs to marshal the internal data
structures of the object and then to unmarshal this data
back into a new object. This has several fairly serious defi-
ciencies. First, it is a violation of abstraction, since the
stubs have no business knowing about the internals of
objects. Second, it requires that the server and client
implementations of the object use the same internal layout
for their data structures. Third, it may involve marshalling
large amounts of unnecessary data since not all of the
internal state of the object may really need to be transmit-
ted to the other machine.

An alternative solution is that when an object is mar-
shalled, none of its internal state is transmitted. Instead an
identifying token is generated for the object and this token
is transmitted. For example in the Eden system [Lazowska
et al 1981], [Almes et al 1985], objects are assigned names
and when an object is marshalled, then its name rather
than its actual representation is marshalled. Subsequently
when remote machines wish to operate on this object, they
must use the name to locate the original site of the object

and transmit their invocations to that site. This mechanism
is appropriate for heavyweight objects, such as files or
databases, but it is often inappropriate for lightweight
abstractions, such as an object representing a cartesian
coordinate pair, where it would have been better to mar-
shal the real state of the object.

Finally, some object-oriented programming systems pro-
vide the means for an object implementation to control
how its arguments are marshalled and unmarshalled. For
example, in the Argus system [Herlihy & Liskov 1982]
object implementors can provide functions to map
between their internal representation and a specific, con-
crete, external representation. The Argus stubs will invoke
the appropriate mapping functions when marshalling and
unmarshalling objects so that it is the external representa-
tion rather than any particular internal representation that
is transmitted.

These different solutions all either impose a single stan-
dard marshalling policy for all objects, or require that indi-
vidual object implementors take responsibility for the
details of transforming an object into a marshalled form.

2.2 Reflection in object-oriented languages

Some object-oriented languages provide the ability for
object implementors to gain control of some of the funda-
mental object mechanisms. This technique is known as
reflection. For example in the 3-KRS language [Maes
1987] objects can have meta-objects associated with them.
A meta-object provides methods specifying how an object
inherits information, how an object is printed, how objects
are created, how message passing (that is, object invoca-
tion) is implemented, etc. 3-KRS does not however pro-
vide any control over argument passing.

By providing reflective object invocation in Smalltalk-80
it was possible to implement objects which are automati-
cally locked during invocation and objects which only
compute a value when they are first read [Foote & Johnson
1989].

We were interested in applying these notions of reflective
control of fundamental object mechanisms to the particu-
lar problems of distributed computing.

2.3 Object adaptors in CORBA

The Common Object Request Broker Architecture
(CORBA) [OMG 1991] defines a notion ofobject adap-
tors, which is based, in part, on some of our early experi-
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Overview of Spring

ence with subcontract. Object adaptors provide a limited
set of choices about the server-side object mechanisms.
However, all object adaptors are supplied as part of the
basic object machinery and it is not possible for applica-
tion writers to implement new object adaptors, or for the
object machinery to discover and install new object adap-
tors at run-time.

3 Overview of Spring

Spring is an experimental distributed environment. Its cur-
rent incarnation includes a distributed operating system
and a support framework for distributed applications.

Spring is focused on providing interfaces rather than sim-
ply on providing implementations. We aim to encourage
the coexistence of radically different implementations of a
given interface within a single system. We have reinforced
this view of a strong separation of implementations and
interfaces by using the object-oriented notions of data
encapsulation and interface inheritance.

3.1 The interface definition language

The unifying principle of Spring is that all the key inter-
faces are defined in an interface definition language called
IDL [OMG 1991]. This language is object-oriented and
includes support for multiple inheritance. It is purely con-
cerned with interface properties and does not provide any
implementation information.

From the IDL interfaces it is possible to generate lan-
guage-specific stubs. These stubs provide a language-spe-
cific mapping to the Spring interfaces. For example, in our
main implementation language, C++, Spring objects are
represented by C++ objects. When a method on a stub
object is invoked it will either perform a local call within
the current address space or forward the call to another
address space, which may be on a different machine.

3.2 The Spring object model

Spring has a slightly different way of viewing objects from
other distributed object-oriented systems and it is neces-
sary to clarify this before discussing the details of subcon-
tract.

Most distributed systems present a model that objects
reside at server machines and client machines possess
object references that point to the object at the server. (See

Figure 1.) So clients pass around object references rather
than passing around actual objects.

Spring presents a model that clients are operating directly
on objects, rather than on object references. However
some of these objects happen to keep all their interesting
state at some remote site, so that their local state merely
consists of a handle to this remote state. (See Figure 2.)

An object can only exist in one place at a time, so if we
transmit an object to someone else then we cease to have
the object ourselves. However, we can also copy the object
before transmitting it, which might be implemented such
that there are now two distinct objects pointing to the same
underlying state.

For most server-based objects this distinction is mainly
one of terminology. However, Spring also supports objects
which are not server-based, and objects where the state of
the object is split between the client and the server. In
these cases it is much more convenient to regard the client
as possessing the true object, rather than merely possess-
ing a reference.

3.3 Doors

Spring applications run as separatedomains. Each domain
is an address space plus a collection of threads.

object
object

reference

FIGURE  1. Systems distinguishing object
references and objects

client
 application

object
reference

client
 application

server
 application

underlying
state

FIGURE  2. Objects in Spring
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Where subcontract fits in

The Spring kernel provides an object-oriented inter-pro-
cess communication mechanism calleddoors [Hamilton &
Kougiouris 1993], which are analogous to ports in Mach
[Acetta et al 1986], [Draves 1990]. A door is a communi-
cation endpoint, to which threads may execute cross
address space calls. A domain that creates a door receives
adoor identifier, which it can pass to other domains so that
they can issue calls to the associated door. The kernel
manages all operations on doors and door identifiers,
including their construction, destruction, copying and
transmission. Door identifiers function as software capa-
bilities since only the legitimate owner of a door identifier
may issue a call on its associated door.

A set of network servers extend the door mechanism trans-
parently over the network. This includes both forwarding
door invocations over the network and also mapping door
identifiers to and from an extended network form.

3.4 Status

Spring currently exists as a fairly complete prototype. The
operating system is based around a minimal kernel, which
provides basic object-oriented inter-process communica-
tion [Hamilton & Kougiouris 1993] and memory manage-
ment [Khalidi & Nelson 1993A]. Functionality such as
naming, paging, file systems, etc. are all provided as user-
mode services outside of the basic kernel. The system also
provides enough Unix emulation to support standard
utilities such as make, vi, csh, the X window system, etc.
[Khalidi & Nelson 1993B]. All system interfaces are
defined in IDL and all the inter-process communication
uses our subcontract machinery.

4 Where subcontract fits in

A Spring object is perceived by a client as consisting of
three things: 1) amethod table, which contains an entry for
each operation implied by the object’s type definition; 2) a
subcontract operations vector which specifies the basic
subcontract operations described below in Section 5; and
3) some client-local private state, which is referred to as
the object’srepresentation.

A client employs a Spring object by invoking methods on
what appears to be a C++ object. The code for this C++
object is automatically generated from an IDL interface
description. This code transforms the method invocations
into calls on either the object’s regular method table or on
its subcontract operations vector. How these methods
achieve their effect is hidden from the client.

If the object is implemented by a remote server, then a typ-
ical arrangement will be that the subcontract implements
the machinery for communicating with the remote server,
while the method table consists of pointers to stub meth-
ods whose sole duty is to marshal the arguments into a
buffer, call the subcontract to execute the remote call and
then unmarshal any results from the reply buffer. Figure 3
shows the logical progression of a call to a server-based
Spring object.

In the remote server there will typically be some subcon-
tract code to perform any subcontract work associated
with incoming calls and some server side stub code that
unmarshals the arguments for each operation and calls into
the server application.

5 Basic subcontract mechanisms

To illustrate the subcontract mechanisms, we shall use as
an example a subcontract calledreplicon, which is our
simplest subcontract for supporting replication.

In replicon, a set of server domains conspire to maintain
the underlying state associated with an object. Each server
creates a kernel door (see 3.3 above) to accept incoming
calls on that state. The client domains possess a set of door
identifiers that they use to call through to server domains.
In the case of replicon the clients are required to talk only
to a single server and the servers are required to perform
their own state synchronization. (Other subcontracts for
replication use more elaborate rules.)

Thus a Spring object built on the replicon subcontract con-
sists of a method table that consists entirely of stub meth-
ods, a replicon subcontract descriptor and a representation
that consists of a set of kernel door identifiers, one per rep-
lica.

Client application

Client stubs

subcontract

Server application

Server stubs

subcontract

FIGURE  3. Invoking a method on a server-based object
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Basic subcontract mechanisms

5.1 Client side subcontract interfaces

The principal client side subcontract operations are:

• marshal

• invoke

• unmarshal

• marshal_copy

• invoke_preamble

5.1.1 Marshal
The subcontractmarshal operation is used by the stubs to
transmit an object to another address space.

Marshal takes the current object and places enough infor-
mation in a communications buffer so that an essentially
identical object can be unmarshalled from this buffer in
another domain. It then deletes all the local state associ-
ated with the object.

Replicon implements the marshal operation by marshal-
ling the count of door identifiers and then marshalling
each of its door identifiers in turn.

5.1.2 Unmarshal
Theunmarshal operation is used when receiving an object
from another domain. Its job is to fabricate a fully fledged
Spring object, consisting of a method table, subcontract
operations vector, and representation.

When a stub decides to read an object from a communica-
tions buffer, it must choose both an initial subcontract and
an initial method table based on the expected type of the
object. It then invokes the initial subcontract, passing it the
initial method table and the buffer.

The subcontract must then fabricate an object based on the
information in the communications buffer. This typically
involves reading enough information from the communi-
cations buffer to be able to create a representation.

In the case of replicon, this normally involves reading a set
of kernel door identifiers from the buffer and creating a
representation to hold them. (Section 6 below discusses
what happens in some abnormal cases.)

Finally the subcontract’s unmarshal operation plugs
together its own subcontract operations vector, the method
table pointer and the representation to create a new Spring
object.

5.1.3 Invoke
The invoke operation is used by the stubs to actually exe-
cute an object call, after the stubs have marshalled all the
arguments. Invoke is given an argument buffer and is
expected to return a result buffer.

Replicon implements the invoke operation using the ker-
nel’s door invocation mechanism. Replicon attempts to
invoke each of its door identifiers in turn. If the door invo-
cation fails due to a communications error, then replicon
deletes that door identifier from its set of targets and pro-
ceeds to try the next door identifier. Otherwise, replicon
returns the result of the door invocation back to the stubs.

The replicon invoke protocol also piggybacks some sub-
contract control information in the call and reply buffers.
This is used to support changes to the replica set.

5.1.4 Invoke_preamble
The subcontract invoke operation is only executed after all
the argument marshalling has already occurred. In practice
it was noted that there are cases where an object’s subcon-
tract would like to become involved earlier in the process,
so that it can either write some subcontract-level control
information into the communications buffer or adjust the
communications buffer to influence future marshalling.

For example we have some subcontracts that use shared
memory regions to communicate with their servers. In this
case when invoke_preamble is called, the subcontract can
adjust the communications buffer to point into the shared
memory region so that arguments are directly marshalled
into the region, rather than having to be copied there after
all marshalling is complete.

To enable the subcontract to set up any needed state, we
introduced the subcontract operationinvoke_preamble,
which is called before any argument marshalling has
begun.

5.1.5 Marshal_copy
Our interface definition language supports a parameter
passing mode calledcopy. This mode implies that a copy
of the argument object is transmitted, while the calling
domain retains the original object.

This mode was originally implemented by first calling the
subcontract copy operation (see 5.1.6 below) and then by
calling the subcontract marshal operation on the copy.
However, it was observed that this frequently led to redun-
dant work in generating a copy that was immediately mar-
shalled and then deleted.
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Subcontract conventions

The marshal_copy operation allows us to optimize this
common case. It is defined to produce the effect of a copy
followed by a marshal, but it is permitted to optimize out
some of the intermediate steps.

5.1.6 Other client subcontract operations
The client subcontract provides operations for copying
and deleting objects. This control over copy and delete is
important for subcontracts that are maintaining dialogues
between a server and each of its extant client objects and
that may wish to notify the server of births and deaths.

The client subcontract also provides operations for per-
forming run-time type queries and a few other minor oper-
ations.

5.2 Server side subcontract operations

Many subcontracts support client-server computing. We
have described the client side view of subcontract, but for
server-based objects there is also a certain amount of
machinery on the server side.

On the client side, we attempt to hide the subcontract
implementation from application programmers. However
on the server side, we are prepared to allow server imple-
mentations to be more tightly coupled to particular sub-
contracts. For example a replicated subcontract may
require special interfaces to the server application in order
to support replication.

Thus the server side interfaces can vary considerably
between subcontracts. However, there are three elements
that are typically present: support for creating a Spring
object from a language-level object, support for process-
ing incoming calls, and support for revoking an object.

5.2.1 Creating a Spring object
Subcontracts must provide a way of creating Spring
objects from language-level objects. This can take one of
two forms.

The simplest form is that a subcontract creates a normal
client side Spring object. This means that it must create
some kind of communication endpoint (for example a ker-
nel door) and fabricate a client side Spring object whose
representation uses that endpoint.

However, some subcontracts provide special support for
Spring objects that reside in the same address space as
their server, by providing an optimized invocation mecha-
nism for use within a single address space. When a Spring

object is created using such a subcontract, it will typically
fabricate an object using a special server-side subcontract
operations vector and it will try to avoid paying the
expense of creating resources required for cross-domain
communication. When and if the object is actually mar-
shalled for transmission to another domain, the subcon-
tract will finally create these resources.

5.2.2 Processing incoming calls
Occasionally a subcontract will create a communications
endpoint that delivers an incoming call directly to the
server side stubs. More commonly, the subcontract will
arrange that the incoming call arrives first in the subcon-
tract, which then forwards the call to the stub level. This
permits the server-side subcontract to maintain a dialogue
with the corresponding client-side subcontract by piggy-
backing additional information on calls and replies.

5.2.3 Revoking an object
Occasionally a server will decide that it wishes to discard
a piece of state, even though there are clients who cur-
rently have objects pointing at that state. This is particu-
larly important for operating system services which may
wish to reclaim resources without waiting for all their cli-
ents to consent. Thus typical server-side subcontracts pro-
vide a way for the server application to revoke an
outstanding object. For example, this can be implemented
by revoking any underlying kernel doors, which will
effectively prevent further incoming kernel calls.

6 Subcontract conventions

6.1 Compatible subcontracts

Clearly it is desirable for different objects to have different
subcontracts. In particular, two objects which are per-
ceived by the client application as having the same type
may in fact have different subcontracts.

For example, the standard typefile is specified to use a
s imple  subcont rac t  ca l leds ing le ton.  The type
cacheable_file is a subtype of file, but instead uses the
caching subcontract. So what happens when we send an
object of type cacheable file where an object of type file is
expected? Clearly if the receiver insists on unmarshalling
the caching object as though it were a singleton, then it is
going to be disappointed. For each type we can specify a
default subcontract for use when talking to that type, but
how do we cope when we actually need to use a different
subcontract?
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The life-cycle of a Spring object

We solve this problem by introducing the notion ofcom-
patible subcontracts. Subcontract A is said to becompati-
ble with subcontract B if the unmarshalling code for
subcontract B can correctly cope with receiving an object
of subcontract A.

The normal mechanism we use to implement compatible
subcontracts is to include a subcontract identifier as part of
the marshalled form of each object.

So a typical subcontract unmarshal operation starts by tak-
ing a peek at the expected subcontract identifier in the
communications buffer. If it contains the expected identi-
fier for the current subcontract, then the subcontract goes
ahead and unmarshals the object. However if the unmar-
shal operation sees some other value then it calls into a
registry to locate the correct code for that subcontract and
then calls that subcontract to perform the unmarshalling.

6.2 Discovering new subcontracts

A program will typically be linked with a set of libraries
that provide a set of standard subcontracts. However at
run-time the program may encounter objects which use
subcontracts that are not in its standard libraries.

We provide a mechanism to map from subcontract identifi-
ers to library names and we support dynamic linking of
libraries to obtain new subcontracts.

Say that a domain is expecting to receive an object of type
file, using the singleton subcontract, but we instead send it
an object of type replicated_file using the replicon subcon-
tract. The singleton unmarshal operation will discover that
it is dealing with a different subcontract and it will call
into the domain’s subcontract registry to find the correct
subcontract code. The registry will discover that there is
currently no suitable subcontract loaded, but it will then
use a network naming context to map the subcontract
identifier into a library name (e.g. replicon.so) and it will
then dynamically link in that library to obtain the subcon-
tract. Unmarshalling can then continue, using the newly
linked subcontract code.

So even though the program had no concept of replicated
objects and was not initially linked with any libraries that
understood replicated objects, we were able to dynami-
cally obtain the right code to talk to a replicated file object.

This mechanism means that it is possible to add new sub-
contracts and use them to talk to old applications without
changing either the old applications or the standard librar-

ies, provided only that we can make a suitable subcontract
library available at run-time to the old programs.

Many domains, particularly systems servers, are reluctant
to simply run some random dynamic library code nomi-
nated by a potentially malicious client. So, for security
reasons the dynamic linker will only load libraries that are
on a designated directory search-path of trustworthy loca-
tions. So it typically requires intervention by a privileged
system administrator to install a new subcontract library in
a standard directory which most domains will have on
their search paths.

6.3 Subcontracts and object types

Subcontracts affect objects’ semantics. Different imple-
mentations of a type such as file may use different subcon-
tracts which provide substantially different semantics. It is
necessary to provide a way for application programmers to
determine the real semantics of particular objects.

Fortunately, this is easy to express in an object-oriented
type system. We define standard base types with core
semantics for various abstractions. Other types inherit
from these standard types and add additional semantics,
such as replication. It is the responsibility of each object
implementor to select both a type for their object and a
subcontract that meets the semantic commitments of that
type. Clients may attempt to narrow an object’s type at
run-time to determine if a given object of a statically
determined type, such as file, actually supports a subtype
with richer semantics, such as replicated file.

7 The life-cycle of a Spring object

It may be useful to review the various points where sub-
contract is used during the lifetime of a particular object.

Say that a fileserver FS is exporting objects of type file,
using thesimplex subcontract. The simplex subcontract is
a very simple client-server subcontract, using a single ker-
nel door identifier to communicate with the server.

The fileserver starts with some internal state describing a
file. It then uses the server-side code of the simplex sub-
contract to create a Spring object. At this point the server
application must specify a method table, a set of server
side stubs and a pointer to the internal file state. The sim-
plex server code creates a kernel door to act as the entry
point for this particular piece of file state and returns a new
Spring object. This object consists of a pointer to the sim-
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Example subcontracts

plex subcontract, a pointer to the given method table, and
a pointer to a representation consisting of a door identifier.
See Figure 4.

Initially, the new file object is in the same address space as
its creator. But let’s say it gets passed to another address
space as a result of an operation on a file_system object.
When the file object is transmitted, the server-side
file_system stubs will invoke the object’s subcontract to
marshal the object into a buffer. Simplex will deposit both
its own subcontract ID and the object’s door identifier in
the buffer. At the receiving end, the client-side file_system
stubs will attempt to unmarshal a file object. Since file’s
default subcontract is singleton, they will initially call the
singleton unmarshal method. However singleton will
quickly realize that the buffer holds a subcontract ID for
another subcontract and will use the subcontract registry
to locate the code for simplex and ask simplex to perform
the unmarshalling. Simplex will read the subcontract ID
and door identifier and create an appropriate Spring object.

When a client attempts to invoke a method on the file
object, they will invoke a method from the object’s
method table, which will be implemented by the client-
side stubs. These stubs will start by calling the file object’s
subcontract invoke_preamble operation. In this case the
simplex invoke_preamble does nothing and simply
returns. After marshalling the arguments, the stubs will
invoke the object’s subcontract invoke operation. In this
case the simplex invoke operation uses the kernel’s door
IPC mechanism to call through to the server. This propa-
gates the call to the server-side simplex code, which for-
wards the call to the server-side file stubs and thence up
into the server application. The reply similarly flows back
through the server-side stubs, the server-side simplex
code, the kernel, the client-side simplex code and back
into the client-side stubs. Those stubs unmarshal any
results and return them to the client application.

server
application

simplex
server-side

server
file stubs

file
state

client
 application

door
id

simplex

file stubs

FIGURE  4. A file object using the simplex subcontract

Another event that may befall our file object is that a client
may want to copy the file object so they can send the copy
on to some other application. (Note that this is a shallow
copy, in which both the original and the copy refer to the
same underlying state.) This can be done by invoking the
object’s subcontract copy method. In this case the simplex
copy method will fabricate a new Spring object by simply
copying its method table pointer and subcontract pointer
and by asking the kernel to copy its door identifier.

Finally, alas, the client application may be finished with
the file object. At this point it can invoke the object’s sub-
contract consume method. In this case, simplex consume
will simply tell the kernel to delete the door identifier and
return. Later, when all active door identifiers for the server
door have been deleted, the kernel will notify the door’s
target, in this case the server-side simplex code, so that it
can clean up.

Notice how the simplex subcontract has been involved in
all the key events of the object’s life: its birth, its reproduc-
tion, its death, its transfer between address spaces, and
finally and most importantly, simplex has been involved
whenever any invocations occurred on the object. Simplex
chooses to make only fairly limited use of these control
points. Other subcontracts are rather more venturesome.

8 Example subcontracts

We have already described the replicon subcontract (in
Section 5) and the simplex subcontract (in Section 7). We
now provide a short overview of some other interesting
subcontracts we have developed. For brevity, we merely
provide simplified outlines of their key features and omit
descriptions of error conditions and special optimizations.

8.1 The cluster subcontract

The simplex subcontract uses a distinct kernel door for
each piece of server state that may be exposed as a sepa-
rate Spring object. Since the kernel imposes a capability-
like security model on door identifiers, this is a suitable
implementation for any objects that are used to grant
access to distinctly protected system resources. However
some servers export large number of objects where if a cli-
ent is granted access to any of the objects, it might as well
be granted access to all of them. In this case a subcontract
can reduce system overhead by using a single door to pro-
vide access to a set of objects.
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Reflections on subcontract

Thecluster subcontract supports this notion. Each cluster
object is represented by the combination of a door identi-
fier and an integer tag. The cluster invoke_preamble and
invoke operations conspire to ship the tag along to the
server when performing a cross-domain call on the door.
The server-side cluster subcontract code uses this tag to
dispatch to a particular object.

8.2 The caching subcontract

When a server is on a different machine from its clients, it
is often useful to perform caching on the client machines.
So when we transmit a cacheable object between
machines, we’d like the receiving machine to register the
received object with a local cache manager and access the
object via the cache.

The caching subcontract, which was originally developed
for the Spring file system [Nelson et al 1993], provides
this functionality. The representation of a caching object
includes a door identifier D1 that points to the server, a
door identifier D2 that points to a local cache, and the
name of a cache manager.

When we transmit a caching object between machines, we
only transmit the D1 door identifier and the cache manager
name. The caching unmarshal code resolves the cache
manager name in a machine-local context to discover a
suitable local cache manager and then presents the D1
door identifier to the local cache manager and receives a
new D2. Whenever the subcontract performs an invoke
operation it uses the D2 door identifier. So all invocations

cacher

clientclient

cacher

server

client

FIGURE  5. Three clients using the caching subcontract

on a cacheable object go to an appropriate cache manager
on the local machine. (See Figure 5.)

8.3 The reconnectable subcontract

Some servers keep their state in stable storage. If a client
has an object whose state is kept in such a server, it would
like the object to be able to quietly recover from server
crashes. Normal Spring door identifiers become invalid
when a server crashes, so we need to add some new mech-
anism to allow a client to reconnect to a server.

The reconnectable subcontract uses a representation con-
sisting of a normal door identifier, plus an object name.

Normally the recoverable subcontract’s invoke code sim-
ply does a kernel door invocation on the door identifier.
However, if this fails, the subcontract instead attempts to
resolve the object name to obtain a new object and retries
the operation on that. It retries periodically until it suc-
ceeds in getting a new valid object.

8.4 Future directions

In conjunction with some related projects, we are investi-
gating a number of new subcontracts. One is to develop a
subcontract that lets video objects encapsulate a specific
network packet protocol for live video. Another is to
develop a subcontract that transfers scheduling priority
information between clients and servers for time-critical
operations. Another is to transfer control information for
atomic transactions at the subcontract level.

As base system implementors, we are only too happy that
these techniques appear suitable for implementation by
third party experts as new subcontracts and will not
require modifications to the base RPC system.

8.5 Motivation for examples

This paper is not about replication or caching or crash
recovery. What we hope to have established in this section
is that the basic subcontract interfaces are sufficiently gen-
eral that they can accommodate a wide range of possible
solutions, while still providing a uniform application
model.

9 Reflections on subcontract

One of the reasons that subcontract is effective is because
it separates out the business of implementing objects from
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implementing object mechanisms. Subcontract implemen-
tors provide a set of interesting subcontracts that enable
object implementors to chose from a range of different
object policies without requiring that every object imple-
mentor must become familiar with the details of the object
implementation machinery.

The set of operations that subcontract provides appear to
be the right levers for obtaining control within a distrib-
uted environment. By design, all the key actions taken on
remote objects will involve the object’s subcontract in one
way or another. Subcontract provides an effective way for
plugging in different policies for different objects,

In practice subcontract has succeeded in reducing the
functionality that must be provided by the base system.
We have been able to implement a number of interesting
new subcontracts without requiring any new facilities in
the base system, including a number of new subcontracts
(such as the caching subcontract) which we did not envis-
age in the original subcontract design.

9.1 Subcontracts versus specialized stubs

Our current system maintains a complete separation
between stubs and subcontracts. Any set of stubs can work
with any subcontract and vice versa. An alternative solu-
tion would have been to define a similar framework, but
provide the subcontract functionality directly in the stubs,
by implementing different sets of stubs for different sub-
contracts. There were two reasons for implementing sub-
contracts as separable modules.

First, we wanted subcontract writers to be able to develop
new communication mechanisms without having to under-
take the reasonably daunting task of developing (or modi-
fying) a stub generator. This argues for a logical separation
between stubs and subcontracts. However, this require-
ment could be satisfied by permitting subcontracts to exist
as in-line procedures, which could be in-lined into gen-
eral-purpose stubs.

Second, we wanted to avoid the need for client applica-
tions to load specialized stubs in order to talk to individual
objects. If a program expects to receive an object of type
foo through an RPC interface, then it can arrange to have
the general-purpose foo stubs available and plug them
together with appropriate subcontracts as needed. How-
ever, it is a much more difficult proposition to have all
possible flavors of specialized foo stubs available. We
expect the set of subcontracts to be much smaller than the
set of types. While we are prepared to accept some moder-

ate administrative hurdles for making a new subcontract
available via dynamic linking, we are reluctant to pay this
cost for all new combinations of types and subcontracts.

As a future direction, we are interested in providing spe-
cialized stubs for some particularly popular and perfor-
mance-critical combinations of types and subcontracts.
We would still keep the general purpose stubs available for
these types, so as to be able to deal with different subcon-
tracts, but when we were lucky enough to receive an
object that happened to be of the right type and subcon-
tract we would be able to use the specialized stubs.

9.2 The OS environment

Our subcontract work happens to have occurred in the
context of a distributed operating system that provides an
object-oriented IPC facility. Given this IPC mechanism,
we have chosen to use it for a variety of our subcontracts
and also to acknowledge its existence in our basic mar-
shalling machinery. However this is mere happenstance. In
different operating system environments it may be appro-
priate to use different IPC machinery for subcontracts or to
operate at a lower level and build exclusively on raw net-
work packets. Even in our environment it is possible to
mix the use of the kernel’s door mechanism with the use of
raw IP packets, should one desire.

9.3 Performance overheads of subcontract

Subcontract has some performance costs over simpler
RPC systems. Each object invocation always requires an
additional two indirect procedure calls from the stubs into
the client subcontract and typically requires a third indi-
rect call from the server-side subcontract into the server
stubs. Transmitting an object requires an extra pair of calls
for marshalling and unmarshalling and typically also
involves the cost of marshalling and unmarshalling a sub-
contract ID. However in our system we estimate that these
costs add less than 2 microseconds (on a SPARCstation 2)
to the costs for a minimal remote call or to the costs of a
simple object transmission.

More significantly, subcontract makes it harder for the
stubs to be optimized for particular sets of arguments and
results, as the subcontract may be adding an indeterminate
amount of data to the call or reply buffer. This is one of the
factors causing us to investigate specialized combinations
of stubs and subcontracts. (See Section 9.1 above.)

Individual subcontracts can be as efficient or as profligate
as they wish. For example, the caching subcontract adds a
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significant overhead to object unmarshalling to achieve
the useful optimization of local caching.

10 Conclusion

We have shown that it is possible to build distributed sys-
tems where a variety of different object mechanisms can
co-exist. This enables the use of a range of lightweight and
heavyweight mechanisms within the same system and
avoids the need to choose a single mechanism for all occa-
sions. Instead individual object implementations can select
those features that they require and that they are prepared
to pay for.

These different object mechanisms are all on a par with
one another. There is no penalty for application writers
who wish to use new subcontracts in place of the standard
ones. A new type such asreplicated_file, using a new sub-
contract, such a replicon, can be used in all the places
where the earlier, simpler, typefile was used.

It is therefore possible for object implementors to provide
a wide range of different possibilities for security, for per-
formance, for robustness, for scope of access, all behind
the same set of application-visible interfaces.
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